/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); void reach_error() { __assert_fail("0", "linux-4.0-rc1---drivers--net--ethernet--qlogic--qlge--qlge.ko.cil.c", 5, "reach_error"); } typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u16 __sum16; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct net_device; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_30 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_31 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_32 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_29 { struct __anonstruct_futex_30 futex ; struct __anonstruct_nanosleep_31 nanosleep ; struct __anonstruct_poll_32 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_29 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_45 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_45 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; union __anonunion____missing_field_name_46 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_46 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_47 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_47 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_48 { uid_t val ; }; typedef struct __anonstruct_kuid_t_48 kuid_t; struct __anonstruct_kgid_t_49 { gid_t val ; }; typedef struct __anonstruct_kgid_t_49 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_50 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_50 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_115 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_115 mm_context_t; struct bio_vec; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_RESUME_LATENCY = 1, DEV_PM_QOS_LATENCY_TOLERANCE = 2, DEV_PM_QOS_FLAGS = 3 } ; union __anonunion_data_142 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_142 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2, PM_QOS_SUM = 3 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; s32 no_constraint_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints resume_latency ; struct pm_qos_constraints latency_tolerance ; struct pm_qos_flags flags ; struct dev_pm_qos_request *resume_latency_req ; struct dev_pm_qos_request *latency_tolerance_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_143 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_143 __annonCompField32 ; unsigned long nr_segs ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_149 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_150 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_148 { struct __anonstruct____missing_field_name_149 __annonCompField35 ; struct __anonstruct____missing_field_name_150 __annonCompField36 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_148 __annonCompField37 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_151 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_153 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_157 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_156 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_157 __annonCompField40 ; int units ; }; struct __anonstruct____missing_field_name_155 { union __anonunion____missing_field_name_156 __annonCompField41 ; atomic_t _count ; }; union __anonunion____missing_field_name_154 { unsigned long counters ; struct __anonstruct____missing_field_name_155 __annonCompField42 ; unsigned int active ; }; struct __anonstruct____missing_field_name_152 { union __anonunion____missing_field_name_153 __annonCompField39 ; union __anonunion____missing_field_name_154 __annonCompField43 ; }; struct __anonstruct____missing_field_name_159 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_160 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_158 { struct list_head lru ; struct __anonstruct____missing_field_name_159 __annonCompField45 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_160 __annonCompField46 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_161 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_151 __annonCompField38 ; struct __anonstruct____missing_field_name_152 __annonCompField44 ; union __anonunion____missing_field_name_158 __annonCompField47 ; union __anonunion____missing_field_name_161 __annonCompField48 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_162 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_162 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct pid; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iov_iter msg_iter ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_165 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_165 sync_serial_settings; struct __anonstruct_te1_settings_166 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_166 te1_settings; struct __anonstruct_raw_hdlc_proto_167 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_167 raw_hdlc_proto; struct __anonstruct_fr_proto_168 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_168 fr_proto; struct __anonstruct_fr_proto_pvc_169 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_169 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_170 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_170 fr_proto_pvc_info; struct __anonstruct_cisco_proto_171 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_171 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_172 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_172 ifs_ifsu ; }; union __anonunion_ifr_ifrn_173 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_174 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_173 ifr_ifrn ; union __anonunion_ifr_ifru_174 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_177 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_176 { struct __anonstruct____missing_field_name_177 __annonCompField49 ; }; struct lockref { union __anonunion____missing_field_name_176 __annonCompField50 ; }; struct vfsmount; struct __anonstruct____missing_field_name_179 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_178 { struct __anonstruct____missing_field_name_179 __annonCompField51 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_178 __annonCompField52 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_180 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_180 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_182 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_181 { struct __anonstruct____missing_field_name_182 __annonCompField53 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_181 __annonCompField54 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct backing_dev_info; struct export_operations; struct nameidata; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_185 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_185 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_186 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_186 __annonCompField56 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_189 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_190 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_191 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_189 __annonCompField57 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_190 __annonCompField58 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_191 __annonCompField59 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_192 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_192 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_194 { struct list_head link ; int state ; }; union __anonunion_fl_u_193 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_194 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_193 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_195 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_195 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_197 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_198 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_199 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_200 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_202 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_201 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_202 _addr_bnd ; }; struct __anonstruct__sigpoll_203 { long _band ; int _fd ; }; struct __anonstruct__sigsys_204 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_196 { int _pad[28U] ; struct __anonstruct__kill_197 _kill ; struct __anonstruct__timer_198 _timer ; struct __anonstruct__rt_199 _rt ; struct __anonstruct__sigchld_200 _sigchld ; struct __anonstruct__sigfault_201 _sigfault ; struct __anonstruct__sigpoll_203 _sigpoll ; struct __anonstruct__sigsys_204 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_196 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_208 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_207 { struct __anonstruct____missing_field_name_208 __annonCompField60 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_207 __annonCompField61 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_209 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_210 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_212 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_211 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_212 __annonCompField64 ; }; union __anonunion_type_data_213 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_215 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_214 { union __anonunion_payload_215 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_209 __annonCompField62 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_210 __annonCompField63 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_211 __annonCompField65 ; union __anonunion_type_data_213 type_data ; union __anonunion____missing_field_name_214 __annonCompField66 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_22836 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_22836 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct napi_struct; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_235 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_235 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; u32 tskey ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct __anonstruct____missing_field_name_237 { u32 stamp_us ; u32 stamp_jiffies ; }; union __anonunion____missing_field_name_236 { u64 v64 ; struct __anonstruct____missing_field_name_237 __annonCompField71 ; }; struct skb_mstamp { union __anonunion____missing_field_name_236 __annonCompField72 ; }; union __anonunion____missing_field_name_240 { ktime_t tstamp ; struct skb_mstamp skb_mstamp ; }; struct __anonstruct____missing_field_name_239 { struct sk_buff *next ; struct sk_buff *prev ; union __anonunion____missing_field_name_240 __annonCompField73 ; }; union __anonunion____missing_field_name_238 { struct __anonstruct____missing_field_name_239 __annonCompField74 ; struct rb_node rbnode ; }; struct sec_path; struct __anonstruct____missing_field_name_242 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_241 { __wsum csum ; struct __anonstruct____missing_field_name_242 __annonCompField76 ; }; union __anonunion____missing_field_name_243 { unsigned int napi_id ; unsigned int sender_cpu ; }; union __anonunion____missing_field_name_244 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; union __anonunion____missing_field_name_245 { __be16 inner_protocol ; __u8 inner_ipproto ; }; struct sk_buff { union __anonunion____missing_field_name_238 __annonCompField75 ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; void (*destructor)(struct sk_buff * ) ; struct sec_path *sp ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; __u16 queue_mapping ; unsigned char cloned : 1 ; unsigned char nohdr : 1 ; unsigned char fclone : 2 ; unsigned char peeked : 1 ; unsigned char head_frag : 1 ; unsigned char xmit_more : 1 ; __u32 headers_start[0U] ; __u8 __pkt_type_offset[0U] ; unsigned char pkt_type : 3 ; unsigned char pfmemalloc : 1 ; unsigned char ignore_df : 1 ; unsigned char nfctinfo : 3 ; unsigned char nf_trace : 1 ; unsigned char ip_summed : 2 ; unsigned char ooo_okay : 1 ; unsigned char l4_hash : 1 ; unsigned char sw_hash : 1 ; unsigned char wifi_acked_valid : 1 ; unsigned char wifi_acked : 1 ; unsigned char no_fcs : 1 ; unsigned char encapsulation : 1 ; unsigned char encap_hdr_csum : 1 ; unsigned char csum_valid : 1 ; unsigned char csum_complete_sw : 1 ; unsigned char csum_level : 2 ; unsigned char csum_bad : 1 ; unsigned char ndisc_nodetype : 2 ; unsigned char ipvs_property : 1 ; unsigned char inner_protocol_type : 1 ; unsigned char remcsum_offload : 1 ; __u16 tc_index ; __u16 tc_verd ; union __anonunion____missing_field_name_241 __annonCompField77 ; __u32 priority ; int skb_iif ; __u32 hash ; __be16 vlan_proto ; __u16 vlan_tci ; union __anonunion____missing_field_name_243 __annonCompField78 ; __u32 secmark ; union __anonunion____missing_field_name_244 __annonCompField79 ; union __anonunion____missing_field_name_245 __annonCompField80 ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __be16 protocol ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; __u32 headers_end[0U] ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char erom_version[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_tunable { __u32 cmd ; __u32 id ; __u32 type_id ; __u32 len ; void *data[0U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_key_size)(struct net_device * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh)(struct net_device * , u32 * , u8 * , u8 * ) ; int (*set_rxfh)(struct net_device * , u32 const * , u8 const * , u8 const ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; int (*get_tunable)(struct net_device * , struct ethtool_tunable const * , void * ) ; int (*set_tunable)(struct net_device * , struct ethtool_tunable const * , void const * ) ; }; union __anonunion_in6_u_248 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_248 in6_u ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6_mib_device { atomic_long_t mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6msg_mib_device { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[9U] ; }; struct linux_mib { unsigned long mibs[113U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics ; struct ipstats_mib *ip_statistics ; struct linux_mib *net_statistics ; struct udp_mib *udp_statistics ; struct udp_mib *udplite_statistics ; struct icmp_mib *icmp_statistics ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6 ; struct udp_mib *udplite_stats_in6 ; struct ipstats_mib *ipv6_statistics ; struct icmpv6_mib *icmpv6_statistics ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct ping_group_range { seqlock_t lock ; kgid_t range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct sock **tcp_sk ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports ip_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; int sysctl_ip_nonlocal_bind ; int sysctl_fwmark_reflect ; int sysctl_tcp_fwmark_accept ; int sysctl_tcp_mtu_probing ; int sysctl_tcp_base_mss ; struct ping_group_range ping_group_range ; atomic_t dev_addr_genid ; unsigned long *sysctl_local_reserved_ports ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int auto_flowlabels ; int icmpv6_time ; int anycast_src_echo_reply ; int fwmark_reflect ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t fib6_sernum ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct netns_sysctl_lowpan { struct ctl_table_header *frags_hdr ; }; struct netns_ieee802154_lowpan { struct netns_sysctl_lowpan sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ct_pcpu { spinlock_t lock ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct delayed_work ecache_dwork ; bool ecache_dwork_pending ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; seqcount_t generation ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct ct_pcpu *pcpu_lists ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; unsigned int base_seq ; u8 gencursor ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct flow_cache_percpu { struct hlist_head *hash_table ; int hash_count ; u32 hash_rnd ; int hash_rnd_recalc ; struct tasklet_struct flush_tasklet ; }; struct flow_cache { u32 hash_shift ; struct flow_cache_percpu *percpu ; struct notifier_block hotcpu_notifier ; int low_watermark ; int high_watermark ; struct timer_list rnd_timer ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; u8 dbits4 ; u8 sbits4 ; u8 dbits6 ; u8 sbits6 ; }; struct xfrm_policy_hthresh { struct work_struct work ; seqlock_t lock ; u8 lbits4 ; u8 rbits4 ; u8 lbits6 ; u8 rbits6 ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[3U] ; struct xfrm_policy_hash policy_bydst[3U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct xfrm_policy_hthresh policy_hthresh ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; struct flow_cache flow_cache_global ; atomic_t flow_cache_genid ; struct list_head flow_cache_gc_list ; spinlock_t flow_cache_gc_lock ; struct work_struct flow_cache_gc_work ; struct work_struct flow_cache_flush_work ; struct mutex flow_flush_sem ; }; struct proc_ns_operations; struct ns_common { atomic_long_t stashed ; struct proc_ns_operations const *ops ; unsigned int inum ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; struct idr netns_ids ; struct ns_common ns ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_ieee802154_lowpan ieee802154_lowpan ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; enum ldv_27561 { PHY_INTERFACE_MODE_NA = 0, PHY_INTERFACE_MODE_MII = 1, PHY_INTERFACE_MODE_GMII = 2, PHY_INTERFACE_MODE_SGMII = 3, PHY_INTERFACE_MODE_TBI = 4, PHY_INTERFACE_MODE_REVMII = 5, PHY_INTERFACE_MODE_RMII = 6, PHY_INTERFACE_MODE_RGMII = 7, PHY_INTERFACE_MODE_RGMII_ID = 8, PHY_INTERFACE_MODE_RGMII_RXID = 9, PHY_INTERFACE_MODE_RGMII_TXID = 10, PHY_INTERFACE_MODE_RTBI = 11, PHY_INTERFACE_MODE_SMII = 12, PHY_INTERFACE_MODE_XGMII = 13, PHY_INTERFACE_MODE_MOCA = 14, PHY_INTERFACE_MODE_QSGMII = 15, PHY_INTERFACE_MODE_MAX = 16 } ; typedef enum ldv_27561 phy_interface_t; enum ldv_27614 { MDIOBUS_ALLOCATED = 1, MDIOBUS_REGISTERED = 2, MDIOBUS_UNREGISTERED = 3, MDIOBUS_RELEASED = 4 } ; struct phy_device; struct mii_bus { char const *name ; char id[17U] ; void *priv ; int (*read)(struct mii_bus * , int , int ) ; int (*write)(struct mii_bus * , int , int , u16 ) ; int (*reset)(struct mii_bus * ) ; struct mutex mdio_lock ; struct device *parent ; enum ldv_27614 state ; struct device dev ; struct phy_device *phy_map[32U] ; u32 phy_mask ; int *irq ; }; enum phy_state { PHY_DOWN = 0, PHY_STARTING = 1, PHY_READY = 2, PHY_PENDING = 3, PHY_UP = 4, PHY_AN = 5, PHY_RUNNING = 6, PHY_NOLINK = 7, PHY_FORCING = 8, PHY_CHANGELINK = 9, PHY_HALTED = 10, PHY_RESUMING = 11 } ; struct phy_c45_device_ids { u32 devices_in_package ; u32 device_ids[8U] ; }; struct phy_driver; struct phy_device { struct phy_driver *drv ; struct mii_bus *bus ; struct device dev ; u32 phy_id ; struct phy_c45_device_ids c45_ids ; bool is_c45 ; bool is_internal ; bool has_fixups ; bool suspended ; enum phy_state state ; u32 dev_flags ; phy_interface_t interface ; int addr ; int speed ; int duplex ; int pause ; int asym_pause ; int link ; u32 interrupts ; u32 supported ; u32 advertising ; u32 lp_advertising ; int autoneg ; int link_timeout ; int irq ; void *priv ; struct work_struct phy_queue ; struct delayed_work state_queue ; atomic_t irq_disable ; struct mutex lock ; struct net_device *attached_dev ; void (*adjust_link)(struct net_device * ) ; }; struct phy_driver { u32 phy_id ; char *name ; unsigned int phy_id_mask ; u32 features ; u32 flags ; void const *driver_data ; int (*soft_reset)(struct phy_device * ) ; int (*config_init)(struct phy_device * ) ; int (*probe)(struct phy_device * ) ; int (*suspend)(struct phy_device * ) ; int (*resume)(struct phy_device * ) ; int (*config_aneg)(struct phy_device * ) ; int (*aneg_done)(struct phy_device * ) ; int (*read_status)(struct phy_device * ) ; int (*ack_interrupt)(struct phy_device * ) ; int (*config_intr)(struct phy_device * ) ; int (*did_interrupt)(struct phy_device * ) ; void (*remove)(struct phy_device * ) ; int (*match_phy_device)(struct phy_device * ) ; int (*ts_info)(struct phy_device * , struct ethtool_ts_info * ) ; int (*hwtstamp)(struct phy_device * , struct ifreq * ) ; bool (*rxtstamp)(struct phy_device * , struct sk_buff * , int ) ; void (*txtstamp)(struct phy_device * , struct sk_buff * , int ) ; int (*set_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*get_wol)(struct phy_device * , struct ethtool_wolinfo * ) ; void (*link_change_notify)(struct phy_device * ) ; int (*read_mmd_indirect)(struct phy_device * , int , int , int ) ; void (*write_mmd_indirect)(struct phy_device * , int , int , int , u32 ) ; int (*module_info)(struct phy_device * , struct ethtool_modinfo * ) ; int (*module_eeprom)(struct phy_device * , struct ethtool_eeprom * , u8 * ) ; struct device_driver driver ; }; struct fixed_phy_status { int link ; int speed ; int duplex ; int pause ; int asym_pause ; }; enum dsa_tag_protocol { DSA_TAG_PROTO_NONE = 0, DSA_TAG_PROTO_DSA = 1, DSA_TAG_PROTO_TRAILER = 2, DSA_TAG_PROTO_EDSA = 3, DSA_TAG_PROTO_BRCM = 4 } ; struct dsa_chip_data { struct device *host_dev ; int sw_addr ; int eeprom_len ; struct device_node *of_node ; char *port_names[12U] ; struct device_node *port_dn[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct packet_type; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; int (*rcv)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; enum dsa_tag_protocol tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct device *master_dev ; char hwmon_name[24U] ; struct device *hwmon_dev ; u32 dsa_port_mask ; u32 phys_port_mask ; u32 phys_mii_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; enum dsa_tag_protocol tag_protocol ; int priv_size ; char *(*probe)(struct device * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; u32 (*get_phy_flags)(struct dsa_switch * , int ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*adjust_link)(struct dsa_switch * , int , struct phy_device * ) ; void (*fixed_link_update)(struct dsa_switch * , int , struct fixed_phy_status * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; void (*get_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*set_wol)(struct dsa_switch * , int , struct ethtool_wolinfo * ) ; int (*suspend)(struct dsa_switch * ) ; int (*resume)(struct dsa_switch * ) ; int (*port_enable)(struct dsa_switch * , int , struct phy_device * ) ; void (*port_disable)(struct dsa_switch * , int , struct phy_device * ) ; int (*set_eee)(struct dsa_switch * , int , struct phy_device * , struct ethtool_eee * ) ; int (*get_eee)(struct dsa_switch * , int , struct ethtool_eee * ) ; int (*get_temp)(struct dsa_switch * , int * ) ; int (*get_temp_limit)(struct dsa_switch * , int * ) ; int (*set_temp_limit)(struct dsa_switch * , int ) ; int (*get_temp_alarm)(struct dsa_switch * , bool * ) ; int (*get_eeprom_len)(struct dsa_switch * ) ; int (*get_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct dsa_switch * , struct ethtool_eeprom * , u8 * ) ; int (*get_regs_len)(struct dsa_switch * , int ) ; void (*get_regs)(struct dsa_switch * , int , struct ethtool_regs * , void * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; int (*setapp)(struct net_device * , u8 , u16 , u8 ) ; int (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct cgroup_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; struct list_head sibling ; struct list_head children ; int id ; unsigned int flags ; u64 serial_nr ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup { struct cgroup_subsys_state self ; unsigned long flags ; int id ; int populated_cnt ; struct kernfs_node *kn ; struct kernfs_node *populated_kn ; unsigned int subtree_control ; unsigned int child_subsys_mask ; struct cgroup_subsys_state *subsys[12U] ; struct cgroup_root *root ; struct list_head cset_links ; struct list_head e_csets[12U] ; struct list_head pidlists ; struct mutex pidlist_mutex ; wait_queue_head_t offline_waitq ; struct work_struct release_agent_work ; }; struct cgroup_root { struct kernfs_root *kf_root ; unsigned int subsys_mask ; int hierarchy_id ; struct cgroup cgrp ; atomic_t nr_cgrps ; struct list_head root_list ; unsigned int flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head mg_tasks ; struct list_head cgrp_links ; struct cgroup *dfl_cgrp ; struct cgroup_subsys_state *subsys[12U] ; struct list_head mg_preload_node ; struct list_head mg_node ; struct cgroup *mg_src_cgrp ; struct css_set *mg_dst_cset ; struct list_head e_cset_node[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; struct list_head node ; struct kernfs_ops *kf_ops ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; struct lock_class_key lockdep_key ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_released)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; void (*css_reset)(struct cgroup_subsys_state * ) ; void (*css_e_css_changed)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; int id ; char const *name ; struct cgroup_root *root ; struct idr css_idr ; struct list_head cfts ; struct cftype *dfl_cftypes ; struct cftype *legacy_cftypes ; unsigned int depends_on ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 spoofchk ; __u32 linkstate ; __u32 min_tx_rate ; __u32 max_tx_rate ; }; struct netpoll_info; struct wireless_dev; struct wpan_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct hrtimer timer ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_item_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_rate)(struct net_device * , int , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * , u16 ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_item_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; int (*ndo_get_lock_subclass)(struct net_device * ) ; netdev_features_t (*ndo_features_check)(struct sk_buff * , struct net_device * , netdev_features_t ) ; int (*ndo_switch_parent_id_get)(struct net_device * , struct netdev_phys_item_id * ) ; int (*ndo_switch_port_stp_update)(struct net_device * , u8 ) ; }; struct __anonstruct_adj_list_264 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_265 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_266 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct list_head ptype_all ; struct list_head ptype_specific ; struct __anonstruct_adj_list_264 adj_list ; struct __anonstruct_all_adj_list_265 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; atomic_long_t tx_dropped ; atomic_t carrier_changes ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; unsigned short dev_port ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; unsigned char name_assign_type ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; struct wpan_dev *ieee802154_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; unsigned long gro_flush_timeout ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_266 __annonCompField86 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; u16 gso_min_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct packet_type { __be16 type ; struct net_device *dev ; int (*func)(struct sk_buff * , struct net_device * , struct packet_type * , struct net_device * ) ; bool (*id_match)(struct packet_type * , struct sock * ) ; void *af_packet_priv ; struct list_head list ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_267 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_267 __annonCompField87 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct msix_entry { u32 vector ; u16 entry ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_272 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_272 __annonCompField88 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct iphdr { unsigned char ihl : 4 ; unsigned char version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct ipv6hdr { unsigned char priority : 4 ; unsigned char version : 4 ; __u8 flow_lbl[3U] ; __be16 payload_len ; __u8 nexthdr ; __u8 hop_limit ; struct in6_addr saddr ; struct in6_addr daddr ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 mldv1_unsolicited_report_interval ; __s32 mldv2_unsolicited_report_interval ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 accept_ra_from_local ; __s32 optimistic_dad ; __s32 use_optimistic ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; __s32 ndisc_notify ; __s32 suppress_frag_ndisc ; __s32 accept_ra_mtu ; void *sysctl ; }; struct page_counter { atomic_long_t count ; unsigned long limit ; struct page_counter *parent ; unsigned long watermark ; unsigned long failcnt ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_274 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_274 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; struct bpf_insn { __u8 code ; unsigned char dst_reg : 4 ; unsigned char src_reg : 4 ; __s16 off ; __s32 imm ; }; struct bpf_prog_aux; struct sock_fprog_kern { u16 len ; struct sock_filter *filter ; }; union __anonunion____missing_field_name_279 { struct sock_filter insns[0U] ; struct bpf_insn insnsi[0U] ; }; struct bpf_prog { u16 pages ; bool jited ; u32 len ; struct sock_fprog_kern *orig_prog ; struct bpf_prog_aux *aux ; unsigned int (*bpf_func)(struct sk_buff const * , struct bpf_insn const * ) ; union __anonunion____missing_field_name_279 __annonCompField93 ; }; struct sk_filter { atomic_t refcnt ; struct callback_head rcu ; struct bpf_prog *prog ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; struct net *(*get_link_net)(struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct list_head list ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; struct list_head parms_list ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_284 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sock * , struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_284 __annonCompField94 ; }; struct __anonstruct_socket_lock_t_285 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_285 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_287 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_286 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_287 __annonCompField95 ; }; union __anonunion____missing_field_name_288 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_290 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_289 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_290 __annonCompField98 ; }; union __anonunion____missing_field_name_291 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_292 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_286 __annonCompField96 ; union __anonunion____missing_field_name_288 __annonCompField97 ; union __anonunion____missing_field_name_289 __annonCompField99 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 1 ; unsigned char skc_ipv6only : 1 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_291 __annonCompField100 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_292 __annonCompField101 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_293 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_293 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; u16 sk_incoming_cpu ; __u32 sk_txhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned char sk_shutdown : 2 ; unsigned char sk_no_check_tx : 1 ; unsigned char sk_no_check_rx : 1 ; unsigned char sk_userlocks : 4 ; unsigned char sk_protocol ; unsigned short sk_type ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; u16 sk_tsflags ; u32 sk_tskey ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_294 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_294 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct page_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; u16 mss ; u8 num_retrans ; unsigned char cookie_ts : 1 ; unsigned char num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct tcphdr { __be16 source ; __be16 dest ; __be32 seq ; __be32 ack_seq ; unsigned char res1 : 4 ; unsigned char doff : 4 ; unsigned char fin : 1 ; unsigned char syn : 1 ; unsigned char rst : 1 ; unsigned char psh : 1 ; unsigned char ack : 1 ; unsigned char urg : 1 ; unsigned char ece : 1 ; unsigned char cwr : 1 ; __be16 window ; __sum16 check ; __be16 urg_ptr ; }; struct udphdr { __be16 source ; __be16 dest ; __be16 len ; __sum16 check ; }; struct ip6_sf_list { struct ip6_sf_list *sf_next ; struct in6_addr sf_addr ; unsigned long sf_count[2U] ; unsigned char sf_gsresp ; unsigned char sf_oldin ; unsigned char sf_crcount ; }; struct ifmcaddr6 { struct in6_addr mca_addr ; struct inet6_dev *idev ; struct ifmcaddr6 *next ; struct ip6_sf_list *mca_sources ; struct ip6_sf_list *mca_tomb ; unsigned int mca_sfmode ; unsigned char mca_crcount ; unsigned long mca_sfcount[2U] ; struct timer_list mca_timer ; unsigned int mca_flags ; int mca_users ; atomic_t mca_refcnt ; spinlock_t mca_lock ; unsigned long mca_cstamp ; unsigned long mca_tstamp ; }; struct ifacaddr6 { struct in6_addr aca_addr ; struct inet6_dev *aca_idev ; struct rt6_info *aca_rt ; struct ifacaddr6 *aca_next ; int aca_users ; atomic_t aca_refcnt ; unsigned long aca_cstamp ; unsigned long aca_tstamp ; }; struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry ; struct ipstats_mib *ipv6 ; struct icmpv6_mib_device *icmpv6dev ; struct icmpv6msg_mib_device *icmpv6msgdev ; }; struct inet6_dev { struct net_device *dev ; struct list_head addr_list ; struct ifmcaddr6 *mc_list ; struct ifmcaddr6 *mc_tomb ; spinlock_t mc_lock ; unsigned char mc_qrv ; unsigned char mc_gq_running ; unsigned char mc_ifc_count ; unsigned char mc_dad_count ; unsigned long mc_v1_seen ; unsigned long mc_qi ; unsigned long mc_qri ; unsigned long mc_maxdelay ; struct timer_list mc_gq_timer ; struct timer_list mc_ifc_timer ; struct timer_list mc_dad_timer ; struct ifacaddr6 *ac_list ; rwlock_t lock ; atomic_t refcnt ; __u32 if_flags ; int dead ; u8 rndid[8U] ; struct timer_list regen_timer ; struct list_head tempaddr_list ; struct in6_addr token ; struct neigh_parms *nd_parms ; struct ipv6_devconf cnf ; struct ipv6_devstat stats ; struct timer_list rs_timer ; __u8 rs_probes ; __u8 addr_gen_mode ; unsigned long tstamp ; struct callback_head rcu ; }; struct vlan_hdr { __be16 h_vlan_TCI ; __be16 h_vlan_encapsulated_proto ; }; union __anonunion____missing_field_name_306 { __be32 a4 ; __be32 a6[4U] ; }; struct inetpeer_addr_base { union __anonunion____missing_field_name_306 __annonCompField103 ; }; struct inetpeer_addr { struct inetpeer_addr_base addr ; __u16 family ; }; union __anonunion____missing_field_name_307 { struct list_head gc_list ; struct callback_head gc_rcu ; }; struct __anonstruct____missing_field_name_309 { atomic_t rid ; }; union __anonunion____missing_field_name_308 { struct __anonstruct____missing_field_name_309 __annonCompField105 ; struct callback_head rcu ; struct inet_peer *gc_next ; }; struct inet_peer { struct inet_peer *avl_left ; struct inet_peer *avl_right ; struct inetpeer_addr daddr ; __u32 avl_height ; u32 metrics[16U] ; u32 rate_tokens ; unsigned long rate_last ; union __anonunion____missing_field_name_307 __annonCompField104 ; union __anonunion____missing_field_name_308 __annonCompField106 ; __u32 dtime ; atomic_t refcnt ; }; struct inet_peer_base { struct inet_peer *root ; seqlock_t lock ; int total ; }; struct uncached_list; struct rtable { struct dst_entry dst ; int rt_genid ; unsigned int rt_flags ; __u16 rt_type ; __u8 rt_is_input ; __u8 rt_uses_gateway ; int rt_iif ; __be32 rt_gateway ; u32 rt_pmtu ; struct list_head rt_uncached ; struct uncached_list *rt_uncached_list ; }; struct mbox_params { u32 mbox_in[16U] ; u32 mbox_out[16U] ; int in_count ; int out_count ; }; struct flash_params_8012 { u8 dev_id_str[4U] ; __le16 size ; __le16 csum ; __le16 ver ; __le16 sub_dev_id ; u8 mac_addr[6U] ; __le16 res ; }; struct flash_params_8000 { u8 dev_id_str[4U] ; __le16 ver ; __le16 size ; __le16 csum ; __le16 reserved0 ; __le16 total_size ; __le16 entry_count ; u8 data_type0 ; u8 data_size0 ; u8 mac_addr[6U] ; u8 data_type1 ; u8 data_size1 ; u8 mac_addr1[6U] ; u8 data_type2 ; u8 data_size2 ; __le16 vlan_id ; u8 data_type3 ; u8 data_size3 ; __le16 last ; u8 reserved1[464U] ; __le16 subsys_ven_id ; __le16 subsys_dev_id ; u8 reserved2[4U] ; }; union flash_params { struct flash_params_8012 flash_params_8012 ; struct flash_params_8000 flash_params_8000 ; }; struct tx_buf_desc { __le64 addr ; __le32 len ; }; struct ob_mac_iocb_req { u8 opcode ; u8 flags1 ; u8 flags2 ; u8 flags3 ; __le32 reserved1[2U] ; __le16 frame_len ; __le16 reserved2 ; u32 tid ; u32 txq_idx ; __le32 reserved3 ; __le16 vlan_tci ; __le16 reserved4 ; struct tx_buf_desc tbd[8U] ; }; struct ob_mac_iocb_rsp { u8 opcode ; u8 flags1 ; u8 flags2 ; u8 flags3 ; u32 tid ; u32 txq_idx ; __le32 reserved[13U] ; }; struct ob_mac_tso_iocb_req { u8 opcode ; u8 flags1 ; u8 flags2 ; u8 flags3 ; __le32 reserved1[2U] ; __le32 frame_len ; u32 tid ; u32 txq_idx ; __le16 total_hdrs_len ; __le16 net_trans_offset ; __le16 vlan_tci ; __le16 mss ; struct tx_buf_desc tbd[8U] ; }; struct ib_mac_iocb_rsp { u8 opcode ; u8 flags1 ; u8 flags2 ; u8 flags3 ; __le32 data_len ; __le64 data_addr ; __le32 rss ; __le16 vlan_id ; __le16 reserved1 ; __le32 reserved2[6U] ; u8 reserved3[3U] ; u8 flags4 ; __le32 hdr_len ; __le64 hdr_addr ; }; struct ib_ae_iocb_rsp { u8 opcode ; u8 flags1 ; u8 event ; u8 q_id ; __le32 reserved[15U] ; }; struct ql_net_rsp_iocb { u8 opcode ; u8 flags0 ; __le16 length ; __le32 tid ; __le32 reserved[14U] ; }; struct wqicb { __le16 len ; __le16 flags ; __le16 cq_id_rss ; __le16 rid ; __le64 addr ; __le64 cnsmr_idx_addr ; }; struct cqicb { u8 msix_vect ; u8 reserved1 ; u8 reserved2 ; u8 flags ; __le16 len ; __le16 rid ; __le64 addr ; __le64 prod_idx_addr ; __le16 pkt_delay ; __le16 irq_delay ; __le64 lbq_addr ; __le16 lbq_buf_size ; __le16 lbq_len ; __le64 sbq_addr ; __le16 sbq_buf_size ; __le16 sbq_len ; }; struct ricb { u8 base_cq ; u8 flags ; __le16 mask ; u8 hash_cq_id[1024U] ; __le32 ipv6_hash_key[10U] ; __le32 ipv4_hash_key[4U] ; }; struct oal { struct tx_buf_desc oal[11U] ; }; struct map_list { dma_addr_t mapaddr ; __u32 maplen ; }; struct tx_ring_desc { struct sk_buff *skb ; struct ob_mac_iocb_req *queue_entry ; u32 index ; struct oal oal ; struct map_list map[19U] ; int map_cnt ; struct tx_ring_desc *next ; }; struct page_chunk { struct page *page ; char *va ; u64 map ; unsigned int offset ; unsigned int last_flag ; }; union __anonunion_p_311 { struct page_chunk pg_chunk ; struct sk_buff *skb ; }; struct bq_desc { union __anonunion_p_311 p ; __le64 *addr ; u32 index ; dma_addr_t mapaddr ; __u32 maplen ; }; struct ql_adapter; struct tx_ring { struct wqicb wqicb ; void *wq_base ; dma_addr_t wq_base_dma ; __le32 *cnsmr_idx_sh_reg ; dma_addr_t cnsmr_idx_sh_reg_dma ; u32 wq_size ; u32 wq_len ; void *prod_idx_db_reg ; void *valid_db_reg ; u16 prod_idx ; u16 cq_id ; u8 wq_id ; u8 reserved1[3U] ; struct tx_ring_desc *q ; spinlock_t lock ; atomic_t tx_count ; struct delayed_work tx_work ; struct ql_adapter *qdev ; u64 tx_packets ; u64 tx_bytes ; u64 tx_errors ; }; struct rx_ring { struct cqicb cqicb ; void *cq_base ; dma_addr_t cq_base_dma ; u32 cq_size ; u32 cq_len ; u16 cq_id ; __le32 *prod_idx_sh_reg ; dma_addr_t prod_idx_sh_reg_dma ; void *cnsmr_idx_db_reg ; u32 cnsmr_idx ; struct ql_net_rsp_iocb *curr_entry ; void *valid_db_reg ; u32 lbq_len ; u32 lbq_size ; u32 lbq_buf_size ; void *lbq_base ; dma_addr_t lbq_base_dma ; void *lbq_base_indirect ; dma_addr_t lbq_base_indirect_dma ; struct page_chunk pg_chunk ; struct bq_desc *lbq ; void *lbq_prod_idx_db_reg ; u32 lbq_prod_idx ; u32 lbq_curr_idx ; u32 lbq_clean_idx ; u32 lbq_free_cnt ; u32 sbq_len ; u32 sbq_size ; u32 sbq_buf_size ; void *sbq_base ; dma_addr_t sbq_base_dma ; void *sbq_base_indirect ; dma_addr_t sbq_base_indirect_dma ; struct bq_desc *sbq ; void *sbq_prod_idx_db_reg ; u32 sbq_prod_idx ; u32 sbq_curr_idx ; u32 sbq_clean_idx ; u32 sbq_free_cnt ; u32 type ; u32 irq ; u32 cpu ; char name[21U] ; struct napi_struct napi ; u8 reserved ; struct ql_adapter *qdev ; u64 rx_packets ; u64 rx_multicast ; u64 rx_bytes ; u64 rx_dropped ; u64 rx_errors ; }; struct nic_stats { u64 tx_pkts ; u64 tx_bytes ; u64 tx_mcast_pkts ; u64 tx_bcast_pkts ; u64 tx_ucast_pkts ; u64 tx_ctl_pkts ; u64 tx_pause_pkts ; u64 tx_64_pkt ; u64 tx_65_to_127_pkt ; u64 tx_128_to_255_pkt ; u64 tx_256_511_pkt ; u64 tx_512_to_1023_pkt ; u64 tx_1024_to_1518_pkt ; u64 tx_1519_to_max_pkt ; u64 tx_undersize_pkt ; u64 tx_oversize_pkt ; u64 rx_bytes ; u64 rx_bytes_ok ; u64 rx_pkts ; u64 rx_pkts_ok ; u64 rx_bcast_pkts ; u64 rx_mcast_pkts ; u64 rx_ucast_pkts ; u64 rx_undersize_pkts ; u64 rx_oversize_pkts ; u64 rx_jabber_pkts ; u64 rx_undersize_fcerr_pkts ; u64 rx_drop_events ; u64 rx_fcerr_pkts ; u64 rx_align_err ; u64 rx_symbol_err ; u64 rx_mac_err ; u64 rx_ctl_pkts ; u64 rx_pause_pkts ; u64 rx_64_pkts ; u64 rx_65_to_127_pkts ; u64 rx_128_255_pkts ; u64 rx_256_511_pkts ; u64 rx_512_to_1023_pkts ; u64 rx_1024_to_1518_pkts ; u64 rx_1519_to_max_pkts ; u64 rx_len_err_pkts ; u64 rx_code_err ; u64 rx_oversize_err ; u64 rx_undersize_err ; u64 rx_preamble_err ; u64 rx_frame_len_err ; u64 rx_crc_err ; u64 rx_err_count ; u64 tx_cbfc_pause_frames0 ; u64 tx_cbfc_pause_frames1 ; u64 tx_cbfc_pause_frames2 ; u64 tx_cbfc_pause_frames3 ; u64 tx_cbfc_pause_frames4 ; u64 tx_cbfc_pause_frames5 ; u64 tx_cbfc_pause_frames6 ; u64 tx_cbfc_pause_frames7 ; u64 rx_cbfc_pause_frames0 ; u64 rx_cbfc_pause_frames1 ; u64 rx_cbfc_pause_frames2 ; u64 rx_cbfc_pause_frames3 ; u64 rx_cbfc_pause_frames4 ; u64 rx_cbfc_pause_frames5 ; u64 rx_cbfc_pause_frames6 ; u64 rx_cbfc_pause_frames7 ; u64 rx_nic_fifo_drop ; }; struct mpi_coredump_global_header { u32 cookie ; u8 idString[16U] ; u32 timeLo ; u32 timeHi ; u32 imageSize ; u32 headerSize ; u8 info[220U] ; }; struct mpi_coredump_segment_header { u32 cookie ; u32 segNum ; u32 segSize ; u32 extra ; u8 description[16U] ; }; struct ql_nic_misc { u32 rx_ring_count ; u32 tx_ring_count ; u32 intr_count ; u32 function ; }; struct ql_mpi_coredump { struct mpi_coredump_global_header mpi_global_header ; struct mpi_coredump_segment_header core_regs_seg_hdr ; u32 mpi_core_regs[127U] ; u32 mpi_core_sh_regs[16U] ; struct mpi_coredump_segment_header test_logic_regs_seg_hdr ; u32 test_logic_regs[23U] ; struct mpi_coredump_segment_header rmii_regs_seg_hdr ; u32 rmii_regs[64U] ; struct mpi_coredump_segment_header fcmac1_regs_seg_hdr ; u32 fcmac1_regs[64U] ; struct mpi_coredump_segment_header fcmac2_regs_seg_hdr ; u32 fcmac2_regs[64U] ; struct mpi_coredump_segment_header fc1_mbx_regs_seg_hdr ; u32 fc1_mbx_regs[64U] ; struct mpi_coredump_segment_header ide_regs_seg_hdr ; u32 ide_regs[64U] ; struct mpi_coredump_segment_header nic1_mbx_regs_seg_hdr ; u32 nic1_mbx_regs[64U] ; struct mpi_coredump_segment_header smbus_regs_seg_hdr ; u32 smbus_regs[64U] ; struct mpi_coredump_segment_header fc2_mbx_regs_seg_hdr ; u32 fc2_mbx_regs[64U] ; struct mpi_coredump_segment_header nic2_mbx_regs_seg_hdr ; u32 nic2_mbx_regs[64U] ; struct mpi_coredump_segment_header i2c_regs_seg_hdr ; u32 i2c_regs[64U] ; struct mpi_coredump_segment_header memc_regs_seg_hdr ; u32 memc_regs[256U] ; struct mpi_coredump_segment_header pbus_regs_seg_hdr ; u32 pbus_regs[256U] ; struct mpi_coredump_segment_header mde_regs_seg_hdr ; u32 mde_regs[6U] ; struct mpi_coredump_segment_header nic_regs_seg_hdr ; u32 nic_regs[64U] ; struct mpi_coredump_segment_header nic2_regs_seg_hdr ; u32 nic2_regs[64U] ; struct mpi_coredump_segment_header xgmac1_seg_hdr ; u32 xgmac1[464U] ; struct mpi_coredump_segment_header xgmac2_seg_hdr ; u32 xgmac2[464U] ; struct mpi_coredump_segment_header code_ram_seg_hdr ; u32 code_ram[8192U] ; struct mpi_coredump_segment_header memc_ram_seg_hdr ; u32 memc_ram[8192U] ; struct mpi_coredump_segment_header xaui_an_hdr ; u32 serdes_xaui_an[14U] ; struct mpi_coredump_segment_header xaui_hss_pcs_hdr ; u32 serdes_xaui_hss_pcs[33U] ; struct mpi_coredump_segment_header xfi_an_hdr ; u32 serdes_xfi_an[14U] ; struct mpi_coredump_segment_header xfi_train_hdr ; u32 serdes_xfi_train[12U] ; struct mpi_coredump_segment_header xfi_hss_pcs_hdr ; u32 serdes_xfi_hss_pcs[15U] ; struct mpi_coredump_segment_header xfi_hss_tx_hdr ; u32 serdes_xfi_hss_tx[32U] ; struct mpi_coredump_segment_header xfi_hss_rx_hdr ; u32 serdes_xfi_hss_rx[32U] ; struct mpi_coredump_segment_header xfi_hss_pll_hdr ; u32 serdes_xfi_hss_pll[32U] ; struct mpi_coredump_segment_header misc_nic_seg_hdr ; struct ql_nic_misc misc_nic_info ; struct mpi_coredump_segment_header intr_states_seg_hdr ; u32 intr_states[17U] ; struct mpi_coredump_segment_header cam_entries_seg_hdr ; u32 cam_entries[144U] ; struct mpi_coredump_segment_header nic_routing_words_seg_hdr ; u32 nic_routing_words[16U] ; struct mpi_coredump_segment_header ets_seg_hdr ; u32 ets[10U] ; struct mpi_coredump_segment_header probe_dump_seg_hdr ; u32 probe_dump[4386U] ; struct mpi_coredump_segment_header routing_reg_seg_hdr ; u32 routing_regs[192U] ; struct mpi_coredump_segment_header mac_prot_reg_seg_hdr ; u32 mac_prot_regs[19712U] ; struct mpi_coredump_segment_header xaui2_an_hdr ; u32 serdes2_xaui_an[14U] ; struct mpi_coredump_segment_header xaui2_hss_pcs_hdr ; u32 serdes2_xaui_hss_pcs[33U] ; struct mpi_coredump_segment_header xfi2_an_hdr ; u32 serdes2_xfi_an[14U] ; struct mpi_coredump_segment_header xfi2_train_hdr ; u32 serdes2_xfi_train[12U] ; struct mpi_coredump_segment_header xfi2_hss_pcs_hdr ; u32 serdes2_xfi_hss_pcs[15U] ; struct mpi_coredump_segment_header xfi2_hss_tx_hdr ; u32 serdes2_xfi_hss_tx[32U] ; struct mpi_coredump_segment_header xfi2_hss_rx_hdr ; u32 serdes2_xfi_hss_rx[32U] ; struct mpi_coredump_segment_header xfi2_hss_pll_hdr ; u32 serdes2_xfi_hss_pll[32U] ; struct mpi_coredump_segment_header sem_regs_seg_hdr ; u32 sem_regs[4U] ; }; struct intr_context { struct ql_adapter *qdev ; u32 intr ; u32 irq_mask ; u32 hooked ; u32 intr_en_mask ; u32 intr_dis_mask ; u32 intr_read_mask ; char name[32U] ; atomic_t irq_cnt ; irqreturn_t (*handler)(int , void * ) ; }; struct nic_operations { int (*get_flash)(struct ql_adapter * ) ; int (*port_initialize)(struct ql_adapter * ) ; }; struct ql_adapter { struct ricb ricb ; unsigned long flags ; u32 wol ; struct nic_stats nic_stats ; unsigned long active_vlans[64U] ; struct pci_dev *pdev ; struct net_device *ndev ; u32 chip_rev_id ; u32 fw_rev_id ; u32 func ; u32 alt_func ; u32 port ; spinlock_t adapter_lock ; spinlock_t hw_lock ; spinlock_t stats_lock ; void *reg_base ; void *doorbell_area ; u32 doorbell_area_size ; u32 msg_enable ; void *rx_ring_shadow_reg_area ; dma_addr_t rx_ring_shadow_reg_dma ; void *tx_ring_shadow_reg_area ; dma_addr_t tx_ring_shadow_reg_dma ; u32 mailbox_in ; u32 mailbox_out ; struct mbox_params idc_mbc ; struct mutex mpi_mutex ; int tx_ring_size ; int rx_ring_size ; u32 intr_count ; struct msix_entry *msi_x_entry ; struct intr_context intr_context[17U] ; int tx_ring_count ; u32 rss_ring_count ; int rx_ring_count ; int ring_mem_size ; void *ring_mem ; struct rx_ring rx_ring[17U] ; struct tx_ring tx_ring[8U] ; unsigned int lbq_buf_order ; int rx_csum ; u32 default_rx_queue ; u16 rx_coalesce_usecs ; u16 rx_max_coalesced_frames ; u16 tx_coalesce_usecs ; u16 tx_max_coalesced_frames ; u32 xg_sem_mask ; u32 port_link_up ; u32 port_init ; u32 link_status ; struct ql_mpi_coredump *mpi_coredump ; u32 core_is_dumped ; u32 link_config ; u32 led_config ; u32 max_frame_size ; union flash_params flash ; struct workqueue_struct *workqueue ; struct delayed_work asic_reset_work ; struct delayed_work mpi_reset_work ; struct delayed_work mpi_work ; struct delayed_work mpi_port_cfg_work ; struct delayed_work mpi_idc_work ; struct delayed_work mpi_core_to_log ; struct completion ide_completion ; struct nic_operations const *nic_ops ; u16 device_id ; struct timer_list timer ; atomic_t lb_count ; char current_mac_addr[6U] ; }; struct ldv_struct_EMGentry_16 { int signal_pending ; }; struct ldv_struct_dummy_resourceless_instance_1 { struct net_device *arg0 ; int signal_pending ; }; struct ldv_struct_free_irq_8 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_0 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_pci_instance_2 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_timer_instance_5 { struct timer_list *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef struct net_device *ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; typedef int ldv_func_ret_type___7; typedef int ldv_func_ret_type___8; typedef int ldv_func_ret_type___9; typedef int ldv_func_ret_type___10; typedef int ldv_func_ret_type___11; enum hrtimer_restart; struct ql_reg_dump { struct mpi_coredump_global_header mpi_global_header ; struct mpi_coredump_segment_header nic_regs_seg_hdr ; u32 nic_regs[64U] ; struct mpi_coredump_segment_header misc_nic_seg_hdr ; struct ql_nic_misc misc_nic_info ; struct mpi_coredump_segment_header intr_states_seg_hdr ; u32 intr_states[8U] ; struct mpi_coredump_segment_header cam_entries_seg_hdr ; u32 cam_entries[144U] ; struct mpi_coredump_segment_header nic_routing_words_seg_hdr ; u32 nic_routing_words[16U] ; struct mpi_coredump_segment_header ets_seg_hdr ; u32 ets[10U] ; }; enum hrtimer_restart; enum hrtimer_restart; struct ql_stats { char stat_string[32U] ; int sizeof_stat ; int stat_offset ; }; struct request; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; void __builtin_prefetch(void const * , ...) ; long ldv__builtin_expect(long exp , long c ) ; extern void abort(void); void assume_abort_if_not(int cond) { if(!cond) {abort();} } void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void *is_got ) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(res1); res2 = tmp___0; assume_abort_if_not((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; assume_abort_if_not(res1 == res2); } return (res1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) ; void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) ; int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) ; void ldv_linux_kernel_sched_completion_init_completion_ide_completion_of_ql_adapter(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) ; unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) ; int ldv_undef_int(void) ; void *ldv_linux_arch_io_io_mem_remap(size_t size ) ; void ldv_linux_arch_io_io_mem_unmap(void) ; static void ldv_ldv_initialize_167(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_164(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_168(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_169(int retval ) ; int ldv_filter_err_code(int ret_val ) ; int ldv_pre_register_netdev(void) ; static void ldv_ldv_check_final_state_165(void) ; static void ldv_ldv_check_final_state_166(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void ldv_after_alloc(void * ) ; void ldv_linux_net_rtnetlink_past_rtnl_lock(void) ; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static int fls64(__u64 x ) { int bitpos ; { bitpos = -1; __asm__ ("bsrq %1,%q0": "+r" (bitpos): "rm" (x)); return (bitpos + 1); } } static unsigned long ldv_find_next_bit_131(unsigned long const *addr , unsigned long size , unsigned long offset ) ; static unsigned long ldv_find_first_bit_130(unsigned long const *addr , unsigned long size ) ; __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } extern int printk(char const * , ...) ; extern int sprintf(char * , char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __bad_percpu_size(void) ; extern void __bad_size_call_parameter(void) ; extern unsigned long __phys_addr(unsigned long ) ; __inline static int __get_order(unsigned long size ) { int order ; { { size = size - 1UL; size = size >> 12; order = fls64((__u64 )size); } return (order); } } extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern int strncmp(char const * , char const * , __kernel_size_t ) ; extern int __bitmap_weight(unsigned long const * , unsigned int ) ; __inline static int bitmap_weight(unsigned long const *src , unsigned int nbits ) { int tmp___0 ; { { tmp___0 = __bitmap_weight(src, nbits); } return (tmp___0); } } extern void warn_slowpath_null(char const * , int const ) ; extern int nr_cpu_ids ; extern struct cpumask const * const cpu_online_mask ; __inline static unsigned int cpumask_weight(struct cpumask const *srcp ) { int tmp ; { { tmp = bitmap_weight((unsigned long const *)(& srcp->bits), (unsigned int )nr_cpu_ids); } return ((unsigned int )tmp); } } __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"./arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static void rep_nop(void) { { __asm__ volatile ("rep; nop": : : "memory"); return; } } __inline static void cpu_relax(void) { { { rep_nop(); } return; } } __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_inc(atomic_t *v ) ; __inline static void atomic_dec(atomic_t *v ) ; __inline static int atomic_dec_and_test(atomic_t *v ) ; extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_126(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_hw_lock_of_ql_adapter(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_hw_lock_of_ql_adapter(void) ; void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField18.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_128(spinlock_t *lock ) ; __inline static void ldv_spin_lock_128(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_129(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_129(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_129(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_127(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_init_completion_149(struct completion *x ) ; extern unsigned long volatile jiffies ; extern unsigned long usecs_to_jiffies(unsigned int const ) ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int mod_timer(struct timer_list * , unsigned long ) ; static int ldv_mod_timer_150(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_159(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_161(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern void add_timer(struct timer_list * ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_155(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_158(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_160(struct timer_list *ldv_func_arg1 ) ; extern void delayed_work_timer_fn(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *__alloc_workqueue_key(char const * , unsigned int , int , struct lock_class_key * , char const * , ...) ; extern void destroy_workqueue(struct workqueue_struct * ) ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; extern bool cancel_delayed_work_sync(struct delayed_work * ) ; __inline static bool queue_delayed_work(struct workqueue_struct *wq , struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { { tmp = queue_delayed_work_on(8192, wq, dwork, delay); } return (tmp); } } extern void dump_page(struct page * , char const * ) ; __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } static void *ldv_ioremap_nocache_146(resource_size_t ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static void *ldv_ioremap_nocache_147(resource_size_t ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static void ldv_iounmap_144(void volatile *ldv_func_arg1 ) ; static void ldv_iounmap_145(void volatile *ldv_func_arg1 ) ; static void *ldv_vmalloc_148(unsigned long ldv_func_arg1 ) ; extern void vfree(void const * ) ; extern int cpu_number ; __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) ; extern void __free_pages(struct page * , unsigned int ) ; __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_err(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; __inline static void ssleep(unsigned int seconds ) { { { msleep(seconds * 1000U); } return; } } __inline static int PageTail(struct page const *page ) { int tmp ; { { tmp = constant_test_bit(15L, (unsigned long const volatile *)(& page->flags)); } return (tmp); } } __inline static struct page *compound_head_by_tail(struct page *tail ) { struct page *head ; int tmp ; long tmp___0 ; { { head = tail->__annonCompField48.first_page; __asm__ volatile ("": : : "memory"); tmp = PageTail((struct page const *)tail); tmp___0 = ldv__builtin_expect(tmp != 0, 1L); } if (tmp___0 != 0L) { return (head); } else { } return (tail); } } __inline static struct page *compound_head(struct page *page ) { struct page *tmp ; int tmp___0 ; long tmp___1 ; { { tmp___0 = PageTail((struct page const *)page); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); } if (tmp___1 != 0L) { { tmp = compound_head_by_tail(page); } return (tmp); } else { } return (page); } } extern bool __get_page_tail(struct page * ) ; __inline static void get_page(struct page *page ) { bool tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; long tmp___4 ; { { tmp___1 = PageTail((struct page const *)page); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { { tmp = __get_page_tail(page); tmp___0 = ldv__builtin_expect((long )tmp, 1L); } if (tmp___0 != 0L) { return; } else { } } else { } { tmp___3 = atomic_read((atomic_t const *)(& page->__annonCompField44.__annonCompField43.__annonCompField42._count)); tmp___4 = ldv__builtin_expect(tmp___3 <= 0, 0L); } if (tmp___4 != 0L) { { dump_page(page, "VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0)"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/mm.h"), "i" (548), "i" (12UL)); __builtin_unreachable(); } } else { } { atomic_inc(& page->__annonCompField44.__annonCompField43.__annonCompField42._count); } return; } } extern void put_page(struct page * ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void kfree(void const * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) ; __inline static __sum16 csum_fold(__wsum sum ) { { __asm__ (" addl %1,%0\n adcl $0xffff,%0": "=r" (sum): "r" (sum << 16), "0" (sum & 4294901760U)); return ((__sum16 )(~ sum >> 16)); } } __inline static __wsum csum_tcpudp_nofold(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { { __asm__ (" addl %1, %0\n adcl %2, %0\n adcl %3, %0\n adcl $0, %0\n": "=r" (sum): "g" (daddr), "g" (saddr), "g" (((int )len + (int )proto) << 8), "0" (sum)); return (sum); } } __inline static __sum16 csum_tcpudp_magic(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { __wsum tmp ; __sum16 tmp___0 ; { { tmp = csum_tcpudp_nofold(saddr, daddr, (int )len, (int )proto, sum); tmp___0 = csum_fold(tmp); } return (tmp___0); } } extern __sum16 csum_ipv6_magic(struct in6_addr const * , struct in6_addr const * , __u32 , unsigned short , __wsum ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern void debug_dma_sync_single_for_device(struct device * , dma_addr_t , size_t , int ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); __builtin_unreachable(); } } else { } { addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); } return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (91), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 0); } return; } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (103), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); } return; } } __inline static void dma_sync_single_for_device(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (115), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_device))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_device(dev, addr, size, (int )dir); } return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("./arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } void *ldv_zalloc(size_t size ) ; __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flags ) ; __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } __inline static void skb_frag_size_set(skb_frag_t *frag , unsigned int size ) { { frag->size = size; return; } } extern void consume_skb(struct sk_buff * ) ; static int ldv_pskb_expand_head_106(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) ; extern int skb_pad(struct sk_buff * , int ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static int skb_header_cloned(struct sk_buff const *skb ) { int dataref ; unsigned char *tmp ; { if ((unsigned int )*((unsigned char *)skb + 142UL) == 0U) { return (0); } else { } { tmp = skb_end_pointer(skb); dataref = atomic_read((atomic_t const *)(& ((struct skb_shared_info *)tmp)->dataref)); dataref = (dataref & 65535) - (dataref >> 16); } return (dataref != 1); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } __inline static void __skb_fill_page_desc(struct sk_buff *skb , int i , struct page *page , int off , int size ) { skb_frag_t *frag ; unsigned char *tmp ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp)->frags) + (unsigned long )i; frag->page.p = page; frag->page_offset = (__u32 )off; skb_frag_size_set(frag, (unsigned int )size); page = compound_head(page); } if ((int )page->__annonCompField44.__annonCompField39.pfmemalloc && (unsigned long )page->__annonCompField38.mapping == (unsigned long )((struct address_space *)0)) { skb->pfmemalloc = 1U; } else { } return; } } __inline static void skb_fill_page_desc(struct sk_buff *skb , int i , struct page *page , int off , int size ) { unsigned char *tmp ; { { __skb_fill_page_desc(skb, i, page, off, size); tmp = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp)->nr_frags = (unsigned int )((unsigned char )i) + 1U; } return; } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern unsigned char *__pskb_pull_tail(struct sk_buff * , int ) ; __inline static int pskb_may_pull(struct sk_buff *skb , unsigned int len ) { unsigned int tmp ; long tmp___0 ; long tmp___1 ; unsigned int tmp___2 ; unsigned char *tmp___3 ; { { tmp = skb_headlen((struct sk_buff const *)skb); tmp___0 = ldv__builtin_expect(len <= tmp, 1L); } if (tmp___0 != 0L) { return (1); } else { } { tmp___1 = ldv__builtin_expect(len > skb->len, 0L); } if (tmp___1 != 0L) { return (0); } else { } { tmp___2 = skb_headlen((struct sk_buff const *)skb); tmp___3 = __pskb_pull_tail(skb, (int )(len - tmp___2)); } return ((unsigned long )tmp___3 != (unsigned long )((unsigned char *)0U)); } } __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return ((unsigned int )((long )skb->data) - (unsigned int )((long )skb->head)); } } __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } __inline static unsigned char *skb_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->transport_header); } } __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } __inline static int skb_transport_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } __inline static int skb_network_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } static struct sk_buff *ldv___netdev_alloc_skb_103(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = ldv___netdev_alloc_skb_103(dev, length, 32U); } return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); } return (tmp___0); } } __inline static int __skb_cow(struct sk_buff *skb , unsigned int headroom , int cloned ) { int delta ; unsigned int tmp ; unsigned int tmp___0 ; int _max1 ; int _max2 ; int _max1___0 ; int _max2___0 ; int tmp___1 ; { { delta = 0; tmp___0 = skb_headroom((struct sk_buff const *)skb); } if (headroom > tmp___0) { { tmp = skb_headroom((struct sk_buff const *)skb); delta = (int )(headroom - tmp); } } else { } if ((delta | cloned) != 0) { { _max1 = 32; _max2 = 64; _max1___0 = 32; _max2___0 = 64; tmp___1 = ldv_pskb_expand_head_106(skb, (delta + ((_max1 > _max2 ? _max1 : _max2) + -1)) & - (_max1___0 > _max2___0 ? _max1___0 : _max2___0), 0, 32U); } return (tmp___1); } else { } return (0); } } __inline static int skb_cow_head(struct sk_buff *skb , unsigned int headroom ) { int tmp ; int tmp___0 ; { { tmp = skb_header_cloned((struct sk_buff const *)skb); tmp___0 = __skb_cow(skb, headroom, tmp); } return (tmp___0); } } __inline static int skb_padto(struct sk_buff *skb , unsigned int len ) { unsigned int size ; long tmp ; int tmp___0 ; { { size = skb->len; tmp = ldv__builtin_expect(size >= len, 1L); } if (tmp != 0L) { return (0); } else { } { tmp___0 = skb_pad(skb, (int )(len - size)); } return (tmp___0); } } __inline static void skb_copy_to_linear_data(struct sk_buff *skb , void const *from , unsigned int const len ) { { { memcpy((void *)skb->data, from, (size_t )len); } return; } } __inline static void skb_record_rx_queue(struct sk_buff *skb , u16 rx_queue ) { { skb->queue_mapping = (unsigned int )rx_queue + 1U; return; } } __inline static bool skb_is_gso(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_end_pointer(skb); } return ((unsigned int )((struct skb_shared_info *)tmp)->gso_size != 0U); } } __inline static void skb_checksum_none_assert(struct sk_buff const *skb ) { { return; } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_139(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_140(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_137(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_138(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); } return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = napi_disable_pending(n); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } __inline static void napi_schedule(struct napi_struct *n ) { bool tmp ; { { tmp = napi_schedule_prep(n); } if ((int )tmp) { { __napi_schedule(n); } } else { } return; } } __inline static void napi_complete(struct napi_struct *n ) { { return; } } extern void napi_disable(struct napi_struct * ) ; __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (508), "i" (12UL)); __builtin_unreachable(); } } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3264U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void netif_napi_del(struct napi_struct * ) ; extern int dev_close(struct net_device * ) ; extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_152(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_154(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_157(struct net_device *ldv_func_arg1 ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_tx_start_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_43555; ldv_43554: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_start_queue(txq); i = i + 1U; } ldv_43555: ; if (i < dev->num_tx_queues) { goto ldv_43554; } else { } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2547); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); } return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp != 0); } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } __inline static void netif_stop_subqueue(struct net_device *dev , u16 queue_index ) { struct netdev_queue *txq ; struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, (unsigned int )queue_index); txq = tmp; netif_tx_stop_queue(txq); } return; } } __inline static bool __netif_subqueue_stopped(struct net_device const *dev , u16 queue_index ) { struct netdev_queue *txq ; struct netdev_queue *tmp ; bool tmp___0 ; { { tmp = netdev_get_tx_queue(dev, (unsigned int )queue_index); txq = tmp; tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)txq); } return (tmp___0); } } extern void netif_wake_subqueue(struct net_device * , u16 ) ; extern int netif_get_num_default_rss_queues(void) ; extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } extern int netif_receive_skb(struct sk_buff * ) ; extern gro_result_t napi_gro_receive(struct napi_struct * , struct sk_buff * ) ; extern struct sk_buff *napi_get_frags(struct napi_struct * ) ; extern gro_result_t napi_gro_frags(struct napi_struct * ) ; __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); } return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; __inline static u32 netif_msg_init(int debug_value , int default_msg_enable_bits ) { { if ((unsigned int )debug_value > 31U) { return ((u32 )default_msg_enable_bits); } else { } if (debug_value == 0) { return (0U); } else { } return ((u32 )((1 << debug_value) + -1)); } } extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_153(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_156(struct net_device *ldv_func_arg1 ) ; extern void netdev_printk(char const * , struct net_device const * , char const * , ...) ; extern void netdev_alert(struct net_device const * , char const * , ...) ; extern void netdev_crit(struct net_device const * , char const * , ...) ; extern void netdev_err(struct net_device const * , char const * , ...) ; extern void netdev_warn(struct net_device const * , char const * , ...) ; extern void netdev_info(struct net_device const * , char const * , ...) ; __inline static int pci_channel_offline(struct pci_dev *pdev ) { { return (pdev->error_state != 1U); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pcie_set_readrq(struct pci_dev * , int ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern pci_power_t pci_choose_state(struct pci_dev * , pm_message_t ) ; extern int __pci_enable_wake(struct pci_dev * , pci_power_t , bool , bool ) ; __inline static int pci_enable_wake(struct pci_dev *dev , pci_power_t state , bool enable ) { int tmp ; { { tmp = __pci_enable_wake(dev, state, 0, (int )enable); } return (tmp); } } extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_162(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_163(struct pci_driver *ldv_func_arg1 ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern void pci_disable_msix(struct pci_dev * ) ; extern int pci_enable_msi_range(struct pci_dev * , int , int ) ; __inline static int pci_enable_msi_exact(struct pci_dev *dev , int nvec ) { int rc ; int tmp ; { { tmp = pci_enable_msi_range(dev, nvec, nvec); rc = tmp; } if (rc < 0) { return (rc); } else { } return (0); } } extern int pci_enable_msix_range(struct pci_dev * , struct msix_entry * , int , int ) ; __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); } return (tmp); } } __inline static void *pci_zalloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_zalloc_coherent((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U); } return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static dma_addr_t pci_map_page(struct pci_dev *hwdev , struct page *page , unsigned long offset , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, page, offset, size, (enum dma_data_direction )direction); } return (tmp); } } __inline static void pci_unmap_page(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) { { { dma_unmap_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_address, size, (enum dma_data_direction )direction); } return; } } __inline static void pci_dma_sync_single_for_cpu(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { { dma_sync_single_for_cpu((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); } return; } } __inline static void pci_dma_sync_single_for_device(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { { dma_sync_single_for_device((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); } return; } } __inline static int pci_dma_mapping_error(struct pci_dev *pdev , dma_addr_t dma_addr ) { int tmp ; { { tmp = dma_mapping_error(& pdev->dev, dma_addr); } return (tmp); } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } __inline static struct iphdr *ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct iphdr *)tmp); } } extern void rtnl_lock(void) ; static void ldv_rtnl_lock_141(void) ; extern void rtnl_unlock(void) ; static void ldv_rtnl_unlock_142(void) ; static void ldv_rtnl_unlock_143(void) ; __inline static struct tcphdr *tcp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((struct tcphdr *)tmp); } } __inline static unsigned int tcp_hdrlen(struct sk_buff const *skb ) { struct tcphdr *tmp ; { { tmp = tcp_hdr(skb); } return ((unsigned int )((int )tmp->doff * 4)); } } __inline static struct udphdr *udp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((struct udphdr *)tmp); } } __inline static struct ipv6hdr *ipv6_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct ipv6hdr *)tmp); } } extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_151(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static void __vlan_hwaccel_put_tag(struct sk_buff *skb , __be16 vlan_proto , u16 vlan_tci ) { { skb->vlan_proto = vlan_proto; skb->vlan_tci = (__u16 )((unsigned int )vlan_tci | 4096U); return; } } __inline static __be16 __vlan_get_protocol(struct sk_buff *skb , __be16 type , int *depth ) { unsigned int vlan_depth ; int __ret_warn_on ; long tmp ; long tmp___0 ; struct vlan_hdr *vh ; int tmp___1 ; long tmp___2 ; { vlan_depth = (unsigned int )skb->mac_len; if ((unsigned int )type == 129U || (unsigned int )type == 43144U) { if (vlan_depth != 0U) { { __ret_warn_on = vlan_depth <= 3U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/if_vlan.h", 492); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { return (0U); } else { } vlan_depth = vlan_depth - 4U; } else { vlan_depth = 14U; } ldv_54025: { tmp___1 = pskb_may_pull(skb, vlan_depth + 4U); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { return (0U); } else { } vh = (struct vlan_hdr *)skb->data + (unsigned long )vlan_depth; type = vh->h_vlan_encapsulated_proto; vlan_depth = vlan_depth + 4U; if ((unsigned int )type == 129U || (unsigned int )type == 43144U) { goto ldv_54025; } else { } } else { } if ((unsigned long )depth != (unsigned long )((int *)0)) { *depth = (int )vlan_depth; } else { } return (type); } } __inline static __be16 vlan_get_protocol(struct sk_buff *skb ) { __be16 tmp ; { { tmp = __vlan_get_protocol(skb, (int )skb->protocol, (int *)0); } return (tmp); } } __inline static u32 ql_read32(struct ql_adapter const *qdev , int reg ) { unsigned int tmp ; { { tmp = readl((void const volatile *)qdev->reg_base + (unsigned long )reg); } return (tmp); } } __inline static void ql_write32(struct ql_adapter const *qdev , int reg , u32 val ) { { { writel(val, (void volatile *)qdev->reg_base + (unsigned long )reg); } return; } } __inline static void ql_write_db_reg(u32 val , void *addr ) { { { writel(val, (void volatile *)addr); __asm__ volatile ("": : : "memory"); } return; } } __inline static u32 ql_read_sh_reg(__le32 *addr ) { u32 reg ; { reg = *addr; __asm__ volatile ("lfence": : : "memory"); return (reg); } } char qlge_driver_name[5U] ; char const qlge_driver_version[11U] ; struct ethtool_ops const qlge_ethtool_ops ; int ql_sem_spinlock(struct ql_adapter *qdev , u32 sem_mask ) ; void ql_sem_unlock(struct ql_adapter *qdev , u32 sem_mask ) ; int ql_read_xgmac_reg(struct ql_adapter *qdev , u32 reg , u32 *data ) ; int ql_get_mac_addr_reg(struct ql_adapter *qdev , u32 type , u16 index , u32 *value ) ; int ql_get_routing_reg(struct ql_adapter *qdev , u32 index , u32 *value ) ; int ql_write_cfg(struct ql_adapter *qdev , void *ptr , int size , u32 bit , u16 q_id ) ; void ql_queue_fw_error(struct ql_adapter *qdev ) ; void ql_mpi_work(struct work_struct *work ) ; void ql_mpi_reset_work(struct work_struct *work ) ; void ql_mpi_core_to_log(struct work_struct *work ) ; int ql_wait_reg_rdy(struct ql_adapter *qdev , u32 reg , u32 bit , u32 err_bit ) ; void ql_queue_asic_error(struct ql_adapter *qdev ) ; u32 ql_enable_completion_interrupt(struct ql_adapter *qdev , u32 intr ) ; int ql_read_xgmac_reg64(struct ql_adapter *qdev , u32 reg , u64 *data ) ; void ql_mpi_idc_work(struct work_struct *work ) ; void ql_mpi_port_cfg_work(struct work_struct *work ) ; int ql_mb_get_fw_state(struct ql_adapter *qdev ) ; int ql_cam_route_initialize(struct ql_adapter *qdev ) ; int ql_read_mpi_reg(struct ql_adapter *qdev , u32 reg , u32 *data ) ; int ql_mb_about_fw(struct ql_adapter *qdev ) ; int ql_mb_wol_set_magic(struct ql_adapter *qdev , u32 enable_wol ) ; int ql_mb_wol_mode(struct ql_adapter *qdev , u32 wol ) ; void ql_link_on(struct ql_adapter *qdev ) ; void ql_link_off(struct ql_adapter *qdev ) ; int ql_mb_set_mgmnt_traffic_ctl(struct ql_adapter *qdev , u32 control ) ; int ql_wait_fifo_empty(struct ql_adapter *qdev ) ; netdev_tx_t ql_lb_send(struct sk_buff *skb , struct net_device *ndev ) ; void ql_check_lb_frame(struct ql_adapter *qdev , struct sk_buff *skb ) ; int ql_clean_lb_rx_ring(struct rx_ring *rx_ring , int budget ) ; char qlge_driver_name[5U] = { 'q', 'l', 'g', 'e', '\000'}; char const qlge_driver_version[11U] = { '1', '.', '0', '0', '.', '0', '0', '.', '3', '4', '\000'}; static unsigned int const default_msg = 24823U; static int debug = -1; static int qlge_irq_type = 0; static int qlge_mpi_coredump ; static int qlge_force_coredump ; static struct pci_device_id const qlge_pci_tbl[3U] = { {4215U, 32786U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4215U, 32768U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__qlge_pci_tbl_device_table[3U] ; static int ql_wol(struct ql_adapter *qdev ) ; static void qlge_set_multicast_list(struct net_device *ndev ) ; static int ql_adapter_down(struct ql_adapter *qdev ) ; static int ql_adapter_up(struct ql_adapter *qdev ) ; static int ql_sem_trylock(struct ql_adapter *qdev , u32 sem_mask ) { u32 sem_bits ; u32 tmp ; { sem_bits = 0U; { if (sem_mask == 196608U) { goto case_196608; } else { } if (sem_mask == 786432U) { goto case_786432; } else { } if (sem_mask == 3145728U) { goto case_3145728; } else { } if (sem_mask == 12582912U) { goto case_12582912; } else { } if (sem_mask == 50331648U) { goto case_50331648; } else { } if (sem_mask == 201326592U) { goto case_201326592; } else { } if (sem_mask == 805306368U) { goto case_805306368; } else { } if (sem_mask == 3221225472U) { goto case_3221225472; } else { } goto switch_default; case_196608: /* CIL Label */ sem_bits = 1U; goto ldv_56419; case_786432: /* CIL Label */ sem_bits = 4U; goto ldv_56419; case_3145728: /* CIL Label */ sem_bits = 16U; goto ldv_56419; case_12582912: /* CIL Label */ sem_bits = 64U; goto ldv_56419; case_50331648: /* CIL Label */ sem_bits = 256U; goto ldv_56419; case_201326592: /* CIL Label */ sem_bits = 1024U; goto ldv_56419; case_805306368: /* CIL Label */ sem_bits = 4096U; goto ldv_56419; case_3221225472: /* CIL Label */ sem_bits = 16384U; goto ldv_56419; switch_default: /* CIL Label */ ; if ((qdev->msg_enable & 2U) != 0U) { { netdev_alert((struct net_device const *)qdev->ndev, "bad Semaphore mask!.\n"); } } else { } return (-22); switch_break: /* CIL Label */ ; } ldv_56419: { ql_write32((struct ql_adapter const *)qdev, 100, sem_bits | sem_mask); tmp = ql_read32((struct ql_adapter const *)qdev, 100); } return ((tmp & sem_bits) == 0U); } } int ql_sem_spinlock(struct ql_adapter *qdev , u32 sem_mask ) { unsigned int wait_count ; int tmp ; { wait_count = 30U; ldv_56433: { tmp = ql_sem_trylock(qdev, sem_mask); } if (tmp == 0) { return (0); } else { } { __const_udelay(429500UL); wait_count = wait_count - 1U; } if (wait_count != 0U) { goto ldv_56433; } else { } return (-110); } } void ql_sem_unlock(struct ql_adapter *qdev , u32 sem_mask ) { { { ql_write32((struct ql_adapter const *)qdev, 100, sem_mask); ql_read32((struct ql_adapter const *)qdev, 100); } return; } } int ql_wait_reg_rdy(struct ql_adapter *qdev , u32 reg , u32 bit , u32 err_bit ) { u32 temp ; int count ; { count = 3; goto ldv_56448; ldv_56447: { temp = ql_read32((struct ql_adapter const *)qdev, (int )reg); } if ((temp & err_bit) != 0U) { if ((qdev->msg_enable & 2U) != 0U) { { netdev_alert((struct net_device const *)qdev->ndev, "register 0x%.08x access error, value = 0x%.08x!.\n", reg, temp); } } else { } return (-5); } else if ((temp & bit) != 0U) { return (0); } else { } { __const_udelay(429500UL); count = count - 1; } ldv_56448: ; if (count != 0) { goto ldv_56447; } else { } if ((qdev->msg_enable & 2U) != 0U) { { netdev_alert((struct net_device const *)qdev->ndev, "Timed out waiting for reg %x to come ready.\n", reg); } } else { } return (-110); } } static int ql_wait_cfg(struct ql_adapter *qdev , u32 bit ) { int count ; u32 temp ; { count = 3; goto ldv_56457; ldv_56456: { temp = ql_read32((struct ql_adapter const *)qdev, 40); } if ((temp & 32U) != 0U) { return (-5); } else { } if ((temp & bit) == 0U) { return (0); } else { } { __const_udelay(429500UL); count = count - 1; } ldv_56457: ; if (count != 0) { goto ldv_56456; } else { } return (-110); } } int ql_write_cfg(struct ql_adapter *qdev , void *ptr , int size , u32 bit , u16 q_id ) { u64 map ; int status ; int direction ; u32 mask ; u32 value ; int tmp ; { { status = 0; direction = (bit & 69U) != 0U ? 1 : 2; map = pci_map_single(qdev->pdev, ptr, (size_t )size, direction); tmp = pci_dma_mapping_error(qdev->pdev, map); } if (tmp != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Couldn\'t map DMA area.\n"); } } else { } return (-12); } else { } { status = ql_sem_spinlock(qdev, 3145728U); } if (status != 0) { return (status); } else { } { status = ql_wait_cfg(qdev, bit); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Timed out waiting for CFG to come ready.\n"); } } else { } goto exit; } else { } { ql_write32((struct ql_adapter const *)qdev, 32, (unsigned int )map); ql_write32((struct ql_adapter const *)qdev, 36, (unsigned int )(map >> 32)); mask = (bit << 16) | 2130706432U; value = bit | (u32 )((int )q_id << 8); ql_write32((struct ql_adapter const *)qdev, 40, mask | value); status = ql_wait_cfg(qdev, bit); } exit: { ql_sem_unlock(qdev, 3145728U); pci_unmap_single(qdev->pdev, map, (size_t )size, direction); } return (status); } } int ql_get_mac_addr_reg(struct ql_adapter *qdev , u32 type , u16 index , u32 *value ) { u32 offset ; int status ; u32 tmp ; u32 *tmp___0 ; u32 tmp___1 ; u32 *tmp___2 ; u32 tmp___3 ; u32 *tmp___4 ; { offset = 0U; { if (type == 65536U) { goto case_65536; } else { } if (type == 0U) { goto case_0; } else { } if (type == 131072U) { goto case_131072; } else { } if (type == 196608U) { goto case_196608; } else { } goto switch_default; case_65536: /* CIL Label */ ; case_0: /* CIL Label */ { status = ql_wait_reg_rdy(qdev, 168U, 2147483648U, 0U); } if (status != 0) { goto exit; } else { } { tmp = offset; offset = offset + 1U; ql_write32((struct ql_adapter const *)qdev, 168, ((tmp | (u32 )((int )index << 4)) | type) | 100663296U); status = ql_wait_reg_rdy(qdev, 168U, 1073741824U, 0U); } if (status != 0) { goto exit; } else { } { tmp___0 = value; value = value + 1; *tmp___0 = ql_read32((struct ql_adapter const *)qdev, 172); status = ql_wait_reg_rdy(qdev, 168U, 2147483648U, 0U); } if (status != 0) { goto exit; } else { } { tmp___1 = offset; offset = offset + 1U; ql_write32((struct ql_adapter const *)qdev, 168, ((tmp___1 | (u32 )((int )index << 4)) | type) | 100663296U); status = ql_wait_reg_rdy(qdev, 168U, 1073741824U, 0U); } if (status != 0) { goto exit; } else { } { tmp___2 = value; value = value + 1; *tmp___2 = ql_read32((struct ql_adapter const *)qdev, 172); } if (type == 0U) { { status = ql_wait_reg_rdy(qdev, 168U, 2147483648U, 0U); } if (status != 0) { goto exit; } else { } { tmp___3 = offset; offset = offset + 1U; ql_write32((struct ql_adapter const *)qdev, 168, ((tmp___3 | (u32 )((int )index << 4)) | type) | 100663296U); status = ql_wait_reg_rdy(qdev, 168U, 1073741824U, 0U); } if (status != 0) { goto exit; } else { } { tmp___4 = value; value = value + 1; *tmp___4 = ql_read32((struct ql_adapter const *)qdev, 172); } } else { } goto ldv_56483; case_131072: /* CIL Label */ ; case_196608: /* CIL Label */ ; switch_default: /* CIL Label */ ; if ((qdev->msg_enable & 32U) != 0U) { { netdev_crit((struct net_device const *)qdev->ndev, "Address type %d not yet supported.\n", type); } } else { } status = -1; switch_break: /* CIL Label */ ; } ldv_56483: ; exit: ; return (status); } } static int ql_set_mac_addr_reg(struct ql_adapter *qdev , u8 *addr , u32 type , u16 index ) { u32 offset ; int status ; u32 upper ; u32 lower ; u32 tmp ; u32 tmp___0 ; u32 cam_output ; u32 upper___0 ; u32 lower___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 enable_bit ; { offset = 0U; status = 0; { if (type == 65536U) { goto case_65536; } else { } if (type == 0U) { goto case_0; } else { } if (type == 131072U) { goto case_131072; } else { } if (type == 196608U) { goto case_196608; } else { } goto switch_default; case_65536: /* CIL Label */ { upper = (u32 )(((int )*addr << 8) | (int )*(addr + 1UL)); lower = (u32 )(((((int )*(addr + 2UL) << 24) | ((int )*(addr + 3UL) << 16)) | ((int )*(addr + 4UL) << 8)) | (int )*(addr + 5UL)); status = ql_wait_reg_rdy(qdev, 168U, 2147483648U, 0U); } if (status != 0) { goto exit; } else { } { tmp = offset; offset = offset + 1U; ql_write32((struct ql_adapter const *)qdev, 168, ((tmp | (u32 )((int )index << 4)) | type) | 134217728U); ql_write32((struct ql_adapter const *)qdev, 172, lower); status = ql_wait_reg_rdy(qdev, 168U, 2147483648U, 0U); } if (status != 0) { goto exit; } else { } { tmp___0 = offset; offset = offset + 1U; ql_write32((struct ql_adapter const *)qdev, 168, ((tmp___0 | (u32 )((int )index << 4)) | type) | 134217728U); ql_write32((struct ql_adapter const *)qdev, 172, upper); status = ql_wait_reg_rdy(qdev, 168U, 2147483648U, 0U); } if (status != 0) { goto exit; } else { } goto ldv_56499; case_0: /* CIL Label */ { upper___0 = (u32 )(((int )*addr << 8) | (int )*(addr + 1UL)); lower___0 = (u32 )(((((int )*(addr + 2UL) << 24) | ((int )*(addr + 3UL) << 16)) | ((int )*(addr + 4UL) << 8)) | (int )*(addr + 5UL)); status = ql_wait_reg_rdy(qdev, 168U, 2147483648U, 0U); } if (status != 0) { goto exit; } else { } { tmp___1 = offset; offset = offset + 1U; ql_write32((struct ql_adapter const *)qdev, 168, (tmp___1 | (u32 )((int )index << 4)) | type); ql_write32((struct ql_adapter const *)qdev, 172, lower___0); status = ql_wait_reg_rdy(qdev, 168U, 2147483648U, 0U); } if (status != 0) { goto exit; } else { } { tmp___2 = offset; offset = offset + 1U; ql_write32((struct ql_adapter const *)qdev, 168, (tmp___2 | (u32 )((int )index << 4)) | type); ql_write32((struct ql_adapter const *)qdev, 172, upper___0); status = ql_wait_reg_rdy(qdev, 168U, 2147483648U, 0U); } if (status != 0) { goto exit; } else { } { ql_write32((struct ql_adapter const *)qdev, 168, (offset | (u32 )((int )index << 4)) | type); cam_output = (qdev->func << 2) | 1U; } if (((qdev->ndev)->features & 256ULL) != 0ULL) { cam_output = cam_output | 16U; } else { } { ql_write32((struct ql_adapter const *)qdev, 172, cam_output); } goto ldv_56499; case_131072: /* CIL Label */ { enable_bit = *((u32 *)addr); status = ql_wait_reg_rdy(qdev, 168U, 2147483648U, 0U); } if (status != 0) { goto exit; } else { } { ql_write32((struct ql_adapter const *)qdev, 168, ((offset | (u32 )((int )index << 4)) | type) | enable_bit); } goto ldv_56499; case_196608: /* CIL Label */ ; switch_default: /* CIL Label */ ; if ((qdev->msg_enable & 32U) != 0U) { { netdev_crit((struct net_device const *)qdev->ndev, "Address type %d not yet supported.\n", type); } } else { } status = -1; switch_break: /* CIL Label */ ; } ldv_56499: ; exit: ; return (status); } } static int ql_set_mac_addr(struct ql_adapter *qdev , int set ) { int status ; char zero_mac_addr[6U] ; char *addr ; { if (set != 0) { addr = (char *)(& qdev->current_mac_addr); if ((qdev->msg_enable & 32U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "Set Mac addr %pM\n", addr); } } else { } } else { { memset((void *)(& zero_mac_addr), 0, 6UL); addr = (char *)(& zero_mac_addr); } if ((qdev->msg_enable & 32U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "Clearing MAC address\n"); } } else { } } { status = ql_sem_spinlock(qdev, 12582912U); } if (status != 0) { return (status); } else { } { status = ql_set_mac_addr_reg(qdev, (u8 *)addr, 0U, (int )((unsigned int )((u16 )qdev->func) * 128U)); ql_sem_unlock(qdev, 12582912U); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to init mac address.\n"); } } else { } } else { } return (status); } } void ql_link_on(struct ql_adapter *qdev ) { { if ((qdev->msg_enable & 4U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Link is up.\n"); } } else { } { netif_carrier_on(qdev->ndev); ql_set_mac_addr(qdev, 1); } return; } } void ql_link_off(struct ql_adapter *qdev ) { { if ((qdev->msg_enable & 4U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Link is down.\n"); } } else { } { netif_carrier_off(qdev->ndev); ql_set_mac_addr(qdev, 0); } return; } } int ql_get_routing_reg(struct ql_adapter *qdev , u32 index , u32 *value ) { int status ; { { status = 0; status = ql_wait_reg_rdy(qdev, 228U, 2147483648U, 0U); } if (status != 0) { goto exit; } else { } { ql_write32((struct ql_adapter const *)qdev, 228, (index << 8) | 67239936U); status = ql_wait_reg_rdy(qdev, 228U, 1073741824U, 0U); } if (status != 0) { goto exit; } else { } { *value = ql_read32((struct ql_adapter const *)qdev, 232); } exit: ; return (status); } } static int ql_set_routing_reg(struct ql_adapter *qdev , u32 index , u32 mask , int enable ) { int status ; u32 value ; { status = -22; value = 0U; { if (mask == 128U) { goto case_128; } else { } if (mask == 8388608U) { goto case_8388608; } else { } if (mask == 4194304U) { goto case_4194304; } else { } if (mask == 33554432U) { goto case_33554432; } else { } if (mask == 16777216U) { goto case_16777216; } else { } if (mask == 1U) { goto case_1; } else { } if (mask == 2U) { goto case_2; } else { } if (mask == 4U) { goto case_4; } else { } if (mask == 2147483648U) { goto case_2147483648; } else { } if (mask == 0U) { goto case_0; } else { } goto switch_default; case_128: /* CIL Label */ value = 1182720U; goto ldv_56537; case_8388608: /* CIL Label */ value = 3280640U; goto ldv_56537; case_4194304: /* CIL Label */ value = 3276800U; goto ldv_56537; case_33554432: /* CIL Label */ value = 3277056U; goto ldv_56537; case_16777216: /* CIL Label */ value = 3277312U; goto ldv_56537; case_1: /* CIL Label */ value = 3277568U; goto ldv_56537; case_2: /* CIL Label */ value = 3278080U; goto ldv_56537; case_4: /* CIL Label */ value = 3277824U; goto ldv_56537; case_2147483648: /* CIL Label */ value = 133120U; goto ldv_56537; case_0: /* CIL Label */ value = (index << 8) | 3276800U; goto ldv_56537; switch_default: /* CIL Label */ ; if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Mask type %d not yet supported.\n", mask); } } else { } status = -1; goto exit; switch_break: /* CIL Label */ ; } ldv_56537: ; if (value != 0U) { { status = ql_wait_reg_rdy(qdev, 228U, 2147483648U, 0U); } if (status != 0) { goto exit; } else { } { value = value | (enable != 0 ? 134217728U : 0U); ql_write32((struct ql_adapter const *)qdev, 228, value); ql_write32((struct ql_adapter const *)qdev, 232, enable != 0 ? mask : 0U); } } else { } exit: ; return (status); } } static void ql_enable_interrupts(struct ql_adapter *qdev ) { { { ql_write32((struct ql_adapter const *)qdev, 52, 1073758208U); } return; } } static void ql_disable_interrupts(struct ql_adapter *qdev ) { { { ql_write32((struct ql_adapter const *)qdev, 52, 1073741824U); } return; } } u32 ql_enable_completion_interrupt(struct ql_adapter *qdev , u32 intr ) { u32 var ; unsigned long hw_flags ; struct intr_context *ctx ; int tmp ; long tmp___0 ; long tmp___1 ; int tmp___2 ; { { var = 0U; hw_flags = 0UL; ctx = (struct intr_context *)(& qdev->intr_context) + (unsigned long )intr; tmp = constant_test_bit(3L, (unsigned long const volatile *)(& qdev->flags)); tmp___0 = ldv__builtin_expect(tmp != 0, 1L); } if (tmp___0 != 0L) { { tmp___1 = ldv__builtin_expect(intr != 0U, 1L); } if (tmp___1 != 0L) { { ql_write32((struct ql_adapter const *)qdev, 52, ctx->intr_en_mask); var = ql_read32((struct ql_adapter const *)qdev, 48); } return (var); } else { } } else { } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_126(& qdev->hw_lock); tmp___2 = atomic_dec_and_test(& ctx->irq_cnt); } if (tmp___2 != 0) { { ql_write32((struct ql_adapter const *)qdev, 52, ctx->intr_en_mask); var = ql_read32((struct ql_adapter const *)qdev, 48); } } else { } { ldv_spin_unlock_irqrestore_127(& qdev->hw_lock, hw_flags); } return (var); } } static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev , u32 intr ) { u32 var ; struct intr_context *ctx ; int tmp ; long tmp___0 ; long tmp___1 ; int tmp___2 ; { { var = 0U; tmp = constant_test_bit(3L, (unsigned long const volatile *)(& qdev->flags)); tmp___0 = ldv__builtin_expect(tmp != 0, 1L); } if (tmp___0 != 0L) { { tmp___1 = ldv__builtin_expect(intr != 0U, 1L); } if (tmp___1 != 0L) { return (0U); } else { } } else { } { ctx = (struct intr_context *)(& qdev->intr_context) + (unsigned long )intr; ldv_spin_lock_128(& qdev->hw_lock); tmp___2 = atomic_read((atomic_t const *)(& ctx->irq_cnt)); } if (tmp___2 == 0) { { ql_write32((struct ql_adapter const *)qdev, 52, ctx->intr_dis_mask); var = ql_read32((struct ql_adapter const *)qdev, 48); } } else { } { atomic_inc(& ctx->irq_cnt); ldv_spin_unlock_129(& qdev->hw_lock); } return (var); } } static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev ) { int i ; int tmp ; long tmp___0 ; long tmp___1 ; { i = 0; goto ldv_56573; ldv_56572: { tmp = constant_test_bit(3L, (unsigned long const volatile *)(& qdev->flags)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { atomic_set(& qdev->intr_context[i].irq_cnt, 1); } } else { { tmp___1 = ldv__builtin_expect(i == 0, 0L); } if (tmp___1 != 0L) { { atomic_set(& qdev->intr_context[i].irq_cnt, 1); } } else { } } { ql_enable_completion_interrupt(qdev, (u32 )i); i = i + 1; } ldv_56573: ; if ((u32 )i < qdev->intr_count) { goto ldv_56572; } else { } return; } } static int ql_validate_flash(struct ql_adapter *qdev , u32 size , char const *str ) { int status ; int i ; u16 csum ; __le16 *flash ; __le16 *tmp ; { { csum = 0U; flash = (__le16 *)(& qdev->flash); status = strncmp((char const *)(& qdev->flash), str, 4UL); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Invalid flash signature.\n"); } } else { } return (status); } else { } i = 0; goto ldv_56585; ldv_56584: tmp = flash; flash = flash + 1; csum = (int )csum + (int )*tmp; i = i + 1; ldv_56585: ; if ((u32 )i < size) { goto ldv_56584; } else { } if ((unsigned int )csum != 0U) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Invalid flash checksum, csum = 0x%.04x.\n", (int )csum); } } else { } } else { } return ((int )csum); } } static int ql_read_flash_word(struct ql_adapter *qdev , int offset , __le32 *data ) { int status ; { { status = 0; status = ql_wait_reg_rdy(qdev, 136U, 2147483648U, 536870912U); } if (status != 0) { goto exit; } else { } { ql_write32((struct ql_adapter const *)qdev, 136, (u32 )(offset | 1073741824)); status = ql_wait_reg_rdy(qdev, 136U, 2147483648U, 536870912U); } if (status != 0) { goto exit; } else { } { *data = ql_read32((struct ql_adapter const *)qdev, 140); } exit: ; return (status); } } static int ql_get_8000_flash_params(struct ql_adapter *qdev ) { u32 i ; u32 size ; int status ; __le32 *p ; u32 offset ; u8 mac_addr[6U] ; int tmp ; bool tmp___0 ; int tmp___1 ; { p = (__le32 *)(& qdev->flash); if (qdev->port == 0U) { offset = 327808U; } else { offset = 328064U; } { tmp = ql_sem_spinlock(qdev, 50331648U); } if (tmp != 0) { return (-110); } else { } size = 128U; i = 0U; goto ldv_56605; ldv_56604: { status = ql_read_flash_word(qdev, (int )(i + offset), p); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Error reading flash.\n"); } } else { } goto exit; } else { } i = i + 1U; p = p + 1; ldv_56605: ; if (i < size) { goto ldv_56604; } else { } { status = ql_validate_flash(qdev, 256U, "8000"); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Invalid flash.\n"); } } else { } status = -22; goto exit; } else { } if ((unsigned int )qdev->flash.flash_params_8000.data_type1 == 2U) { { memcpy((void *)(& mac_addr), (void const *)(& qdev->flash.flash_params_8000.mac_addr1), (size_t )(qdev->ndev)->addr_len); } } else { { memcpy((void *)(& mac_addr), (void const *)(& qdev->flash.flash_params_8000.mac_addr), (size_t )(qdev->ndev)->addr_len); } } { tmp___0 = is_valid_ether_addr((u8 const *)(& mac_addr)); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Invalid MAC address.\n"); } } else { } status = -22; goto exit; } else { } { memcpy((void *)(qdev->ndev)->dev_addr, (void const *)(& mac_addr), (size_t )(qdev->ndev)->addr_len); } exit: { ql_sem_unlock(qdev, 50331648U); } return (status); } } static int ql_get_8012_flash_params(struct ql_adapter *qdev ) { int i ; int status ; __le32 *p ; u32 offset ; u32 size ; int tmp ; bool tmp___0 ; int tmp___1 ; { p = (__le32 *)(& qdev->flash); offset = 0U; size = 5U; if (qdev->port != 0U) { offset = size; } else { } { tmp = ql_sem_spinlock(qdev, 50331648U); } if (tmp != 0) { return (-110); } else { } i = 0; goto ldv_56617; ldv_56616: { status = ql_read_flash_word(qdev, (int )((u32 )i + offset), p); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Error reading flash.\n"); } } else { } goto exit; } else { } i = i + 1; p = p + 1; ldv_56617: ; if ((u32 )i < size) { goto ldv_56616; } else { } { status = ql_validate_flash(qdev, 10U, "8012"); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Invalid flash.\n"); } } else { } status = -22; goto exit; } else { } { tmp___0 = is_valid_ether_addr((u8 const *)(& qdev->flash.flash_params_8012.mac_addr)); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { status = -22; goto exit; } else { } { memcpy((void *)(qdev->ndev)->dev_addr, (void const *)(& qdev->flash.flash_params_8012.mac_addr), (size_t )(qdev->ndev)->addr_len); } exit: { ql_sem_unlock(qdev, 50331648U); } return (status); } } static int ql_write_xgmac_reg(struct ql_adapter *qdev , u32 reg , u32 data ) { int status ; { { status = ql_wait_reg_rdy(qdev, 120U, 2147483648U, 536870912U); } if (status != 0) { return (status); } else { } { ql_write32((struct ql_adapter const *)qdev, 124, data); ql_write32((struct ql_adapter const *)qdev, 120, reg); } return (status); } } int ql_read_xgmac_reg(struct ql_adapter *qdev , u32 reg , u32 *data ) { int status ; { { status = 0; status = ql_wait_reg_rdy(qdev, 120U, 2147483648U, 536870912U); } if (status != 0) { goto exit; } else { } { ql_write32((struct ql_adapter const *)qdev, 120, reg | 1073741824U); status = ql_wait_reg_rdy(qdev, 120U, 2147483648U, 536870912U); } if (status != 0) { goto exit; } else { } { *data = ql_read32((struct ql_adapter const *)qdev, 124); } exit: ; return (status); } } int ql_read_xgmac_reg64(struct ql_adapter *qdev , u32 reg , u64 *data ) { int status ; u32 hi ; u32 lo ; { { status = 0; hi = 0U; lo = 0U; status = ql_read_xgmac_reg(qdev, reg, & lo); } if (status != 0) { goto exit; } else { } { status = ql_read_xgmac_reg(qdev, reg + 4U, & hi); } if (status != 0) { goto exit; } else { } *data = (unsigned long long )lo | ((unsigned long long )hi << 32); exit: ; return (status); } } static int ql_8000_port_initialize(struct ql_adapter *qdev ) { int status ; { { status = ql_mb_about_fw(qdev); } if (status != 0) { goto exit; } else { } { status = ql_mb_get_fw_state(qdev); } if (status != 0) { goto exit; } else { } { queue_delayed_work(qdev->workqueue, & qdev->mpi_port_cfg_work, 0UL); } exit: ; return (status); } } static int ql_8012_port_initialize(struct ql_adapter *qdev ) { int status ; u32 data ; int tmp ; { { status = 0; tmp = ql_sem_trylock(qdev, qdev->xg_sem_mask); } if (tmp != 0) { if ((qdev->msg_enable & 4U) != 0U) { { netdev_info((struct net_device const *)qdev->ndev, "Another function has the semaphore, so wait for the port init bit to come ready.\n"); } } else { } { status = ql_wait_reg_rdy(qdev, 48U, qdev->port_init, 0U); } if (status != 0) { if ((qdev->msg_enable & 4U) != 0U) { { netdev_crit((struct net_device const *)qdev->ndev, "Port initialize timed out.\n"); } } else { } } else { } return (status); } else { } if ((qdev->msg_enable & 4U) != 0U) { { netdev_info((struct net_device const *)qdev->ndev, "Got xgmac semaphore!.\n"); } } else { } { status = ql_read_xgmac_reg(qdev, 264U, & data); } if (status != 0) { goto end; } else { } { data = data | 1U; status = ql_write_xgmac_reg(qdev, 264U, data); } if (status != 0) { goto end; } else { } { data = data & 4294967294U; data = data | 64U; data = data | 1024U; data = data | 2048U; status = ql_write_xgmac_reg(qdev, 264U, data); } if (status != 0) { goto end; } else { } { status = ql_read_xgmac_reg(qdev, 268U, & data); } if (status != 0) { goto end; } else { } { data = data & 4294967294U; data = data | 2U; status = ql_write_xgmac_reg(qdev, 268U, data); } if (status != 0) { goto end; } else { } { status = ql_read_xgmac_reg(qdev, 272U, & data); } if (status != 0) { goto end; } else { } { data = data & 4294967294U; data = data | 2U; status = ql_write_xgmac_reg(qdev, 272U, data); } if (status != 0) { goto end; } else { } { status = ql_write_xgmac_reg(qdev, 308U, 2776629248U); } if (status != 0) { goto end; } else { } { status = ql_write_xgmac_reg(qdev, 312U, 9600U); } if (status != 0) { goto end; } else { } { ql_write32((struct ql_adapter const *)qdev, 48, (qdev->port_init << 16) | qdev->port_init); } end: { ql_sem_unlock(qdev, qdev->xg_sem_mask); } return (status); } } __inline static unsigned int ql_lbq_block_size(struct ql_adapter *qdev ) { { return ((unsigned int )(4096UL << (int )qdev->lbq_buf_order)); } } static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring ) { struct bq_desc *lbq_desc ; { lbq_desc = rx_ring->lbq + (unsigned long )rx_ring->lbq_curr_idx; rx_ring->lbq_curr_idx = rx_ring->lbq_curr_idx + 1U; if (rx_ring->lbq_curr_idx == rx_ring->lbq_len) { rx_ring->lbq_curr_idx = 0U; } else { } rx_ring->lbq_free_cnt = rx_ring->lbq_free_cnt + 1U; return (lbq_desc); } } static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev , struct rx_ring *rx_ring ) { struct bq_desc *lbq_desc ; struct bq_desc *tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; { { tmp = ql_get_curr_lbuf(rx_ring); lbq_desc = tmp; pci_dma_sync_single_for_cpu(qdev->pdev, lbq_desc->mapaddr, (size_t )rx_ring->lbq_buf_size, 2); tmp___1 = ql_lbq_block_size(qdev); } if (lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size == tmp___1) { { tmp___0 = ql_lbq_block_size(qdev); pci_unmap_page(qdev->pdev, lbq_desc->p.pg_chunk.map, (size_t )tmp___0, 2); } } else { } return (lbq_desc); } } static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring ) { struct bq_desc *sbq_desc ; { sbq_desc = rx_ring->sbq + (unsigned long )rx_ring->sbq_curr_idx; rx_ring->sbq_curr_idx = rx_ring->sbq_curr_idx + 1U; if (rx_ring->sbq_curr_idx == rx_ring->sbq_len) { rx_ring->sbq_curr_idx = 0U; } else { } rx_ring->sbq_free_cnt = rx_ring->sbq_free_cnt + 1U; return (sbq_desc); } } static void ql_update_cq(struct rx_ring *rx_ring ) { long tmp ; { { rx_ring->cnsmr_idx = rx_ring->cnsmr_idx + 1U; rx_ring->curr_entry = rx_ring->curr_entry + 1; tmp = ldv__builtin_expect(rx_ring->cnsmr_idx == rx_ring->cq_len, 0L); } if (tmp != 0L) { rx_ring->cnsmr_idx = 0U; rx_ring->curr_entry = (struct ql_net_rsp_iocb *)rx_ring->cq_base; } else { } return; } } static void ql_write_cq_idx(struct rx_ring *rx_ring ) { { { ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg); } return; } } static int ql_get_next_chunk(struct ql_adapter *qdev , struct rx_ring *rx_ring , struct bq_desc *lbq_desc ) { u64 map ; long tmp ; unsigned int tmp___0 ; int tmp___1 ; void *tmp___2 ; unsigned int tmp___3 ; { if ((unsigned long )rx_ring->pg_chunk.page == (unsigned long )((struct page *)0)) { { rx_ring->pg_chunk.page = alloc_pages(16672U, qdev->lbq_buf_order); tmp = ldv__builtin_expect((unsigned long )rx_ring->pg_chunk.page == (unsigned long )((struct page *)0), 0L); } if (tmp != 0L) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "page allocation failed.\n"); } } else { } return (-12); } else { } { rx_ring->pg_chunk.offset = 0U; tmp___0 = ql_lbq_block_size(qdev); map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page, 0UL, (size_t )tmp___0, 2); tmp___1 = pci_dma_mapping_error(qdev->pdev, map); } if (tmp___1 != 0) { { __free_pages(rx_ring->pg_chunk.page, qdev->lbq_buf_order); rx_ring->pg_chunk.page = (struct page *)0; } if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "PCI mapping failed.\n"); } } else { } return (-12); } else { } { rx_ring->pg_chunk.map = map; tmp___2 = lowmem_page_address((struct page const *)rx_ring->pg_chunk.page); rx_ring->pg_chunk.va = (char *)tmp___2; } } else { } { lbq_desc->p.pg_chunk = rx_ring->pg_chunk; rx_ring->pg_chunk.offset = rx_ring->pg_chunk.offset + rx_ring->lbq_buf_size; tmp___3 = ql_lbq_block_size(qdev); } if (rx_ring->pg_chunk.offset == tmp___3) { rx_ring->pg_chunk.page = (struct page *)0; lbq_desc->p.pg_chunk.last_flag = 1U; } else { { rx_ring->pg_chunk.va = rx_ring->pg_chunk.va + (unsigned long )rx_ring->lbq_buf_size; get_page(rx_ring->pg_chunk.page); lbq_desc->p.pg_chunk.last_flag = 0U; } } return (0); } } static void ql_update_lbq(struct ql_adapter *qdev , struct rx_ring *rx_ring ) { u32 clean_idx ; u32 start_idx ; struct bq_desc *lbq_desc ; u64 map ; int i ; int tmp ; { clean_idx = rx_ring->lbq_clean_idx; start_idx = clean_idx; goto ldv_56693; ldv_56692: i = (int )rx_ring->lbq_clean_idx & 15; goto ldv_56690; ldv_56689: ; if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "lbq: try cleaning clean_idx = %d.\n", clean_idx); } } else { } { lbq_desc = rx_ring->lbq + (unsigned long )clean_idx; tmp = ql_get_next_chunk(qdev, rx_ring, lbq_desc); } if (tmp != 0) { rx_ring->lbq_clean_idx = clean_idx; if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Could not get a page chunk, i=%d, clean_idx =%d .\n", i, clean_idx); } } else { } return; } else { } { map = lbq_desc->p.pg_chunk.map + (u64 )lbq_desc->p.pg_chunk.offset; lbq_desc->mapaddr = map; lbq_desc->maplen = rx_ring->lbq_buf_size; *(lbq_desc->addr) = map; pci_dma_sync_single_for_device(qdev->pdev, map, (size_t )rx_ring->lbq_buf_size, 2); clean_idx = clean_idx + 1U; } if (clean_idx == rx_ring->lbq_len) { clean_idx = 0U; } else { } i = i + 1; ldv_56690: ; if (i <= 15) { goto ldv_56689; } else { } rx_ring->lbq_clean_idx = clean_idx; rx_ring->lbq_prod_idx = rx_ring->lbq_prod_idx + 16U; if (rx_ring->lbq_prod_idx == rx_ring->lbq_len) { rx_ring->lbq_prod_idx = 0U; } else { } rx_ring->lbq_free_cnt = rx_ring->lbq_free_cnt - 16U; ldv_56693: ; if (rx_ring->lbq_free_cnt > 32U) { goto ldv_56692; } else { } if (start_idx != clean_idx) { if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "lbq: updating prod idx = %d.\n", rx_ring->lbq_prod_idx); } } else { } { ql_write_db_reg(rx_ring->lbq_prod_idx, rx_ring->lbq_prod_idx_db_reg); } } else { } return; } } static void ql_update_sbq(struct ql_adapter *qdev , struct rx_ring *rx_ring ) { u32 clean_idx ; u32 start_idx ; struct bq_desc *sbq_desc ; u64 map ; int i ; int tmp ; { clean_idx = rx_ring->sbq_clean_idx; start_idx = clean_idx; goto ldv_56708; ldv_56707: i = (int )rx_ring->sbq_clean_idx & 15; goto ldv_56705; ldv_56704: sbq_desc = rx_ring->sbq + (unsigned long )clean_idx; if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "sbq: try cleaning clean_idx = %d.\n", clean_idx); } } else { } if ((unsigned long )sbq_desc->p.skb == (unsigned long )((struct sk_buff *)0)) { if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "sbq: getting new skb for index %d.\n", sbq_desc->index); } } else { } { sbq_desc->p.skb = netdev_alloc_skb(qdev->ndev, 256U); } if ((unsigned long )sbq_desc->p.skb == (unsigned long )((struct sk_buff *)0)) { rx_ring->sbq_clean_idx = clean_idx; return; } else { } { skb_reserve(sbq_desc->p.skb, 0); map = pci_map_single(qdev->pdev, (void *)(sbq_desc->p.skb)->data, (size_t )rx_ring->sbq_buf_size, 2); tmp = pci_dma_mapping_error(qdev->pdev, map); } if (tmp != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "PCI mapping failed.\n"); } } else { } { rx_ring->sbq_clean_idx = clean_idx; dev_kfree_skb_any(sbq_desc->p.skb); sbq_desc->p.skb = (struct sk_buff *)0; } return; } else { } sbq_desc->mapaddr = map; sbq_desc->maplen = rx_ring->sbq_buf_size; *(sbq_desc->addr) = map; } else { } clean_idx = clean_idx + 1U; if (clean_idx == rx_ring->sbq_len) { clean_idx = 0U; } else { } i = i + 1; ldv_56705: ; if (i <= 15) { goto ldv_56704; } else { } rx_ring->sbq_clean_idx = clean_idx; rx_ring->sbq_prod_idx = rx_ring->sbq_prod_idx + 16U; if (rx_ring->sbq_prod_idx == rx_ring->sbq_len) { rx_ring->sbq_prod_idx = 0U; } else { } rx_ring->sbq_free_cnt = rx_ring->sbq_free_cnt - 16U; ldv_56708: ; if (rx_ring->sbq_free_cnt > 16U) { goto ldv_56707; } else { } if (start_idx != clean_idx) { if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "sbq: updating prod idx = %d.\n", rx_ring->sbq_prod_idx); } } else { } { ql_write_db_reg(rx_ring->sbq_prod_idx, rx_ring->sbq_prod_idx_db_reg); } } else { } return; } } static void ql_update_buffer_queues(struct ql_adapter *qdev , struct rx_ring *rx_ring ) { { { ql_update_sbq(qdev, rx_ring); ql_update_lbq(qdev, rx_ring); } return; } } static void ql_unmap_send(struct ql_adapter *qdev , struct tx_ring_desc *tx_ring_desc , int mapped ) { int i ; { i = 0; goto ldv_56721; ldv_56720: ; if (i == 0 || (i == 7 && mapped > 7)) { if (i == 7) { if ((qdev->msg_enable & 1024U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "unmapping OAL area.\n"); } } else { } } else { } { pci_unmap_single(qdev->pdev, ((struct map_list *)(& tx_ring_desc->map) + (unsigned long )i)->mapaddr, (size_t )((struct map_list *)(& tx_ring_desc->map) + (unsigned long )i)->maplen, 1); } } else { if ((qdev->msg_enable & 1024U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "unmapping frag %d.\n", i); } } else { } { pci_unmap_page(qdev->pdev, ((struct map_list *)(& tx_ring_desc->map) + (unsigned long )i)->mapaddr, (size_t )((struct map_list *)(& tx_ring_desc->map) + (unsigned long )i)->maplen, 1); } } i = i + 1; ldv_56721: ; if (i < mapped) { goto ldv_56720; } else { } return; } } static int ql_map_send(struct ql_adapter *qdev , struct ob_mac_iocb_req *mac_iocb_ptr , struct sk_buff *skb , struct tx_ring_desc *tx_ring_desc ) { int len ; unsigned int tmp ; dma_addr_t map ; int frag_idx ; int err ; int map_idx ; struct tx_buf_desc *tbd ; int frag_cnt ; unsigned char *tmp___0 ; skb_frag_t *frag ; unsigned char *tmp___1 ; unsigned int tmp___2 ; { { tmp = skb_headlen((struct sk_buff const *)skb); len = (int )tmp; map_idx = 0; tbd = (struct tx_buf_desc *)(& mac_iocb_ptr->tbd); tmp___0 = skb_end_pointer((struct sk_buff const *)skb); frag_cnt = (int )((struct skb_shared_info *)tmp___0)->nr_frags; } if (frag_cnt != 0) { if ((qdev->msg_enable & 256U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "frag_cnt = %d.\n", frag_cnt); } } else { } } else { } { map = pci_map_single(qdev->pdev, (void *)skb->data, (size_t )len, 1); err = pci_dma_mapping_error(qdev->pdev, map); } if (err != 0) { if ((qdev->msg_enable & 256U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "PCI mapping failed with error: %d\n", err); } } else { } return (16); } else { } tbd->len = (unsigned int )len; tbd->addr = map; ((struct map_list *)(& tx_ring_desc->map) + (unsigned long )map_idx)->mapaddr = map; ((struct map_list *)(& tx_ring_desc->map) + (unsigned long )map_idx)->maplen = (__u32 )len; map_idx = map_idx + 1; frag_idx = 0; goto ldv_56739; ldv_56738: { tmp___1 = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp___1)->frags) + (unsigned long )frag_idx; tbd = tbd + 1; } if (frag_idx == 6 && frag_cnt > 7) { { map = pci_map_single(qdev->pdev, (void *)(& tx_ring_desc->oal), 132UL, 1); err = pci_dma_mapping_error(qdev->pdev, map); } if (err != 0) { if ((qdev->msg_enable & 256U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "PCI mapping outbound address list with error: %d\n", err); } } else { } goto map_error; } else { } tbd->addr = map; tbd->len = (unsigned int )((unsigned long )(frag_cnt - frag_idx)) * 12U | 1073741824U; ((struct map_list *)(& tx_ring_desc->map) + (unsigned long )map_idx)->mapaddr = map; ((struct map_list *)(& tx_ring_desc->map) + (unsigned long )map_idx)->maplen = 132U; tbd = (struct tx_buf_desc *)(& tx_ring_desc->oal); map_idx = map_idx + 1; } else { } { tmp___2 = skb_frag_size((skb_frag_t const *)frag); map = skb_frag_dma_map(& (qdev->pdev)->dev, (skb_frag_t const *)frag, 0UL, (size_t )tmp___2, 1); err = dma_mapping_error(& (qdev->pdev)->dev, map); } if (err != 0) { if ((qdev->msg_enable & 256U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "PCI mapping frags failed with error: %d.\n", err); } } else { } goto map_error; } else { } { tbd->addr = map; tbd->len = skb_frag_size((skb_frag_t const *)frag); ((struct map_list *)(& tx_ring_desc->map) + (unsigned long )map_idx)->mapaddr = map; ((struct map_list *)(& tx_ring_desc->map) + (unsigned long )map_idx)->maplen = skb_frag_size((skb_frag_t const *)frag); frag_idx = frag_idx + 1; map_idx = map_idx + 1; } ldv_56739: ; if (frag_idx < frag_cnt) { goto ldv_56738; } else { } tx_ring_desc->map_cnt = map_idx; tbd->len = tbd->len | 2147483648U; return (0); map_error: { ql_unmap_send(qdev, tx_ring_desc, map_idx); } return (16); } } static void ql_categorize_rx_err(struct ql_adapter *qdev , u8 rx_err , struct rx_ring *rx_ring ) { struct nic_stats *stats ; { stats = & qdev->nic_stats; stats->rx_err_count = stats->rx_err_count + 1ULL; rx_ring->rx_errors = rx_ring->rx_errors + 1ULL; { if (((int )rx_err & 28) == 4) { goto case_4; } else { } if (((int )rx_err & 28) == 8) { goto case_8; } else { } if (((int )rx_err & 28) == 16) { goto case_16; } else { } if (((int )rx_err & 28) == 20) { goto case_20; } else { } if (((int )rx_err & 28) == 24) { goto case_24; } else { } if (((int )rx_err & 28) == 28) { goto case_28; } else { } goto switch_default; case_4: /* CIL Label */ stats->rx_code_err = stats->rx_code_err + 1ULL; goto ldv_56748; case_8: /* CIL Label */ stats->rx_oversize_err = stats->rx_oversize_err + 1ULL; goto ldv_56748; case_16: /* CIL Label */ stats->rx_undersize_err = stats->rx_undersize_err + 1ULL; goto ldv_56748; case_20: /* CIL Label */ stats->rx_preamble_err = stats->rx_preamble_err + 1ULL; goto ldv_56748; case_24: /* CIL Label */ stats->rx_frame_len_err = stats->rx_frame_len_err + 1ULL; goto ldv_56748; case_28: /* CIL Label */ stats->rx_crc_err = stats->rx_crc_err + 1ULL; switch_default: /* CIL Label */ ; goto ldv_56748; switch_break: /* CIL Label */ ; } ldv_56748: ; return; } } static void ql_update_mac_hdr_len(struct ql_adapter *qdev , struct ib_mac_iocb_rsp *ib_mac_rsp , void *page , size_t *len ) { u16 *tags ; { if (((qdev->ndev)->features & 256ULL) != 0ULL) { return; } else { } if (((int )ib_mac_rsp->flags2 & 2) != 0) { tags = (u16 *)page; if ((unsigned int )*(tags + 6UL) == 33024U && (unsigned int )*(tags + 8UL) == 33024U) { *len = *len + 8UL; } else { *len = *len + 4UL; } } else { } return; } } static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev , struct rx_ring *rx_ring , struct ib_mac_iocb_rsp *ib_mac_rsp , u32 length , u16 vlan_id ) { struct sk_buff *skb ; struct bq_desc *lbq_desc ; struct bq_desc *tmp ; struct napi_struct *napi ; unsigned char *tmp___0 ; unsigned char *tmp___1 ; { { tmp = ql_get_curr_lchunk(qdev, rx_ring); lbq_desc = tmp; napi = & rx_ring->napi; } if (((int )ib_mac_rsp->flags2 & 28) != 0) { { ql_categorize_rx_err(qdev, (int )ib_mac_rsp->flags2, rx_ring); put_page(lbq_desc->p.pg_chunk.page); } return; } else { } { napi->dev = qdev->ndev; skb = napi_get_frags(napi); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Couldn\'t get an skb, exiting.\n"); } } else { } { rx_ring->rx_dropped = rx_ring->rx_dropped + 1ULL; put_page(lbq_desc->p.pg_chunk.page); } return; } else { } { __builtin_prefetch((void const *)lbq_desc->p.pg_chunk.va); tmp___0 = skb_end_pointer((struct sk_buff const *)skb); __skb_fill_page_desc(skb, (int )((struct skb_shared_info *)tmp___0)->nr_frags, lbq_desc->p.pg_chunk.page, (int )lbq_desc->p.pg_chunk.offset, (int )length); skb->len = skb->len + length; skb->data_len = skb->data_len + length; skb->truesize = skb->truesize + length; tmp___1 = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp___1)->nr_frags = (unsigned char )((int )((struct skb_shared_info *)tmp___1)->nr_frags + 1); rx_ring->rx_packets = rx_ring->rx_packets + 1ULL; rx_ring->rx_bytes = rx_ring->rx_bytes + (u64 )length; skb->ip_summed = 1U; skb_record_rx_queue(skb, (int )rx_ring->cq_id); } if ((unsigned int )vlan_id != 65535U) { { __vlan_hwaccel_put_tag(skb, 129, (int )vlan_id); } } else { } { napi_gro_frags(napi); } return; } } static void ql_process_mac_rx_page(struct ql_adapter *qdev , struct rx_ring *rx_ring , struct ib_mac_iocb_rsp *ib_mac_rsp , u32 length , u16 vlan_id ) { struct net_device *ndev ; struct sk_buff *skb ; void *addr ; struct bq_desc *lbq_desc ; struct bq_desc *tmp ; struct napi_struct *napi ; size_t hlen ; unsigned char *tmp___0 ; struct iphdr *iph ; { { ndev = qdev->ndev; skb = (struct sk_buff *)0; tmp = ql_get_curr_lchunk(qdev, rx_ring); lbq_desc = tmp; napi = & rx_ring->napi; hlen = 14UL; skb = netdev_alloc_skb(ndev, length); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { rx_ring->rx_dropped = rx_ring->rx_dropped + 1ULL; put_page(lbq_desc->p.pg_chunk.page); } return; } else { } { addr = (void *)lbq_desc->p.pg_chunk.va; __builtin_prefetch((void const *)addr); } if (((int )ib_mac_rsp->flags2 & 28) != 0) { { ql_categorize_rx_err(qdev, (int )ib_mac_rsp->flags2, rx_ring); } goto err_out; } else { } { ql_update_mac_hdr_len(qdev, ib_mac_rsp, addr, & hlen); } if ((size_t )skb->len > (size_t )ndev->mtu + hlen) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Segment too small, dropping.\n"); } } else { } rx_ring->rx_dropped = rx_ring->rx_dropped + 1ULL; goto err_out; } else { } { tmp___0 = skb_put(skb, (unsigned int )hlen); memcpy((void *)tmp___0, (void const *)addr, hlen); } if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length); } } else { } { skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page, (int )(lbq_desc->p.pg_chunk.offset + (unsigned int )hlen), (int )(length - (unsigned int )hlen)); skb->len = skb->len + (length - (unsigned int )hlen); skb->data_len = skb->data_len + (length - (unsigned int )hlen); skb->truesize = skb->truesize + (length - (unsigned int )hlen); rx_ring->rx_packets = rx_ring->rx_packets + 1ULL; rx_ring->rx_bytes = rx_ring->rx_bytes + (u64 )skb->len; skb->protocol = eth_type_trans(skb, ndev); skb_checksum_none_assert((struct sk_buff const *)skb); } if ((ndev->features & 17179869184ULL) != 0ULL && ((int )ib_mac_rsp->flags1 & 28) == 0) { if (((int )ib_mac_rsp->flags2 & 64) != 0) { if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "TCP checksum done!\n"); } } else { } skb->ip_summed = 1U; } else if (((int )ib_mac_rsp->flags2 & 32) != 0 && ((int )ib_mac_rsp->flags3 & 8) != 0) { iph = (struct iphdr *)addr + hlen; if (((int )iph->frag_off & 65343) == 0) { skb->ip_summed = 1U; if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "UDP checksum done!\n"); } } else { } } else { } } else { } } else { } { skb_record_rx_queue(skb, (int )rx_ring->cq_id); } if ((unsigned int )vlan_id != 65535U) { { __vlan_hwaccel_put_tag(skb, 129, (int )vlan_id); } } else { } if ((unsigned int )*((unsigned char *)skb + 145UL) == 2U) { { napi_gro_receive(napi, skb); } } else { { netif_receive_skb(skb); } } return; err_out: { dev_kfree_skb_any(skb); put_page(lbq_desc->p.pg_chunk.page); } return; } } static void ql_process_mac_rx_skb(struct ql_adapter *qdev , struct rx_ring *rx_ring , struct ib_mac_iocb_rsp *ib_mac_rsp , u32 length , u16 vlan_id ) { struct net_device *ndev ; struct sk_buff *skb ; struct sk_buff *new_skb ; struct bq_desc *sbq_desc ; struct bq_desc *tmp ; unsigned char *tmp___0 ; int tmp___1 ; struct iphdr *iph ; { { ndev = qdev->ndev; skb = (struct sk_buff *)0; new_skb = (struct sk_buff *)0; tmp = ql_get_curr_sbuf(rx_ring); sbq_desc = tmp; skb = sbq_desc->p.skb; new_skb = netdev_alloc_skb(qdev->ndev, length); } if ((unsigned long )new_skb == (unsigned long )((struct sk_buff *)0)) { rx_ring->rx_dropped = rx_ring->rx_dropped + 1ULL; return; } else { } { skb_reserve(new_skb, 0); tmp___0 = skb_put(new_skb, length); memcpy((void *)tmp___0, (void const *)skb->data, (size_t )length); skb = new_skb; } if (((int )ib_mac_rsp->flags2 & 28) != 0) { { ql_categorize_rx_err(qdev, (int )ib_mac_rsp->flags2, rx_ring); dev_kfree_skb_any(skb); } return; } else { } { tmp___1 = constant_test_bit(9L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___1 != 0) { { ql_check_lb_frame(qdev, skb); dev_kfree_skb_any(skb); } return; } else { } if (skb->len > ndev->mtu + 14U) { { dev_kfree_skb_any(skb); rx_ring->rx_dropped = rx_ring->rx_dropped + 1ULL; } return; } else { } { __builtin_prefetch((void const *)skb->data); } if (((int )ib_mac_rsp->flags1 & 96) != 0) { if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "%s Multicast.\n", ((int )ib_mac_rsp->flags1 & 96) != 32 ? (((int )ib_mac_rsp->flags1 & 96) != 64 ? (((int )ib_mac_rsp->flags1 & 96) == 96 ? (char *)"Promiscuous" : (char *)"") : (char *)"Registered") : (char *)"Hash"); } } else { } } else { } if ((int )ib_mac_rsp->flags2 & 1) { if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "Promiscuous Packet.\n"); } } else { } } else { } { rx_ring->rx_packets = rx_ring->rx_packets + 1ULL; rx_ring->rx_bytes = rx_ring->rx_bytes + (u64 )skb->len; skb->protocol = eth_type_trans(skb, ndev); skb_checksum_none_assert((struct sk_buff const *)skb); } if ((ndev->features & 17179869184ULL) != 0ULL && ((int )ib_mac_rsp->flags1 & 28) == 0) { if (((int )ib_mac_rsp->flags2 & 64) != 0) { if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "TCP checksum done!\n"); } } else { } skb->ip_summed = 1U; } else if (((int )ib_mac_rsp->flags2 & 32) != 0 && ((int )ib_mac_rsp->flags3 & 8) != 0) { iph = (struct iphdr *)skb->data; if (((int )iph->frag_off & 65343) == 0) { skb->ip_summed = 1U; if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "UDP checksum done!\n"); } } else { } } else { } } else { } } else { } { skb_record_rx_queue(skb, (int )rx_ring->cq_id); } if ((unsigned int )vlan_id != 65535U) { { __vlan_hwaccel_put_tag(skb, 129, (int )vlan_id); } } else { } if ((unsigned int )*((unsigned char *)skb + 145UL) == 2U) { { napi_gro_receive(& rx_ring->napi, skb); } } else { { netif_receive_skb(skb); } } return; } } static void ql_realign_skb(struct sk_buff *skb , int len ) { void *temp_addr ; { { temp_addr = (void *)skb->data; skb->data = skb->data; skb->tail = skb->tail; skb_copy_to_linear_data(skb, (void const *)temp_addr, (unsigned int )len); } return; } } static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev , struct rx_ring *rx_ring , struct ib_mac_iocb_rsp *ib_mac_rsp ) { struct bq_desc *lbq_desc ; struct bq_desc *sbq_desc ; struct sk_buff *skb ; u32 length ; u32 hdr_len ; size_t hlen ; long tmp ; unsigned char *tmp___0 ; int size ; int i ; { skb = (struct sk_buff *)0; length = ib_mac_rsp->data_len; hdr_len = ib_mac_rsp->hdr_len; hlen = 14UL; if (((unsigned int )ib_mac_rsp->flags4 & 96U) == 96U) { if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "Header of %d bytes in small buffer.\n", hdr_len); } } else { } { sbq_desc = ql_get_curr_sbuf(rx_ring); pci_unmap_single(qdev->pdev, sbq_desc->mapaddr, (size_t )sbq_desc->maplen, 2); skb = sbq_desc->p.skb; ql_realign_skb(skb, (int )hdr_len); skb_put(skb, hdr_len); sbq_desc->p.skb = (struct sk_buff *)0; } } else { } { tmp = ldv__builtin_expect(length == 0U, 0L); } if (tmp != 0L) { if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "No Data buffer in this packet.\n"); } } else { } return (skb); } else { } if (((int )ib_mac_rsp->flags3 & 64) != 0) { if (((int )ib_mac_rsp->flags4 & 64) != 0) { if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "Headers in small, data of %d bytes in small, combine them.\n", length); } } else { } { sbq_desc = ql_get_curr_sbuf(rx_ring); pci_dma_sync_single_for_cpu(qdev->pdev, sbq_desc->mapaddr, (size_t )sbq_desc->maplen, 2); tmp___0 = skb_put(skb, length); memcpy((void *)tmp___0, (void const *)(sbq_desc->p.skb)->data, (size_t )length); pci_dma_sync_single_for_device(qdev->pdev, sbq_desc->mapaddr, (size_t )sbq_desc->maplen, 2); } } else { if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "%d bytes in a single small buffer.\n", length); } } else { } { sbq_desc = ql_get_curr_sbuf(rx_ring); skb = sbq_desc->p.skb; ql_realign_skb(skb, (int )length); skb_put(skb, length); pci_unmap_single(qdev->pdev, sbq_desc->mapaddr, (size_t )sbq_desc->maplen, 2); sbq_desc->p.skb = (struct sk_buff *)0; } } } else if ((int )((signed char )ib_mac_rsp->flags3) < 0) { if (((int )ib_mac_rsp->flags4 & 64) != 0) { if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "Header in small, %d bytes in large. Chain large to small!\n", length); } } else { } { lbq_desc = ql_get_curr_lchunk(qdev, rx_ring); } if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "Chaining page at offset = %d, for %d bytes to skb.\n", lbq_desc->p.pg_chunk.offset, length); } } else { } { skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page, (int )lbq_desc->p.pg_chunk.offset, (int )length); skb->len = skb->len + length; skb->data_len = skb->data_len + length; skb->truesize = skb->truesize + length; } } else { { lbq_desc = ql_get_curr_lchunk(qdev, rx_ring); skb = netdev_alloc_skb(qdev->ndev, length); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { if ((qdev->msg_enable & 2U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "No skb available, drop the packet.\n"); } } else { } return ((struct sk_buff *)0); } else { } { pci_unmap_page(qdev->pdev, lbq_desc->mapaddr, (size_t )lbq_desc->maplen, 2); skb_reserve(skb, 0); } if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length); } } else { } { skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page, (int )lbq_desc->p.pg_chunk.offset, (int )length); skb->len = skb->len + length; skb->data_len = skb->data_len + length; skb->truesize = skb->truesize + length; length = 0U; ql_update_mac_hdr_len(qdev, ib_mac_rsp, (void *)lbq_desc->p.pg_chunk.va, & hlen); __pskb_pull_tail(skb, (int )hlen); } } } else { { i = 0; sbq_desc = ql_get_curr_sbuf(rx_ring); pci_unmap_single(qdev->pdev, sbq_desc->mapaddr, (size_t )sbq_desc->maplen, 2); } if (((int )ib_mac_rsp->flags4 & 64) == 0) { if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "%d bytes of headers & data in chain of large.\n", length); } } else { } { skb = sbq_desc->p.skb; sbq_desc->p.skb = (struct sk_buff *)0; skb_reserve(skb, 0); } } else { } ldv_56817: { lbq_desc = ql_get_curr_lchunk(qdev, rx_ring); size = (int )(length < rx_ring->lbq_buf_size ? length : rx_ring->lbq_buf_size); } if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "Adding page %d to skb for %d bytes.\n", i, size); } } else { } { skb_fill_page_desc(skb, i, lbq_desc->p.pg_chunk.page, (int )lbq_desc->p.pg_chunk.offset, size); skb->len = skb->len + (unsigned int )size; skb->data_len = skb->data_len + (unsigned int )size; skb->truesize = skb->truesize + (unsigned int )size; length = length - (u32 )size; i = i + 1; } if (length != 0U) { goto ldv_56817; } else { } { ql_update_mac_hdr_len(qdev, ib_mac_rsp, (void *)lbq_desc->p.pg_chunk.va, & hlen); __pskb_pull_tail(skb, (int )hlen); } } return (skb); } } static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev , struct rx_ring *rx_ring , struct ib_mac_iocb_rsp *ib_mac_rsp , u16 vlan_id ) { struct net_device *ndev ; struct sk_buff *skb ; long tmp ; int tmp___0 ; struct iphdr *iph ; { { ndev = qdev->ndev; skb = (struct sk_buff *)0; skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp); tmp = ldv__builtin_expect((unsigned long )skb == (unsigned long )((struct sk_buff *)0), 0L); } if (tmp != 0L) { if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "No skb available, drop packet.\n"); } } else { } rx_ring->rx_dropped = rx_ring->rx_dropped + 1ULL; return; } else { } if (((int )ib_mac_rsp->flags2 & 28) != 0) { { ql_categorize_rx_err(qdev, (int )ib_mac_rsp->flags2, rx_ring); dev_kfree_skb_any(skb); } return; } else { } if (skb->len > ndev->mtu + 14U) { { dev_kfree_skb_any(skb); rx_ring->rx_dropped = rx_ring->rx_dropped + 1ULL; } return; } else { } { tmp___0 = constant_test_bit(9L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___0 != 0) { { ql_check_lb_frame(qdev, skb); dev_kfree_skb_any(skb); } return; } else { } { __builtin_prefetch((void const *)skb->data); } if (((int )ib_mac_rsp->flags1 & 96) != 0) { if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "%s Multicast.\n", ((int )ib_mac_rsp->flags1 & 96) != 32 ? (((int )ib_mac_rsp->flags1 & 96) != 64 ? (((int )ib_mac_rsp->flags1 & 96) == 96 ? (char *)"Promiscuous" : (char *)"") : (char *)"Registered") : (char *)"Hash"); } } else { } rx_ring->rx_multicast = rx_ring->rx_multicast + 1ULL; } else { } if ((int )ib_mac_rsp->flags2 & 1) { if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "Promiscuous Packet.\n"); } } else { } } else { } { skb->protocol = eth_type_trans(skb, ndev); skb_checksum_none_assert((struct sk_buff const *)skb); } if ((ndev->features & 17179869184ULL) != 0ULL && ((int )ib_mac_rsp->flags1 & 28) == 0) { if (((int )ib_mac_rsp->flags2 & 64) != 0) { if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "TCP checksum done!\n"); } } else { } skb->ip_summed = 1U; } else if (((int )ib_mac_rsp->flags2 & 32) != 0 && ((int )ib_mac_rsp->flags3 & 8) != 0) { iph = (struct iphdr *)skb->data; if (((int )iph->frag_off & 65343) == 0) { skb->ip_summed = 1U; if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "TCP checksum done!\n"); } } else { } } else { } } else { } } else { } { rx_ring->rx_packets = rx_ring->rx_packets + 1ULL; rx_ring->rx_bytes = rx_ring->rx_bytes + (u64 )skb->len; skb_record_rx_queue(skb, (int )rx_ring->cq_id); } if ((unsigned int )vlan_id != 65535U) { { __vlan_hwaccel_put_tag(skb, 129, (int )vlan_id); } } else { } if ((unsigned int )*((unsigned char *)skb + 145UL) == 2U) { { napi_gro_receive(& rx_ring->napi, skb); } } else { { netif_receive_skb(skb); } } return; } } static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev , struct rx_ring *rx_ring , struct ib_mac_iocb_rsp *ib_mac_rsp ) { u32 length ; u16 vlan_id ; { length = ib_mac_rsp->data_len; vlan_id = ((int )ib_mac_rsp->flags2 & 2) != 0 && ((qdev->ndev)->features & 256ULL) != 0ULL ? ib_mac_rsp->vlan_id : 65535U; if (((int )ib_mac_rsp->flags4 & 32) != 0) { { ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp, (int )vlan_id); } } else if (((int )ib_mac_rsp->flags3 & 64) != 0) { { ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp, length, (int )vlan_id); } } else if (((int )((signed char )ib_mac_rsp->flags3) < 0 && ((int )ib_mac_rsp->flags1 & 28) == 0) && ((int )ib_mac_rsp->flags2 & 64) != 0) { { ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp, length, (int )vlan_id); } } else if ((int )((signed char )ib_mac_rsp->flags3) < 0) { { ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp, length, (int )vlan_id); } } else { { ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp, (int )vlan_id); } } return ((unsigned long )length); } } static void ql_process_mac_tx_intr(struct ql_adapter *qdev , struct ob_mac_iocb_rsp *mac_rsp ) { struct tx_ring *tx_ring ; struct tx_ring_desc *tx_ring_desc ; long tmp ; { { tx_ring = (struct tx_ring *)(& qdev->tx_ring) + (unsigned long )mac_rsp->txq_idx; tx_ring_desc = tx_ring->q + (unsigned long )mac_rsp->tid; ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt); tx_ring->tx_bytes = tx_ring->tx_bytes + (u64 )(tx_ring_desc->skb)->len; tx_ring->tx_packets = tx_ring->tx_packets + 1ULL; consume_skb(tx_ring_desc->skb); tx_ring_desc->skb = (struct sk_buff *)0; tmp = ldv__builtin_expect(((int )mac_rsp->flags1 & 248) != 0, 0L); } if (tmp != 0L) { if (((int )mac_rsp->flags1 & 8) != 0) { if ((qdev->msg_enable & 1024U) != 0U) { { netdev_warn((struct net_device const *)qdev->ndev, "Total descriptor length did not match transfer length.\n"); } } else { } } else { } if (((int )mac_rsp->flags1 & 16) != 0) { if ((qdev->msg_enable & 1024U) != 0U) { { netdev_warn((struct net_device const *)qdev->ndev, "Frame too short to be valid, not sent.\n"); } } else { } } else { } if (((int )mac_rsp->flags1 & 32) != 0) { if ((qdev->msg_enable & 1024U) != 0U) { { netdev_warn((struct net_device const *)qdev->ndev, "Frame too long, but sent anyway.\n"); } } else { } } else { } if ((int )((signed char )mac_rsp->flags1) < 0) { if ((qdev->msg_enable & 1024U) != 0U) { { netdev_warn((struct net_device const *)qdev->ndev, "PCI backplane error. Frame not sent.\n"); } } else { } } else { } } else { } { atomic_inc(& tx_ring->tx_count); } return; } } void ql_queue_fw_error(struct ql_adapter *qdev ) { { { ql_link_off(qdev); queue_delayed_work(qdev->workqueue, & qdev->mpi_reset_work, 0UL); } return; } } void ql_queue_asic_error(struct ql_adapter *qdev ) { { { ql_link_off(qdev); ql_disable_interrupts(qdev); clear_bit(0L, (unsigned long volatile *)(& qdev->flags)); set_bit(14L, (unsigned long volatile *)(& qdev->flags)); queue_delayed_work(qdev->workqueue, & qdev->asic_reset_work, 0UL); } return; } } static void ql_process_chip_ae_intr(struct ql_adapter *qdev , struct ib_ae_iocb_rsp *ib_ae_rsp ) { { { if ((int )ib_ae_rsp->event == 8) { goto case_8; } else { } if ((int )ib_ae_rsp->event == 6) { goto case_6; } else { } if ((int )ib_ae_rsp->event == 7) { goto case_7; } else { } if ((int )ib_ae_rsp->event == 64) { goto case_64; } else { } goto switch_default; case_8: /* CIL Label */ ; if ((qdev->msg_enable & 64U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Management Processor Fatal Error.\n"); } } else { } { ql_queue_fw_error(qdev); } return; case_6: /* CIL Label */ { netdev_err((struct net_device const *)qdev->ndev, "Multiple CAM hits lookup occurred.\n"); netdev_err((struct net_device const *)qdev->ndev, "This event shouldn\'t occur.\n"); ql_queue_asic_error(qdev); } return; case_7: /* CIL Label */ { netdev_err((struct net_device const *)qdev->ndev, "Soft ECC error detected.\n"); ql_queue_asic_error(qdev); } goto ldv_56854; case_64: /* CIL Label */ { netdev_err((struct net_device const *)qdev->ndev, "PCI error occurred when reading anonymous buffers from rx_ring %d.\n", (int )ib_ae_rsp->q_id); ql_queue_asic_error(qdev); } goto ldv_56854; switch_default: /* CIL Label */ ; if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Unexpected event %d.\n", (int )ib_ae_rsp->event); } } else { } { ql_queue_asic_error(qdev); } goto ldv_56854; switch_break: /* CIL Label */ ; } ldv_56854: ; return; } } static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring ) { struct ql_adapter *qdev ; u32 prod ; u32 tmp ; struct ob_mac_iocb_rsp *net_rsp ; int count ; struct tx_ring *tx_ring ; int tmp___0 ; bool tmp___1 ; { { qdev = rx_ring->qdev; tmp = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); prod = tmp; net_rsp = (struct ob_mac_iocb_rsp *)0; count = 0; } goto ldv_56870; ldv_56869: ; if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "cq_id = %d, prod = %d, cnsmr = %d.\n.", (int )rx_ring->cq_id, prod, rx_ring->cnsmr_idx); } } else { } net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry; __asm__ volatile ("lfence": : : "memory"); { if ((int )net_rsp->opcode == 2) { goto case_2; } else { } if ((int )net_rsp->opcode == 1) { goto case_1; } else { } goto switch_default; case_2: /* CIL Label */ ; case_1: /* CIL Label */ { ql_process_mac_tx_intr(qdev, net_rsp); } goto ldv_56867; switch_default: /* CIL Label */ ; if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "Hit default case, not handled! dropping the packet, opcode = %x.\n", (int )net_rsp->opcode); } } else { } switch_break: /* CIL Label */ ; } ldv_56867: { count = count + 1; ql_update_cq(rx_ring); prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); } ldv_56870: ; if (prod != rx_ring->cnsmr_idx) { goto ldv_56869; } else { } if ((unsigned long )net_rsp == (unsigned long )((struct ob_mac_iocb_rsp *)0)) { return (0); } else { } { ql_write_cq_idx(rx_ring); tx_ring = (struct tx_ring *)(& qdev->tx_ring) + (unsigned long )net_rsp->txq_idx; tmp___1 = __netif_subqueue_stopped((struct net_device const *)qdev->ndev, (int )tx_ring->wq_id); } if ((int )tmp___1) { { tmp___0 = atomic_read((atomic_t const *)(& tx_ring->tx_count)); } if ((u32 )tmp___0 > tx_ring->wq_len / 4U) { { netif_wake_subqueue(qdev->ndev, (int )tx_ring->wq_id); } } else { } } else { } return (count); } } static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring , int budget ) { struct ql_adapter *qdev ; u32 prod ; u32 tmp ; struct ql_net_rsp_iocb *net_rsp ; int count ; { { qdev = rx_ring->qdev; tmp = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); prod = tmp; count = 0; } goto ldv_56886; ldv_56885: ; if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "cq_id = %d, prod = %d, cnsmr = %d.\n.", (int )rx_ring->cq_id, prod, rx_ring->cnsmr_idx); } } else { } net_rsp = rx_ring->curr_entry; __asm__ volatile ("lfence": : : "memory"); { if ((int )net_rsp->opcode == 32) { goto case_32; } else { } if ((int )net_rsp->opcode == 63) { goto case_63; } else { } goto switch_default; case_32: /* CIL Label */ { ql_process_mac_rx_intr(qdev, rx_ring, (struct ib_mac_iocb_rsp *)net_rsp); } goto ldv_56881; case_63: /* CIL Label */ { ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)net_rsp); } goto ldv_56881; switch_default: /* CIL Label */ ; if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "Hit default case, not handled! dropping the packet, opcode = %x.\n", (int )net_rsp->opcode); } } else { } goto ldv_56881; switch_break: /* CIL Label */ ; } ldv_56881: { count = count + 1; ql_update_cq(rx_ring); prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); } if (count == budget) { goto ldv_56884; } else { } ldv_56886: ; if (prod != rx_ring->cnsmr_idx) { goto ldv_56885; } else { } ldv_56884: { ql_update_buffer_queues(qdev, rx_ring); ql_write_cq_idx(rx_ring); } return (count); } } static int ql_napi_poll_msix(struct napi_struct *napi , int budget ) { struct rx_ring *rx_ring ; struct napi_struct const *__mptr ; struct ql_adapter *qdev ; struct rx_ring *trx_ring ; int i ; int work_done ; struct intr_context *ctx ; u32 tmp ; u32 tmp___0 ; { __mptr = (struct napi_struct const *)napi; rx_ring = (struct rx_ring *)__mptr + 0xfffffffffffffe90UL; qdev = rx_ring->qdev; work_done = 0; ctx = (struct intr_context *)(& qdev->intr_context) + (unsigned long )rx_ring->cq_id; if ((qdev->msg_enable & 2048U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "Enter, NAPI POLL cq_id = %d.\n", (int )rx_ring->cq_id); } } else { } i = (int )qdev->rss_ring_count; goto ldv_56901; ldv_56900: trx_ring = (struct rx_ring *)(& qdev->rx_ring) + (unsigned long )i; if ((ctx->irq_mask & (u32 )(1 << (int )trx_ring->cq_id)) != 0U) { { tmp = ql_read_sh_reg(trx_ring->prod_idx_sh_reg); } if (tmp != trx_ring->cnsmr_idx) { if ((qdev->msg_enable & 512U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "%s: Servicing TX completion ring %d.\n", "ql_napi_poll_msix", (int )trx_ring->cq_id); } } else { } { ql_clean_outbound_rx_ring(trx_ring); } } else { } } else { } i = i + 1; ldv_56901: ; if (i < qdev->rx_ring_count) { goto ldv_56900; } else { } { tmp___0 = ql_read_sh_reg(rx_ring->prod_idx_sh_reg); } if (tmp___0 != rx_ring->cnsmr_idx) { if ((qdev->msg_enable & 512U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "%s: Servicing RX completion ring %d.\n", "ql_napi_poll_msix", (int )rx_ring->cq_id); } } else { } { work_done = ql_clean_inbound_rx_ring(rx_ring, budget); } } else { } if (work_done < budget) { { napi_complete(napi); ql_enable_completion_interrupt(qdev, rx_ring->irq); } } else { } return (work_done); } } static void qlge_vlan_mode(struct net_device *ndev , netdev_features_t features ) { struct ql_adapter *qdev ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; } if ((features & 256ULL) != 0ULL) { { ql_write32((struct ql_adapter const *)qdev, 212, 393220U); } } else { { ql_write32((struct ql_adapter const *)qdev, 212, 393216U); } } return; } } static int qlge_update_hw_vlan_features(struct net_device *ndev , netdev_features_t features ) { struct ql_adapter *qdev ; void *tmp ; int status ; bool need_restart ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; status = 0; tmp___0 = netif_running((struct net_device const *)ndev); need_restart = tmp___0; } if ((int )need_restart) { { status = ql_adapter_down(qdev); } if (status != 0) { if ((qdev->msg_enable & 4U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to bring down the adapter\n"); } } else { } return (status); } else { } } else { } ndev->features = features; if ((int )need_restart) { { status = ql_adapter_up(qdev); } if (status != 0) { if ((qdev->msg_enable & 4U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to bring up the adapter\n"); } } else { } return (status); } else { } } else { } return (status); } } static netdev_features_t qlge_fix_features(struct net_device *ndev , netdev_features_t features ) { int err ; { { err = qlge_update_hw_vlan_features(ndev, features); } if (err != 0) { return ((netdev_features_t )err); } else { } return (features); } } static int qlge_set_features(struct net_device *ndev , netdev_features_t features ) { netdev_features_t changed ; { changed = ndev->features ^ features; if ((changed & 256ULL) != 0ULL) { { qlge_vlan_mode(ndev, features); } } else { } return (0); } } static int __qlge_vlan_rx_add_vid(struct ql_adapter *qdev , u16 vid ) { u32 enable_bit ; int err ; { { enable_bit = 134217728U; err = ql_set_mac_addr_reg(qdev, (u8 *)(& enable_bit), 131072U, (int )vid); } if (err != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to init vlan address.\n"); } } else { } } else { } return (err); } } static int qlge_vlan_rx_add_vid(struct net_device *ndev , __be16 proto , u16 vid ) { struct ql_adapter *qdev ; void *tmp ; int status ; int err ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; status = ql_sem_spinlock(qdev, 12582912U); } if (status != 0) { return (status); } else { } { err = __qlge_vlan_rx_add_vid(qdev, (int )vid); set_bit((long )vid, (unsigned long volatile *)(& qdev->active_vlans)); ql_sem_unlock(qdev, 12582912U); } return (err); } } static int __qlge_vlan_rx_kill_vid(struct ql_adapter *qdev , u16 vid ) { u32 enable_bit ; int err ; { { enable_bit = 0U; err = ql_set_mac_addr_reg(qdev, (u8 *)(& enable_bit), 131072U, (int )vid); } if (err != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to clear vlan address.\n"); } } else { } } else { } return (err); } } static int qlge_vlan_rx_kill_vid(struct net_device *ndev , __be16 proto , u16 vid ) { struct ql_adapter *qdev ; void *tmp ; int status ; int err ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; status = ql_sem_spinlock(qdev, 12582912U); } if (status != 0) { return (status); } else { } { err = __qlge_vlan_rx_kill_vid(qdev, (int )vid); clear_bit((long )vid, (unsigned long volatile *)(& qdev->active_vlans)); ql_sem_unlock(qdev, 12582912U); } return (err); } } static void qlge_restore_vlan(struct ql_adapter *qdev ) { int status ; u16 vid ; unsigned long tmp ; unsigned long tmp___0 ; { { status = ql_sem_spinlock(qdev, 12582912U); } if (status != 0) { return; } else { } { tmp = ldv_find_first_bit_130((unsigned long const *)(& qdev->active_vlans), 4096UL); vid = (u16 )tmp; } goto ldv_56959; ldv_56958: { __qlge_vlan_rx_add_vid(qdev, (int )vid); tmp___0 = ldv_find_next_bit_131((unsigned long const *)(& qdev->active_vlans), 4096UL, (unsigned long )((int )vid + 1)); vid = (u16 )tmp___0; } ldv_56959: ; if ((unsigned int )vid <= 4095U) { goto ldv_56958; } else { } { ql_sem_unlock(qdev, 12582912U); } return; } } static irqreturn_t qlge_msix_rx_isr(int irq , void *dev_id ) { struct rx_ring *rx_ring ; { { rx_ring = (struct rx_ring *)dev_id; napi_schedule(& rx_ring->napi); } return (1); } } static irqreturn_t qlge_isr(int irq , void *dev_id ) { struct rx_ring *rx_ring ; struct ql_adapter *qdev ; struct intr_context *intr_context ; u32 var ; int work_done ; int tmp ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; u32 tmp___0 ; { { rx_ring = (struct rx_ring *)dev_id; qdev = rx_ring->qdev; intr_context = (struct intr_context *)(& qdev->intr_context); work_done = 0; ldv_spin_lock_128(& qdev->hw_lock); tmp = atomic_read((atomic_t const *)(& qdev->intr_context[0].irq_cnt)); } if (tmp != 0) { if ((qdev->msg_enable & 512U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "Shared Interrupt, Not ours!\n"); } } else { } { ldv_spin_unlock_129(& qdev->hw_lock); } return (0); } else { } { ldv_spin_unlock_129(& qdev->hw_lock); var = ql_disable_completion_interrupt(qdev, intr_context->intr); } if ((int )var & 1) { { ql_queue_asic_error(qdev); netdev_err((struct net_device const *)qdev->ndev, "Got fatal error, STS = %x.\n", var); var = ql_read32((struct ql_adapter const *)qdev, 84); netdev_err((struct net_device const *)qdev->ndev, "Resetting chip. Error Status Register = 0x%x\n", var); } return (1); } else { } if ((var & 2U) != 0U) { { tmp___0 = ql_read32((struct ql_adapter const *)qdev, 56); } if ((int )tmp___0 & 1) { if ((qdev->msg_enable & 512U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Got MPI processor interrupt.\n"); } } else { } { ql_disable_completion_interrupt(qdev, intr_context->intr); ql_write32((struct ql_adapter const *)qdev, 56, 65536U); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_56980; case_2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_56980; case_4: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_56980; case_8: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_56980; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_56980: pscr_ret__ = pfo_ret__; goto ldv_56986; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_56990; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_56990; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_56990; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_56990; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_56990: pscr_ret__ = pfo_ret_____0; goto ldv_56986; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_56999; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_56999; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_56999; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_56999; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_56999: pscr_ret__ = pfo_ret_____1; goto ldv_56986; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_57008; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_57008; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_57008; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_57008; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_57008: pscr_ret__ = pfo_ret_____2; goto ldv_56986; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_56986; switch_break: /* CIL Label */ ; } ldv_56986: { queue_delayed_work_on(pscr_ret__, qdev->workqueue, & qdev->mpi_work, 0UL); work_done = work_done + 1; } } else { } } else { } { var = ql_read32((struct ql_adapter const *)qdev, 60); } if ((var & intr_context->irq_mask) != 0U) { if ((qdev->msg_enable & 512U) != 0U) { { netdev_info((struct net_device const *)qdev->ndev, "Waking handler for rx_ring[0].\n"); } } else { } { ql_disable_completion_interrupt(qdev, intr_context->intr); napi_schedule(& rx_ring->napi); work_done = work_done + 1; } } else { } { ql_enable_completion_interrupt(qdev, intr_context->intr); } return (work_done != 0); } } static int ql_tso(struct sk_buff *skb , struct ob_mac_tso_iocb_req *mac_iocb_ptr ) { int err ; __be16 l3_proto ; __be16 tmp ; int tmp___0 ; unsigned int tmp___1 ; int tmp___2 ; int tmp___3 ; unsigned char *tmp___4 ; struct iphdr *iph ; struct iphdr *tmp___5 ; struct tcphdr *tmp___6 ; __sum16 tmp___7 ; struct tcphdr *tmp___8 ; struct ipv6hdr *tmp___9 ; struct ipv6hdr *tmp___10 ; __sum16 tmp___11 ; long tmp___12 ; bool tmp___13 ; { { tmp___13 = skb_is_gso((struct sk_buff const *)skb); } if ((int )tmp___13) { { tmp = vlan_get_protocol(skb); l3_proto = tmp; err = skb_cow_head(skb, 0U); } if (err < 0) { return (err); } else { } { mac_iocb_ptr->opcode = 2U; mac_iocb_ptr->flags3 = (u8 )((unsigned int )mac_iocb_ptr->flags3 | 1U); mac_iocb_ptr->frame_len = skb->len; tmp___0 = skb_transport_offset((struct sk_buff const *)skb); tmp___1 = tcp_hdrlen((struct sk_buff const *)skb); mac_iocb_ptr->total_hdrs_len = (int )((unsigned short )tmp___0) + (int )((unsigned short )tmp___1); tmp___2 = skb_network_offset((struct sk_buff const *)skb); tmp___3 = skb_transport_offset((struct sk_buff const *)skb); mac_iocb_ptr->net_trans_offset = (unsigned short )((int )((short )tmp___2) | (int )((short )(tmp___3 << 6))); tmp___4 = skb_end_pointer((struct sk_buff const *)skb); mac_iocb_ptr->mss = ((struct skb_shared_info *)tmp___4)->gso_size; mac_iocb_ptr->flags2 = (u8 )((unsigned int )mac_iocb_ptr->flags2 | 32U); tmp___12 = ldv__builtin_expect((unsigned int )l3_proto == 8U, 1L); } if (tmp___12 != 0L) { { tmp___5 = ip_hdr((struct sk_buff const *)skb); iph = tmp___5; iph->check = 0U; mac_iocb_ptr->flags1 = (u8 )((unsigned int )mac_iocb_ptr->flags1 | 64U); tmp___6 = tcp_hdr((struct sk_buff const *)skb); tmp___7 = csum_tcpudp_magic(iph->saddr, iph->daddr, 0, 6, 0U); tmp___6->check = ~ ((int )tmp___7); } } else if ((unsigned int )l3_proto == 56710U) { { mac_iocb_ptr->flags1 = (u8 )((unsigned int )mac_iocb_ptr->flags1 | 128U); tmp___8 = tcp_hdr((struct sk_buff const *)skb); tmp___9 = ipv6_hdr((struct sk_buff const *)skb); tmp___10 = ipv6_hdr((struct sk_buff const *)skb); tmp___11 = csum_ipv6_magic((struct in6_addr const *)(& tmp___10->saddr), (struct in6_addr const *)(& tmp___9->daddr), 0U, 6, 0U); tmp___8->check = ~ ((int )tmp___11); } } else { } return (1); } else { } return (0); } } static void ql_hw_csum_setup(struct sk_buff *skb , struct ob_mac_tso_iocb_req *mac_iocb_ptr ) { int len ; struct iphdr *iph ; struct iphdr *tmp ; __sum16 *check ; int tmp___0 ; int tmp___1 ; __u16 tmp___2 ; struct tcphdr *tmp___3 ; int tmp___4 ; struct tcphdr *tmp___5 ; struct udphdr *tmp___6 ; int tmp___7 ; long tmp___8 ; __sum16 tmp___9 ; { { tmp = ip_hdr((struct sk_buff const *)skb); iph = tmp; mac_iocb_ptr->opcode = 2U; mac_iocb_ptr->frame_len = skb->len; tmp___0 = skb_network_offset((struct sk_buff const *)skb); tmp___1 = skb_transport_offset((struct sk_buff const *)skb); mac_iocb_ptr->net_trans_offset = (unsigned short )((int )((short )tmp___0) | (int )((short )(tmp___1 << 6))); mac_iocb_ptr->flags1 = (u8 )((unsigned int )mac_iocb_ptr->flags1 | 64U); tmp___2 = __fswab16((int )iph->tot_len); len = (int )tmp___2 - ((int )iph->ihl << 2); tmp___8 = ldv__builtin_expect((unsigned int )iph->protocol == 6U, 1L); } if (tmp___8 != 0L) { { tmp___3 = tcp_hdr((struct sk_buff const *)skb); check = & tmp___3->check; mac_iocb_ptr->flags2 = (u8 )((unsigned int )mac_iocb_ptr->flags2 | 128U); tmp___4 = skb_transport_offset((struct sk_buff const *)skb); tmp___5 = tcp_hdr((struct sk_buff const *)skb); mac_iocb_ptr->total_hdrs_len = (int )((unsigned short )tmp___4) + ((int )((unsigned short )tmp___5->doff) << 2U); } } else { { tmp___6 = udp_hdr((struct sk_buff const *)skb); check = & tmp___6->check; mac_iocb_ptr->flags2 = (u8 )((unsigned int )mac_iocb_ptr->flags2 | 64U); tmp___7 = skb_transport_offset((struct sk_buff const *)skb); mac_iocb_ptr->total_hdrs_len = (unsigned int )((unsigned short )tmp___7) + 8U; } } { tmp___9 = csum_tcpudp_magic(iph->saddr, iph->daddr, (int )((unsigned short )len), (int )iph->protocol, 0U); *check = ~ ((int )tmp___9); } return; } } static netdev_tx_t qlge_send(struct sk_buff *skb , struct net_device *ndev ) { struct tx_ring_desc *tx_ring_desc ; struct ob_mac_iocb_req *mac_iocb_ptr ; struct ql_adapter *qdev ; void *tmp ; int tso ; struct tx_ring *tx_ring ; u32 tx_ring_idx ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; long tmp___7 ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; tx_ring_idx = (unsigned int )skb->queue_mapping; tx_ring = (struct tx_ring *)(& qdev->tx_ring) + (unsigned long )tx_ring_idx; tmp___0 = skb_padto(skb, 60U); } if (tmp___0 != 0) { return (0); } else { } { tmp___1 = atomic_read((atomic_t const *)(& tx_ring->tx_count)); tmp___2 = ldv__builtin_expect(tmp___1 <= 1, 0L); } if (tmp___2 != 0L) { if ((qdev->msg_enable & 256U) != 0U) { { netdev_info((struct net_device const *)qdev->ndev, "%s: BUG! shutting down tx queue %d due to lack of resources.\n", "qlge_send", tx_ring_idx); } } else { } { netif_stop_subqueue(ndev, (int )tx_ring->wq_id); tx_ring->tx_errors = tx_ring->tx_errors + 1ULL; } return (16); } else { } { tx_ring_desc = tx_ring->q + (unsigned long )tx_ring->prod_idx; mac_iocb_ptr = tx_ring_desc->queue_entry; memset((void *)mac_iocb_ptr, 0, 128UL); mac_iocb_ptr->opcode = 1U; mac_iocb_ptr->tid = tx_ring_desc->index; mac_iocb_ptr->txq_idx = tx_ring_idx; tx_ring_desc->skb = skb; mac_iocb_ptr->frame_len = (unsigned short )skb->len; } if (((int )skb->vlan_tci & 4096) != 0) { if ((qdev->msg_enable & 256U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "Adding a vlan tag %d.\n", (int )skb->vlan_tci & -4097); } } else { } mac_iocb_ptr->flags3 = (u8 )((unsigned int )mac_iocb_ptr->flags3 | 4U); mac_iocb_ptr->vlan_tci = (unsigned int )skb->vlan_tci & 61439U; } else { } { tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr); } if (tso < 0) { { dev_kfree_skb_any(skb); } return (0); } else { { tmp___3 = ldv__builtin_expect(tso == 0, 0L); } if (tmp___3 != 0L && (unsigned int )*((unsigned char *)skb + 145UL) == 6U) { { ql_hw_csum_setup(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr); } } else { } } { tmp___4 = ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc); } if (tmp___4 != 0) { if ((qdev->msg_enable & 256U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Could not map the segments.\n"); } } else { } tx_ring->tx_errors = tx_ring->tx_errors + 1ULL; return (16); } else { } tx_ring->prod_idx = (u16 )((int )tx_ring->prod_idx + 1); if ((u32 )tx_ring->prod_idx == tx_ring->wq_len) { tx_ring->prod_idx = 0U; } else { } { __asm__ volatile ("sfence": : : "memory"); ql_write_db_reg((u32 )tx_ring->prod_idx, tx_ring->prod_idx_db_reg); } if ((qdev->msg_enable & 256U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "tx queued, slot %d, len %d\n", (int )tx_ring->prod_idx, skb->len); } } else { } { atomic_dec(& tx_ring->tx_count); tmp___6 = atomic_read((atomic_t const *)(& tx_ring->tx_count)); tmp___7 = ldv__builtin_expect(tmp___6 <= 1, 0L); } if (tmp___7 != 0L) { { netif_stop_subqueue(ndev, (int )tx_ring->wq_id); tmp___5 = atomic_read((atomic_t const *)(& tx_ring->tx_count)); } if ((u32 )tmp___5 > tx_ring->wq_len / 4U) { { netif_wake_subqueue(qdev->ndev, (int )tx_ring->wq_id); } } else { } } else { } return (0); } } static void ql_free_shadow_space(struct ql_adapter *qdev ) { { if ((unsigned long )qdev->rx_ring_shadow_reg_area != (unsigned long )((void *)0)) { { pci_free_consistent(qdev->pdev, 4096UL, qdev->rx_ring_shadow_reg_area, qdev->rx_ring_shadow_reg_dma); qdev->rx_ring_shadow_reg_area = (void *)0; } } else { } if ((unsigned long )qdev->tx_ring_shadow_reg_area != (unsigned long )((void *)0)) { { pci_free_consistent(qdev->pdev, 4096UL, qdev->tx_ring_shadow_reg_area, qdev->tx_ring_shadow_reg_dma); qdev->tx_ring_shadow_reg_area = (void *)0; } } else { } return; } } static int ql_alloc_shadow_space(struct ql_adapter *qdev ) { { { qdev->rx_ring_shadow_reg_area = pci_zalloc_consistent(qdev->pdev, 4096UL, & qdev->rx_ring_shadow_reg_dma); } if ((unsigned long )qdev->rx_ring_shadow_reg_area == (unsigned long )((void *)0)) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Allocation of RX shadow space failed.\n"); } } else { } return (-12); } else { } { qdev->tx_ring_shadow_reg_area = pci_zalloc_consistent(qdev->pdev, 4096UL, & qdev->tx_ring_shadow_reg_dma); } if ((unsigned long )qdev->tx_ring_shadow_reg_area == (unsigned long )((void *)0)) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Allocation of TX shadow space failed.\n"); } } else { } goto err_wqp_sh_area; } else { } return (0); err_wqp_sh_area: { pci_free_consistent(qdev->pdev, 4096UL, qdev->rx_ring_shadow_reg_area, qdev->rx_ring_shadow_reg_dma); } return (-12); } } static void ql_init_tx_ring(struct ql_adapter *qdev , struct tx_ring *tx_ring ) { struct tx_ring_desc *tx_ring_desc ; int i ; struct ob_mac_iocb_req *mac_iocb_ptr ; { mac_iocb_ptr = (struct ob_mac_iocb_req *)tx_ring->wq_base; tx_ring_desc = tx_ring->q; i = 0; goto ldv_57056; ldv_57055: tx_ring_desc->index = (u32 )i; tx_ring_desc->skb = (struct sk_buff *)0; tx_ring_desc->queue_entry = mac_iocb_ptr; mac_iocb_ptr = mac_iocb_ptr + 1; tx_ring_desc = tx_ring_desc + 1; i = i + 1; ldv_57056: ; if ((u32 )i < tx_ring->wq_len) { goto ldv_57055; } else { } { atomic_set(& tx_ring->tx_count, (int )tx_ring->wq_len); } return; } } static void ql_free_tx_resources(struct ql_adapter *qdev , struct tx_ring *tx_ring ) { { if ((unsigned long )tx_ring->wq_base != (unsigned long )((void *)0)) { { pci_free_consistent(qdev->pdev, (size_t )tx_ring->wq_size, tx_ring->wq_base, tx_ring->wq_base_dma); tx_ring->wq_base = (void *)0; } } else { } { kfree((void const *)tx_ring->q); tx_ring->q = (struct tx_ring_desc *)0; } return; } } static int ql_alloc_tx_resources(struct ql_adapter *qdev , struct tx_ring *tx_ring ) { void *tmp ; { { tx_ring->wq_base = pci_alloc_consistent(qdev->pdev, (size_t )tx_ring->wq_size, & tx_ring->wq_base_dma); } if ((unsigned long )tx_ring->wq_base == (unsigned long )((void *)0) || (tx_ring->wq_base_dma & 3ULL) != 0ULL) { goto pci_alloc_err; } else { } { tmp = kmalloc((unsigned long )tx_ring->wq_len * 472UL, 208U); tx_ring->q = (struct tx_ring_desc *)tmp; } if ((unsigned long )tx_ring->q == (unsigned long )((struct tx_ring_desc *)0)) { goto err; } else { } return (0); err: { pci_free_consistent(qdev->pdev, (size_t )tx_ring->wq_size, tx_ring->wq_base, tx_ring->wq_base_dma); tx_ring->wq_base = (void *)0; } pci_alloc_err: ; if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "tx_ring alloc failed.\n"); } } else { } return (-12); } } static void ql_free_lbq_buffers(struct ql_adapter *qdev , struct rx_ring *rx_ring ) { struct bq_desc *lbq_desc ; uint32_t curr_idx ; uint32_t clean_idx ; unsigned int tmp ; unsigned int tmp___0 ; { curr_idx = rx_ring->lbq_curr_idx; clean_idx = rx_ring->lbq_clean_idx; goto ldv_57076; ldv_57075: lbq_desc = rx_ring->lbq + (unsigned long )curr_idx; if (lbq_desc->p.pg_chunk.last_flag != 0U) { { tmp = ql_lbq_block_size(qdev); pci_unmap_page(qdev->pdev, lbq_desc->p.pg_chunk.map, (size_t )tmp, 2); lbq_desc->p.pg_chunk.last_flag = 0U; } } else { } { put_page(lbq_desc->p.pg_chunk.page); lbq_desc->p.pg_chunk.page = (struct page *)0; curr_idx = curr_idx + 1U; } if (curr_idx == rx_ring->lbq_len) { curr_idx = 0U; } else { } ldv_57076: ; if (curr_idx != clean_idx) { goto ldv_57075; } else { } if ((unsigned long )rx_ring->pg_chunk.page != (unsigned long )((struct page *)0)) { { tmp___0 = ql_lbq_block_size(qdev); pci_unmap_page(qdev->pdev, rx_ring->pg_chunk.map, (size_t )tmp___0, 2); put_page(rx_ring->pg_chunk.page); rx_ring->pg_chunk.page = (struct page *)0; } } else { } return; } } static void ql_free_sbq_buffers(struct ql_adapter *qdev , struct rx_ring *rx_ring ) { int i ; struct bq_desc *sbq_desc ; { i = 0; goto ldv_57085; ldv_57084: sbq_desc = rx_ring->sbq + (unsigned long )i; if ((unsigned long )sbq_desc == (unsigned long )((struct bq_desc *)0)) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "sbq_desc %d is NULL.\n", i); } } else { } return; } else { } if ((unsigned long )sbq_desc->p.skb != (unsigned long )((struct sk_buff *)0)) { { pci_unmap_single(qdev->pdev, sbq_desc->mapaddr, (size_t )sbq_desc->maplen, 2); consume_skb(sbq_desc->p.skb); sbq_desc->p.skb = (struct sk_buff *)0; } } else { } i = i + 1; ldv_57085: ; if ((u32 )i < rx_ring->sbq_len) { goto ldv_57084; } else { } return; } } static void ql_free_rx_buffers(struct ql_adapter *qdev ) { int i ; struct rx_ring *rx_ring ; { i = 0; goto ldv_57093; ldv_57092: rx_ring = (struct rx_ring *)(& qdev->rx_ring) + (unsigned long )i; if ((unsigned long )rx_ring->lbq != (unsigned long )((struct bq_desc *)0)) { { ql_free_lbq_buffers(qdev, rx_ring); } } else { } if ((unsigned long )rx_ring->sbq != (unsigned long )((struct bq_desc *)0)) { { ql_free_sbq_buffers(qdev, rx_ring); } } else { } i = i + 1; ldv_57093: ; if (i < qdev->rx_ring_count) { goto ldv_57092; } else { } return; } } static void ql_alloc_rx_buffers(struct ql_adapter *qdev ) { struct rx_ring *rx_ring ; int i ; { i = 0; goto ldv_57101; ldv_57100: rx_ring = (struct rx_ring *)(& qdev->rx_ring) + (unsigned long )i; if (rx_ring->type != 3U) { { ql_update_buffer_queues(qdev, rx_ring); } } else { } i = i + 1; ldv_57101: ; if (i < qdev->rx_ring_count) { goto ldv_57100; } else { } return; } } static void ql_init_lbq_ring(struct ql_adapter *qdev , struct rx_ring *rx_ring ) { int i ; struct bq_desc *lbq_desc ; __le64 *bq ; { { bq = (__le64 *)rx_ring->lbq_base; memset((void *)rx_ring->lbq, 0, (unsigned long )rx_ring->lbq_len * 64UL); i = 0; } goto ldv_57111; ldv_57110: { lbq_desc = rx_ring->lbq + (unsigned long )i; memset((void *)lbq_desc, 0, 64UL); lbq_desc->index = (u32 )i; lbq_desc->addr = bq; bq = bq + 1; i = i + 1; } ldv_57111: ; if ((u32 )i < rx_ring->lbq_len) { goto ldv_57110; } else { } return; } } static void ql_init_sbq_ring(struct ql_adapter *qdev , struct rx_ring *rx_ring ) { int i ; struct bq_desc *sbq_desc ; __le64 *bq ; { { bq = (__le64 *)rx_ring->sbq_base; memset((void *)rx_ring->sbq, 0, (unsigned long )rx_ring->sbq_len * 64UL); i = 0; } goto ldv_57121; ldv_57120: { sbq_desc = rx_ring->sbq + (unsigned long )i; memset((void *)sbq_desc, 0, 64UL); sbq_desc->index = (u32 )i; sbq_desc->addr = bq; bq = bq + 1; i = i + 1; } ldv_57121: ; if ((u32 )i < rx_ring->sbq_len) { goto ldv_57120; } else { } return; } } static void ql_free_rx_resources(struct ql_adapter *qdev , struct rx_ring *rx_ring ) { { if ((unsigned long )rx_ring->sbq_base != (unsigned long )((void *)0)) { { pci_free_consistent(qdev->pdev, (size_t )rx_ring->sbq_size, rx_ring->sbq_base, rx_ring->sbq_base_dma); rx_ring->sbq_base = (void *)0; } } else { } { kfree((void const *)rx_ring->sbq); rx_ring->sbq = (struct bq_desc *)0; } if ((unsigned long )rx_ring->lbq_base != (unsigned long )((void *)0)) { { pci_free_consistent(qdev->pdev, (size_t )rx_ring->lbq_size, rx_ring->lbq_base, rx_ring->lbq_base_dma); rx_ring->lbq_base = (void *)0; } } else { } { kfree((void const *)rx_ring->lbq); rx_ring->lbq = (struct bq_desc *)0; } if ((unsigned long )rx_ring->cq_base != (unsigned long )((void *)0)) { { pci_free_consistent(qdev->pdev, (size_t )rx_ring->cq_size, rx_ring->cq_base, rx_ring->cq_base_dma); rx_ring->cq_base = (void *)0; } } else { } return; } } static int ql_alloc_rx_resources(struct ql_adapter *qdev , struct rx_ring *rx_ring ) { void *tmp ; void *tmp___0 ; { { rx_ring->cq_base = pci_alloc_consistent(qdev->pdev, (size_t )rx_ring->cq_size, & rx_ring->cq_base_dma); } if ((unsigned long )rx_ring->cq_base == (unsigned long )((void *)0)) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "rx_ring alloc failed.\n"); } } else { } return (-12); } else { } if (rx_ring->sbq_len != 0U) { { rx_ring->sbq_base = pci_alloc_consistent(qdev->pdev, (size_t )rx_ring->sbq_size, & rx_ring->sbq_base_dma); } if ((unsigned long )rx_ring->sbq_base == (unsigned long )((void *)0)) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Small buffer queue allocation failed.\n"); } } else { } goto err_mem; } else { } { tmp = kcalloc((size_t )rx_ring->sbq_len, 64UL, 208U); rx_ring->sbq = (struct bq_desc *)tmp; } if ((unsigned long )rx_ring->sbq == (unsigned long )((struct bq_desc *)0)) { goto err_mem; } else { } { ql_init_sbq_ring(qdev, rx_ring); } } else { } if (rx_ring->lbq_len != 0U) { { rx_ring->lbq_base = pci_alloc_consistent(qdev->pdev, (size_t )rx_ring->lbq_size, & rx_ring->lbq_base_dma); } if ((unsigned long )rx_ring->lbq_base == (unsigned long )((void *)0)) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Large buffer queue allocation failed.\n"); } } else { } goto err_mem; } else { } { tmp___0 = kcalloc((size_t )rx_ring->lbq_len, 64UL, 208U); rx_ring->lbq = (struct bq_desc *)tmp___0; } if ((unsigned long )rx_ring->lbq == (unsigned long )((struct bq_desc *)0)) { goto err_mem; } else { } { ql_init_lbq_ring(qdev, rx_ring); } } else { } return (0); err_mem: { ql_free_rx_resources(qdev, rx_ring); } return (-12); } } static void ql_tx_ring_clean(struct ql_adapter *qdev ) { struct tx_ring *tx_ring ; struct tx_ring_desc *tx_ring_desc ; int i ; int j ; { j = 0; goto ldv_57143; ldv_57142: tx_ring = (struct tx_ring *)(& qdev->tx_ring) + (unsigned long )j; i = 0; goto ldv_57140; ldv_57139: tx_ring_desc = tx_ring->q + (unsigned long )i; if ((unsigned long )tx_ring_desc != (unsigned long )((struct tx_ring_desc *)0) && (unsigned long )tx_ring_desc->skb != (unsigned long )((struct sk_buff *)0)) { if ((qdev->msg_enable & 16U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Freeing lost SKB %p, from queue %d, index %d.\n", tx_ring_desc->skb, j, tx_ring_desc->index); } } else { } { ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt); consume_skb(tx_ring_desc->skb); tx_ring_desc->skb = (struct sk_buff *)0; } } else { } i = i + 1; ldv_57140: ; if ((u32 )i < tx_ring->wq_len) { goto ldv_57139; } else { } j = j + 1; ldv_57143: ; if (j < qdev->tx_ring_count) { goto ldv_57142; } else { } return; } } static void ql_free_mem_resources(struct ql_adapter *qdev ) { int i ; { i = 0; goto ldv_57150; ldv_57149: { ql_free_tx_resources(qdev, (struct tx_ring *)(& qdev->tx_ring) + (unsigned long )i); i = i + 1; } ldv_57150: ; if (i < qdev->tx_ring_count) { goto ldv_57149; } else { } i = 0; goto ldv_57153; ldv_57152: { ql_free_rx_resources(qdev, (struct rx_ring *)(& qdev->rx_ring) + (unsigned long )i); i = i + 1; } ldv_57153: ; if (i < qdev->rx_ring_count) { goto ldv_57152; } else { } { ql_free_shadow_space(qdev); } return; } } static int ql_alloc_mem_resources(struct ql_adapter *qdev ) { int i ; int tmp ; int tmp___0 ; int tmp___1 ; { { tmp = ql_alloc_shadow_space(qdev); } if (tmp != 0) { return (-12); } else { } i = 0; goto ldv_57161; ldv_57160: { tmp___0 = ql_alloc_rx_resources(qdev, (struct rx_ring *)(& qdev->rx_ring) + (unsigned long )i); } if (tmp___0 != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "RX resource allocation failed.\n"); } } else { } goto err_mem; } else { } i = i + 1; ldv_57161: ; if (i < qdev->rx_ring_count) { goto ldv_57160; } else { } i = 0; goto ldv_57164; ldv_57163: { tmp___1 = ql_alloc_tx_resources(qdev, (struct tx_ring *)(& qdev->tx_ring) + (unsigned long )i); } if (tmp___1 != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "TX resource allocation failed.\n"); } } else { } goto err_mem; } else { } i = i + 1; ldv_57164: ; if (i < qdev->tx_ring_count) { goto ldv_57163; } else { } return (0); err_mem: { ql_free_mem_resources(qdev); } return (-12); } } static int ql_start_rx_ring(struct ql_adapter *qdev , struct rx_ring *rx_ring ) { struct cqicb *cqicb ; void *shadow_reg ; u64 shadow_reg_dma ; void *doorbell_area ; int err ; u16 bq_len ; u64 tmp ; __le64 *base_indirect_ptr ; int page_entries ; { { cqicb = & rx_ring->cqicb; shadow_reg = qdev->rx_ring_shadow_reg_area + (unsigned long )rx_ring->cq_id * 24UL; shadow_reg_dma = qdev->rx_ring_shadow_reg_dma + (unsigned long long )((unsigned long )rx_ring->cq_id * 24UL); doorbell_area = qdev->doorbell_area + (unsigned long )(((int )rx_ring->cq_id + 128) * 4096); err = 0; rx_ring->prod_idx_sh_reg = (__le32 *)shadow_reg; rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma; *(rx_ring->prod_idx_sh_reg) = 0U; shadow_reg = shadow_reg + 8UL; shadow_reg_dma = shadow_reg_dma + 8ULL; rx_ring->lbq_base_indirect = shadow_reg; rx_ring->lbq_base_indirect_dma = shadow_reg_dma; shadow_reg = shadow_reg + (((unsigned long )rx_ring->lbq_len * 8UL) / 4096UL + (((unsigned long )rx_ring->lbq_len * 8UL & 4095UL) != 0UL ? 1UL : 0UL)) * 8UL; shadow_reg_dma = shadow_reg_dma + (unsigned long long )((((unsigned long )rx_ring->lbq_len * 8UL) / 4096UL + (((unsigned long )rx_ring->lbq_len * 8UL & 4095UL) != 0UL ? 1UL : 0UL)) * 8UL); rx_ring->sbq_base_indirect = shadow_reg; rx_ring->sbq_base_indirect_dma = shadow_reg_dma; rx_ring->cnsmr_idx_db_reg = doorbell_area; rx_ring->cnsmr_idx = 0U; rx_ring->curr_entry = (struct ql_net_rsp_iocb *)rx_ring->cq_base; rx_ring->valid_db_reg = doorbell_area + 4UL; rx_ring->lbq_prod_idx_db_reg = doorbell_area + 24U; rx_ring->sbq_prod_idx_db_reg = doorbell_area + 28U; memset((void *)cqicb, 0, 52UL); cqicb->msix_vect = (u8 )rx_ring->irq; bq_len = rx_ring->cq_len != 65536U ? (u16 )rx_ring->cq_len : 0U; cqicb->len = (unsigned int )bq_len | 16U; cqicb->addr = rx_ring->cq_base_dma; cqicb->prod_idx_addr = rx_ring->prod_idx_sh_reg_dma; cqicb->flags = 200U; } if (rx_ring->lbq_len != 0U) { cqicb->flags = (u8 )((unsigned int )cqicb->flags | 32U); tmp = rx_ring->lbq_base_dma; base_indirect_ptr = (__le64 *)rx_ring->lbq_base_indirect; page_entries = 0; ldv_57179: *base_indirect_ptr = tmp; tmp = tmp + 4096ULL; base_indirect_ptr = base_indirect_ptr + 1; page_entries = page_entries + 1; if ((unsigned long )page_entries < ((unsigned long )rx_ring->lbq_len * 8UL) / 4096UL + (((unsigned long )rx_ring->lbq_len * 8UL & 4095UL) != 0UL ? 1UL : 0UL)) { goto ldv_57179; } else { } cqicb->lbq_addr = rx_ring->lbq_base_indirect_dma; bq_len = rx_ring->lbq_buf_size != 65536U ? (u16 )rx_ring->lbq_buf_size : 0U; cqicb->lbq_buf_size = bq_len; bq_len = rx_ring->lbq_len != 65536U ? (u16 )rx_ring->lbq_len : 0U; cqicb->lbq_len = bq_len; rx_ring->lbq_prod_idx = 0U; rx_ring->lbq_curr_idx = 0U; rx_ring->lbq_clean_idx = 0U; rx_ring->lbq_free_cnt = rx_ring->lbq_len; } else { } if (rx_ring->sbq_len != 0U) { cqicb->flags = (u8 )((unsigned int )cqicb->flags | 16U); tmp = rx_ring->sbq_base_dma; base_indirect_ptr = (__le64 *)rx_ring->sbq_base_indirect; page_entries = 0; ldv_57181: *base_indirect_ptr = tmp; tmp = tmp + 4096ULL; base_indirect_ptr = base_indirect_ptr + 1; page_entries = page_entries + 1; if ((unsigned long )page_entries < ((unsigned long )rx_ring->sbq_len * 8UL) / 4096UL + (((unsigned long )rx_ring->sbq_len * 8UL & 4095UL) != 0UL ? 1UL : 0UL)) { goto ldv_57181; } else { } cqicb->sbq_addr = rx_ring->sbq_base_indirect_dma; cqicb->sbq_buf_size = (unsigned short )rx_ring->sbq_buf_size; bq_len = rx_ring->sbq_len != 65536U ? (u16 )rx_ring->sbq_len : 0U; cqicb->sbq_len = bq_len; rx_ring->sbq_prod_idx = 0U; rx_ring->sbq_curr_idx = 0U; rx_ring->sbq_clean_idx = 0U; rx_ring->sbq_free_cnt = rx_ring->sbq_len; } else { } { if (rx_ring->type == 3U) { goto case_3; } else { } if (rx_ring->type == 4U) { goto case_4; } else { } goto switch_default; case_3: /* CIL Label */ cqicb->irq_delay = qdev->tx_coalesce_usecs; cqicb->pkt_delay = qdev->tx_max_coalesced_frames; goto ldv_57184; case_4: /* CIL Label */ { netif_napi_add(qdev->ndev, & rx_ring->napi, & ql_napi_poll_msix, 64); cqicb->irq_delay = qdev->rx_coalesce_usecs; cqicb->pkt_delay = qdev->rx_max_coalesced_frames; } goto ldv_57184; switch_default: /* CIL Label */ ; if ((qdev->msg_enable & 32U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "Invalid rx_ring->type = %d.\n", rx_ring->type); } } else { } switch_break: /* CIL Label */ ; } ldv_57184: { err = ql_write_cfg(qdev, (void *)cqicb, 52, 64U, (int )rx_ring->cq_id); } if (err != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to load CQICB.\n"); } } else { } return (err); } else { } return (err); } } static int ql_start_tx_ring(struct ql_adapter *qdev , struct tx_ring *tx_ring ) { struct wqicb *wqicb ; void *doorbell_area ; void *shadow_reg ; u64 shadow_reg_dma ; int err ; { { wqicb = (struct wqicb *)tx_ring; doorbell_area = qdev->doorbell_area + (unsigned long )((int )tx_ring->wq_id * 4096); shadow_reg = qdev->tx_ring_shadow_reg_area + (unsigned long )tx_ring->wq_id * 8UL; shadow_reg_dma = qdev->tx_ring_shadow_reg_dma + (unsigned long long )((unsigned long )tx_ring->wq_id * 8UL); err = 0; tx_ring->prod_idx_db_reg = doorbell_area; tx_ring->prod_idx = 0U; tx_ring->valid_db_reg = doorbell_area + 4UL; tx_ring->cnsmr_idx_sh_reg = (__le32 *)shadow_reg; tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma; wqicb->len = (unsigned int )((unsigned short )tx_ring->wq_len) | 16U; wqicb->flags = 61440U; wqicb->cq_id_rss = tx_ring->cq_id; wqicb->rid = 0U; wqicb->addr = tx_ring->wq_base_dma; wqicb->cnsmr_idx_addr = tx_ring->cnsmr_idx_sh_reg_dma; ql_init_tx_ring(qdev, tx_ring); err = ql_write_cfg(qdev, (void *)wqicb, 24, 1U, (int )tx_ring->wq_id); } if (err != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to load tx_ring.\n"); } } else { } return (err); } else { } return (err); } } static void ql_disable_msix(struct ql_adapter *qdev ) { int tmp ; int tmp___0 ; { { tmp___0 = constant_test_bit(3L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___0 != 0) { { pci_disable_msix(qdev->pdev); clear_bit(3L, (unsigned long volatile *)(& qdev->flags)); kfree((void const *)qdev->msi_x_entry); qdev->msi_x_entry = (struct msix_entry *)0; } } else { { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp != 0) { { pci_disable_msi(qdev->pdev); clear_bit(2L, (unsigned long volatile *)(& qdev->flags)); } } else { } } return; } } static void ql_enable_msix(struct ql_adapter *qdev ) { int i ; int err ; void *tmp ; int tmp___0 ; { if (qlge_irq_type == 0) { { tmp = kcalloc((size_t )qdev->intr_count, 8UL, 208U); qdev->msi_x_entry = (struct msix_entry *)tmp; } if ((unsigned long )qdev->msi_x_entry == (unsigned long )((struct msix_entry *)0)) { qlge_irq_type = 1; goto msi; } else { } i = 0; goto ldv_57206; ldv_57205: (qdev->msi_x_entry + (unsigned long )i)->entry = (u16 )i; i = i + 1; ldv_57206: ; if ((u32 )i < qdev->intr_count) { goto ldv_57205; } else { } { err = pci_enable_msix_range(qdev->pdev, qdev->msi_x_entry, 1, (int )qdev->intr_count); } if (err < 0) { { kfree((void const *)qdev->msi_x_entry); qdev->msi_x_entry = (struct msix_entry *)0; } if ((qdev->msg_enable & 32U) != 0U) { { netdev_warn((struct net_device const *)qdev->ndev, "MSI-X Enable failed, trying MSI.\n"); } } else { } qlge_irq_type = 1; } else { { qdev->intr_count = (u32 )err; set_bit(3L, (unsigned long volatile *)(& qdev->flags)); } if ((qdev->msg_enable & 32U) != 0U) { { netdev_info((struct net_device const *)qdev->ndev, "MSI-X Enabled, got %d vectors.\n", qdev->intr_count); } } else { } return; } } else { } msi: qdev->intr_count = 1U; if (qlge_irq_type == 1) { { tmp___0 = pci_enable_msi_exact(qdev->pdev, 1); } if (tmp___0 == 0) { { set_bit(2L, (unsigned long volatile *)(& qdev->flags)); } if ((qdev->msg_enable & 32U) != 0U) { { netdev_info((struct net_device const *)qdev->ndev, "Running with MSI interrupts.\n"); } } else { } return; } else { } } else { } qlge_irq_type = 2; if ((qdev->msg_enable & 32U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "Running with legacy interrupts.\n"); } } else { } return; } } static void ql_set_tx_vect(struct ql_adapter *qdev ) { int i ; int j ; int vect ; u32 tx_rings_per_vector ; int tmp ; long tmp___0 ; { { tx_rings_per_vector = (u32 )qdev->tx_ring_count / qdev->intr_count; tmp = constant_test_bit(3L, (unsigned long const volatile *)(& qdev->flags)); tmp___0 = ldv__builtin_expect(tmp != 0, 1L); } if (tmp___0 != 0L) { vect = 0; j = 0; i = (int )qdev->rss_ring_count; goto ldv_57216; ldv_57215: ; if ((u32 )j == tx_rings_per_vector) { vect = vect + 1; j = 0; } else { } qdev->rx_ring[i].irq = (u32 )vect; j = j + 1; i = i + 1; ldv_57216: ; if (i < qdev->rx_ring_count) { goto ldv_57215; } else { } } else { i = 0; goto ldv_57219; ldv_57218: qdev->rx_ring[i].irq = 0U; i = i + 1; ldv_57219: ; if (i < qdev->rx_ring_count) { goto ldv_57218; } else { } } return; } } static void ql_set_irq_mask(struct ql_adapter *qdev , struct intr_context *ctx ) { int j ; int vect ; u32 tx_rings_per_vector ; int tmp ; long tmp___0 ; { { vect = (int )ctx->intr; tx_rings_per_vector = (u32 )qdev->tx_ring_count / qdev->intr_count; tmp = constant_test_bit(3L, (unsigned long const volatile *)(& qdev->flags)); tmp___0 = ldv__builtin_expect(tmp != 0, 1L); } if (tmp___0 != 0L) { ctx->irq_mask = (u32 )(1 << (int )qdev->rx_ring[vect].cq_id); j = 0; goto ldv_57229; ldv_57228: ctx->irq_mask = ctx->irq_mask | (u32 )(1 << (int )qdev->rx_ring[(qdev->rss_ring_count + (u32 )vect * tx_rings_per_vector) + (u32 )j].cq_id); j = j + 1; ldv_57229: ; if ((u32 )j < tx_rings_per_vector) { goto ldv_57228; } else { } } else { j = 0; goto ldv_57232; ldv_57231: ctx->irq_mask = ctx->irq_mask | (u32 )(1 << (int )qdev->rx_ring[j].cq_id); j = j + 1; ldv_57232: ; if (j < qdev->rx_ring_count) { goto ldv_57231; } else { } } return; } } static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev ) { int i ; struct intr_context *intr_context ; int tmp ; long tmp___0 ; { { i = 0; intr_context = (struct intr_context *)(& qdev->intr_context); tmp = constant_test_bit(3L, (unsigned long const volatile *)(& qdev->flags)); tmp___0 = ldv__builtin_expect(tmp != 0, 1L); } if (tmp___0 != 0L) { i = 0; goto ldv_57240; ldv_57239: { qdev->rx_ring[i].irq = (u32 )i; intr_context->intr = (u32 )i; intr_context->qdev = qdev; ql_set_irq_mask(qdev, intr_context); intr_context->intr_en_mask = (u32 )(i | 595534080); intr_context->intr_dis_mask = (u32 )(i | 595534336); intr_context->intr_read_mask = (u32 )(i | 595534592); } if (i == 0) { { intr_context->handler = & qlge_isr; sprintf((char *)(& intr_context->name), "%s-rx-%d", (char *)(& (qdev->ndev)->name), i); } } else { { intr_context->handler = & qlge_msix_rx_isr; sprintf((char *)(& intr_context->name), "%s-rx-%d", (char *)(& (qdev->ndev)->name), i); } } i = i + 1; intr_context = intr_context + 1; ldv_57240: ; if ((u32 )i < qdev->intr_count) { goto ldv_57239; } else { } } else { { intr_context->intr = 0U; intr_context->qdev = qdev; intr_context->intr_en_mask = 58654976U; intr_context->intr_dis_mask = 58655232U; intr_context->intr_read_mask = 58655488U; intr_context->handler = & qlge_isr; sprintf((char *)(& intr_context->name), "%s-single_irq", (char *)(& (qdev->ndev)->name)); ql_set_irq_mask(qdev, intr_context); } } { ql_set_tx_vect(qdev); } return; } } static void ql_free_irq(struct ql_adapter *qdev ) { int i ; struct intr_context *intr_context ; int tmp ; { intr_context = (struct intr_context *)(& qdev->intr_context); i = 0; goto ldv_57248; ldv_57247: ; if (intr_context->hooked != 0U) { { tmp = constant_test_bit(3L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp != 0) { { ldv_free_irq_137((qdev->msi_x_entry + (unsigned long )i)->vector, (void *)(& qdev->rx_ring) + (unsigned long )i); } } else { { ldv_free_irq_138((qdev->pdev)->irq, (void *)(& qdev->rx_ring)); } } } else { } i = i + 1; intr_context = intr_context + 1; ldv_57248: ; if ((u32 )i < qdev->intr_count) { goto ldv_57247; } else { } { ql_disable_msix(qdev); } return; } } static int ql_request_irq(struct ql_adapter *qdev ) { int i ; int status ; struct pci_dev *pdev ; struct intr_context *intr_context ; int tmp ; int tmp___0 ; { { status = 0; pdev = qdev->pdev; intr_context = (struct intr_context *)(& qdev->intr_context); ql_resolve_queues_to_irqs(qdev); i = 0; } goto ldv_57260; ldv_57259: { atomic_set(& intr_context->irq_cnt, 0); tmp___0 = constant_test_bit(3L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___0 != 0) { { status = ldv_request_irq_139((qdev->msi_x_entry + (unsigned long )i)->vector, intr_context->handler, 0UL, (char const *)(& intr_context->name), (void *)(& qdev->rx_ring) + (unsigned long )i); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed request for MSIX interrupt %d.\n", i); } } else { } goto err_irq; } else { } } else { if ((qdev->msg_enable & 32U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "trying msi or legacy interrupts.\n"); } } else { } if ((qdev->msg_enable & 32U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "%s: irq = %d.\n", "ql_request_irq", pdev->irq); } } else { } if ((qdev->msg_enable & 32U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "%s: context->name = %s.\n", "ql_request_irq", (char *)(& intr_context->name)); } } else { } if ((qdev->msg_enable & 32U) != 0U) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "%s: dev_id = 0x%p.\n", "ql_request_irq", (struct rx_ring *)(& qdev->rx_ring)); } } else { } { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& qdev->flags)); status = ldv_request_irq_140(pdev->irq, & qlge_isr, tmp != 0 ? 0UL : 128UL, (char const *)(& intr_context->name), (void *)(& qdev->rx_ring)); } if (status != 0) { goto err_irq; } else { } if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Hooked intr %d, queue type %s, with name %s.\n", i, qdev->rx_ring[0].type != 2U ? (qdev->rx_ring[0].type != 3U ? (qdev->rx_ring[0].type == 4U ? (char *)"RX_Q" : (char *)"") : (char *)"TX_Q") : (char *)"DEFAULT_Q", (char *)(& intr_context->name)); } } else { } } intr_context->hooked = 1U; i = i + 1; intr_context = intr_context + 1; ldv_57260: ; if ((u32 )i < qdev->intr_count) { goto ldv_57259; } else { } return (status); err_irq: ; if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to get the interrupts!!!\n"); } } else { } { ql_free_irq(qdev); } return (status); } } static int ql_start_rss(struct ql_adapter *qdev ) { u8 init_hash_seed[40U] ; struct ricb *ricb ; int status ; int i ; u8 *hash_id ; { { init_hash_seed[0] = 109U; init_hash_seed[1] = 90U; init_hash_seed[2] = 86U; init_hash_seed[3] = 218U; init_hash_seed[4] = 37U; init_hash_seed[5] = 91U; init_hash_seed[6] = 14U; init_hash_seed[7] = 194U; init_hash_seed[8] = 65U; init_hash_seed[9] = 103U; init_hash_seed[10] = 37U; init_hash_seed[11] = 61U; init_hash_seed[12] = 67U; init_hash_seed[13] = 163U; init_hash_seed[14] = 143U; init_hash_seed[15] = 176U; init_hash_seed[16] = 208U; init_hash_seed[17] = 202U; init_hash_seed[18] = 43U; init_hash_seed[19] = 203U; init_hash_seed[20] = 174U; init_hash_seed[21] = 123U; init_hash_seed[22] = 48U; init_hash_seed[23] = 180U; init_hash_seed[24] = 119U; init_hash_seed[25] = 203U; init_hash_seed[26] = 45U; init_hash_seed[27] = 163U; init_hash_seed[28] = 128U; init_hash_seed[29] = 48U; init_hash_seed[30] = 242U; init_hash_seed[31] = 12U; init_hash_seed[32] = 106U; init_hash_seed[33] = 66U; init_hash_seed[34] = 183U; init_hash_seed[35] = 59U; init_hash_seed[36] = 190U; init_hash_seed[37] = 172U; init_hash_seed[38] = 1U; init_hash_seed[39] = 250U; ricb = & qdev->ricb; status = 0; hash_id = (u8 *)(& ricb->hash_cq_id); memset((void *)ricb, 0, 1084UL); ricb->base_cq = 128U; ricb->flags = 175U; ricb->mask = 1023U; i = 0; } goto ldv_57271; ldv_57270: *(hash_id + (unsigned long )i) = (unsigned int )((u8 )i) & ((unsigned int )((u8 )qdev->rss_ring_count) - 1U); i = i + 1; ldv_57271: ; if (i <= 1023) { goto ldv_57270; } else { } { memcpy((void *)(& ricb->ipv6_hash_key), (void const *)(& init_hash_seed), 40UL); memcpy((void *)(& ricb->ipv4_hash_key), (void const *)(& init_hash_seed), 16UL); status = ql_write_cfg(qdev, (void *)ricb, 1084, 4U, 0); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to load RICB.\n"); } } else { } return (status); } else { } return (status); } } static int ql_clear_routing_entries(struct ql_adapter *qdev ) { int i ; int status ; { { status = 0; status = ql_sem_spinlock(qdev, 805306368U); } if (status != 0) { return (status); } else { } i = 0; goto ldv_57280; ldv_57279: { status = ql_set_routing_reg(qdev, (u32 )i, 0U, 0); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to init routing register for CAM packets.\n"); } } else { } goto ldv_57278; } else { } i = i + 1; ldv_57280: ; if (i <= 15) { goto ldv_57279; } else { } ldv_57278: { ql_sem_unlock(qdev, 805306368U); } return (status); } } static int ql_route_initialize(struct ql_adapter *qdev ) { int status ; { { status = 0; status = ql_clear_routing_entries(qdev); } if (status != 0) { return (status); } else { } { status = ql_sem_spinlock(qdev, 805306368U); } if (status != 0) { return (status); } else { } { status = ql_set_routing_reg(qdev, 1U, 33554432U, 1); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to init routing register for IP CSUM error packets.\n"); } } else { } goto exit; } else { } { status = ql_set_routing_reg(qdev, 2U, 16777216U, 1); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to init routing register for TCP/UDP CSUM error packets.\n"); } } else { } goto exit; } else { } { status = ql_set_routing_reg(qdev, 3U, 1U, 1); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to init routing register for broadcast packets.\n"); } } else { } goto exit; } else { } if (qdev->rss_ring_count > 1U) { { status = ql_set_routing_reg(qdev, 8U, 2147483648U, 1); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to init routing register for MATCH RSS packets.\n"); } } else { } goto exit; } else { } } else { } { status = ql_set_routing_reg(qdev, 12U, 128U, 1); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to init routing register for CAM packets.\n"); } } else { } } else { } exit: { ql_sem_unlock(qdev, 805306368U); } return (status); } } int ql_cam_route_initialize(struct ql_adapter *qdev ) { int status ; int set ; u32 tmp ; { { tmp = ql_read32((struct ql_adapter const *)qdev, 48); set = (int )tmp; set = (int )((u32 )set & qdev->port_link_up); status = ql_set_mac_addr(qdev, set); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to init mac address.\n"); } } else { } return (status); } else { } { status = ql_route_initialize(qdev); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to init routing table.\n"); } } else { } } else { } return (status); } } static int ql_adapter_initialize(struct ql_adapter *qdev ) { u32 value ; u32 mask ; int i ; int status ; { { status = 0; value = 3U; mask = value << 16; ql_write32((struct ql_adapter const *)qdev, 8, mask | value); value = 0U; mask = 2130706432U; } if (((qdev->ndev)->features & 256ULL) != 0ULL) { value = value | 8U; mask = mask | 524288U; } else { } { ql_write32((struct ql_adapter const *)qdev, 212, mask | value); ql_write32((struct ql_adapter const *)qdev, 56, 65537U); value = 33504U; value = value | 3U; mask = (value << 16) | 119472128U; ql_write32((struct ql_adapter const *)qdev, 16, mask | value); ql_write32((struct ql_adapter const *)qdev, 192, 0U); ql_write32((struct ql_adapter const *)qdev, 12, 393222U); value = ql_read32((struct ql_adapter const *)qdev, 224); value = value & 4294963199U; mask = 4294901760U; ql_write32((struct ql_adapter const *)qdev, 224, mask); ql_write32((struct ql_adapter const *)qdev, 224, mask | value); } if ((unsigned int )(qdev->pdev)->subsystem_device == 104U || (unsigned int )(qdev->pdev)->subsystem_device == 384U) { qdev->wol = 32U; } else { } i = 0; goto ldv_57299; ldv_57298: { status = ql_start_rx_ring(qdev, (struct rx_ring *)(& qdev->rx_ring) + (unsigned long )i); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to start rx ring[%d].\n", i); } } else { } return (status); } else { } i = i + 1; ldv_57299: ; if (i < qdev->rx_ring_count) { goto ldv_57298; } else { } if (qdev->rss_ring_count > 1U) { { status = ql_start_rss(qdev); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to start RSS.\n"); } } else { } return (status); } else { } } else { } i = 0; goto ldv_57302; ldv_57301: { status = ql_start_tx_ring(qdev, (struct tx_ring *)(& qdev->tx_ring) + (unsigned long )i); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to start tx ring[%d].\n", i); } } else { } return (status); } else { } i = i + 1; ldv_57302: ; if (i < qdev->tx_ring_count) { goto ldv_57301; } else { } { status = (*((qdev->nic_ops)->port_initialize))(qdev); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to start port.\n"); } } else { } } else { } { status = ql_cam_route_initialize(qdev); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to init CAM/Routing tables.\n"); } } else { } return (status); } else { } i = 0; goto ldv_57305; ldv_57304: { napi_enable(& qdev->rx_ring[i].napi); i = i + 1; } ldv_57305: ; if ((u32 )i < qdev->rss_ring_count) { goto ldv_57304; } else { } return (status); } } static int ql_adapter_reset(struct ql_adapter *qdev ) { u32 value ; int status ; unsigned long end_jiffies ; unsigned long _max1 ; unsigned long _max2 ; unsigned long tmp ; int tmp___0 ; { { status = 0; status = ql_clear_routing_entries(qdev); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to clear routing bits.\n"); } } else { } return (status); } else { } { _max1 = 1UL; tmp = usecs_to_jiffies(30U); _max2 = tmp; end_jiffies = (unsigned long )jiffies + (_max1 > _max2 ? _max1 : _max2); tmp___0 = constant_test_bit(14L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___0 == 0) { { ql_mb_set_mgmnt_traffic_ctl(qdev, 1U); ql_wait_fifo_empty(qdev); } } else { { clear_bit(14L, (unsigned long volatile *)(& qdev->flags)); } } { ql_write32((struct ql_adapter const *)qdev, 12, 2147516416U); } ldv_57323: { value = ql_read32((struct ql_adapter const *)qdev, 12); } if ((value & 32768U) == 0U) { goto ldv_57316; } else { } { cpu_relax(); } if ((long )((unsigned long )jiffies - end_jiffies) < 0L) { goto ldv_57323; } else { } ldv_57316: ; if ((value & 32768U) != 0U) { if ((qdev->msg_enable & 16U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "ETIMEDOUT!!! errored out of resetting the chip!\n"); } } else { } status = -110; } else { } { ql_mb_set_mgmnt_traffic_ctl(qdev, 2U); } return (status); } } static void ql_display_dev_info(struct net_device *ndev ) { struct ql_adapter *qdev ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; } if ((qdev->msg_enable & 2U) != 0U) { { netdev_info((struct net_device const *)qdev->ndev, "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, XG Roll = %d, XG Rev = %d.\n", qdev->func, qdev->port, qdev->chip_rev_id & 15U, (qdev->chip_rev_id >> 4) & 15U, (qdev->chip_rev_id >> 8) & 15U, (qdev->chip_rev_id >> 12) & 15U); } } else { } if ((qdev->msg_enable & 2U) != 0U) { { netdev_info((struct net_device const *)qdev->ndev, "MAC address %pM\n", ndev->dev_addr); } } else { } return; } } static int ql_wol(struct ql_adapter *qdev ) { int status ; u32 wol ; { status = 0; wol = 0U; if ((qdev->wol & 95U) != 0U) { if ((qdev->msg_enable & 16U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Unsupported WOL parameter. qdev->wol = 0x%x.\n", qdev->wol); } } else { } return (-22); } else { } if ((qdev->wol & 32U) != 0U) { { status = ql_mb_wol_set_magic(qdev, 1U); } if (status != 0) { if ((qdev->msg_enable & 16U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to set magic packet on %s.\n", (char *)(& (qdev->ndev)->name)); } } else { } return (status); } else if ((int )qdev->msg_enable & 1) { { netdev_info((struct net_device const *)qdev->ndev, "Enabled magic packet successfully on %s.\n", (char *)(& (qdev->ndev)->name)); } } else { } wol = wol | 2U; } else { } if (qdev->wol != 0U) { { wol = wol | 65536U; status = ql_mb_wol_mode(qdev, wol); } if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "WOL %s (wol code 0x%x) on %s\n", status == 0 ? (char *)"Successfully set" : (char *)"Failed", wol, (char *)(& (qdev->ndev)->name)); } } else { } } else { } return (status); } } static void ql_cancel_all_work_sync(struct ql_adapter *qdev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp != 0) { { cancel_delayed_work_sync(& qdev->asic_reset_work); } } else { } { cancel_delayed_work_sync(& qdev->mpi_reset_work); cancel_delayed_work_sync(& qdev->mpi_work); cancel_delayed_work_sync(& qdev->mpi_idc_work); cancel_delayed_work_sync(& qdev->mpi_core_to_log); cancel_delayed_work_sync(& qdev->mpi_port_cfg_work); } return; } } static int ql_adapter_down(struct ql_adapter *qdev ) { int i ; int status ; { { status = 0; ql_link_off(qdev); ql_cancel_all_work_sync(qdev); i = 0; } goto ldv_57342; ldv_57341: { napi_disable(& qdev->rx_ring[i].napi); i = i + 1; } ldv_57342: ; if ((u32 )i < qdev->rss_ring_count) { goto ldv_57341; } else { } { clear_bit(0L, (unsigned long volatile *)(& qdev->flags)); ql_disable_interrupts(qdev); ql_tx_ring_clean(qdev); i = 0; } goto ldv_57345; ldv_57344: { netif_napi_del(& qdev->rx_ring[i].napi); i = i + 1; } ldv_57345: ; if ((u32 )i < qdev->rss_ring_count) { goto ldv_57344; } else { } { status = ql_adapter_reset(qdev); } if (status != 0) { if ((qdev->msg_enable & 16U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "reset(func #%d) FAILED!\n", qdev->func); } } else { } } else { } { ql_free_rx_buffers(qdev); } return (status); } } static int ql_adapter_up(struct ql_adapter *qdev ) { int err ; u32 tmp ; u32 tmp___0 ; { { err = 0; err = ql_adapter_initialize(qdev); } if (err != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_info((struct net_device const *)qdev->ndev, "Unable to initialize adapter.\n"); } } else { } goto err_init; } else { } { set_bit(0L, (unsigned long volatile *)(& qdev->flags)); ql_alloc_rx_buffers(qdev); tmp = ql_read32((struct ql_adapter const *)qdev, 48); } if ((tmp & qdev->port_init) != 0U) { { tmp___0 = ql_read32((struct ql_adapter const *)qdev, 48); } if ((tmp___0 & qdev->port_link_up) != 0U) { { ql_link_on(qdev); } } else { } } else { } { clear_bit(6L, (unsigned long volatile *)(& qdev->flags)); clear_bit(5L, (unsigned long volatile *)(& qdev->flags)); qlge_set_multicast_list(qdev->ndev); qlge_restore_vlan(qdev); ql_enable_interrupts(qdev); ql_enable_all_completion_interrupts(qdev); netif_tx_start_all_queues(qdev->ndev); } return (0); err_init: { ql_adapter_reset(qdev); } return (err); } } static void ql_release_adapter_resources(struct ql_adapter *qdev ) { { { ql_free_mem_resources(qdev); ql_free_irq(qdev); } return; } } static int ql_get_adapter_resources(struct ql_adapter *qdev ) { int status ; int tmp ; { { status = 0; tmp = ql_alloc_mem_resources(qdev); } if (tmp != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Unable to allocate memory.\n"); } } else { } return (-12); } else { } { status = ql_request_irq(qdev); } return (status); } } static int qlge_close(struct net_device *ndev ) { struct ql_adapter *qdev ; void *tmp ; int tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; tmp___0 = constant_test_bit(12L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___0 != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "EEH fatal did unload.\n"); } } else { } { clear_bit(12L, (unsigned long volatile *)(& qdev->flags)); } return (0); } else { } goto ldv_57364; ldv_57363: { msleep(1U); } ldv_57364: { tmp___1 = constant_test_bit(0L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___1 == 0) { goto ldv_57363; } else { } { ql_adapter_down(qdev); ql_release_adapter_resources(qdev); } return (0); } } static int ql_configure_rings(struct ql_adapter *qdev ) { int i ; struct rx_ring *rx_ring ; struct tx_ring *tx_ring ; int cpu_cnt ; int _min1 ; int _min2 ; unsigned int tmp ; unsigned int lbq_buf_len ; int tmp___69 ; { { _min1 = 8; tmp = cpumask_weight(cpu_online_mask); _min2 = (int )tmp; cpu_cnt = _min1 < _min2 ? _min1 : _min2; lbq_buf_len = (qdev->ndev)->mtu > 1500U ? 8192U : 2048U; tmp___69 = __get_order((unsigned long )lbq_buf_len); qdev->lbq_buf_order = (unsigned int )tmp___69; qdev->intr_count = (u32 )cpu_cnt; ql_enable_msix(qdev); qdev->rss_ring_count = qdev->intr_count; qdev->tx_ring_count = cpu_cnt; qdev->rx_ring_count = (int )((u32 )qdev->tx_ring_count + qdev->rss_ring_count); i = 0; } goto ldv_57378; ldv_57377: { tx_ring = (struct tx_ring *)(& qdev->tx_ring) + (unsigned long )i; memset((void *)tx_ring, 0, 432UL); tx_ring->qdev = qdev; tx_ring->wq_id = (u8 )i; tx_ring->wq_len = (u32 )qdev->tx_ring_size; tx_ring->wq_size = tx_ring->wq_len * 128U; tx_ring->cq_id = (int )((u16 )qdev->rss_ring_count) + (int )((u16 )i); i = i + 1; } ldv_57378: ; if (i < qdev->tx_ring_count) { goto ldv_57377; } else { } i = 0; goto ldv_57381; ldv_57380: { rx_ring = (struct rx_ring *)(& qdev->rx_ring) + (unsigned long )i; memset((void *)rx_ring, 0, 704UL); rx_ring->qdev = qdev; rx_ring->cq_id = (u16 )i; rx_ring->cpu = (u32 )(i % cpu_cnt); } if ((u32 )i < qdev->rss_ring_count) { rx_ring->cq_len = (u32 )qdev->rx_ring_size; rx_ring->cq_size = rx_ring->cq_len * 64U; rx_ring->lbq_len = 512U; rx_ring->lbq_size = rx_ring->lbq_len * 8U; rx_ring->lbq_buf_size = (u32 )((unsigned short )lbq_buf_len); rx_ring->sbq_len = 512U; rx_ring->sbq_size = rx_ring->sbq_len * 8U; rx_ring->sbq_buf_size = 256U; rx_ring->type = 4U; } else { rx_ring->cq_len = (u32 )qdev->tx_ring_size; rx_ring->cq_size = rx_ring->cq_len * 64U; rx_ring->lbq_len = 0U; rx_ring->lbq_size = 0U; rx_ring->lbq_buf_size = 0U; rx_ring->sbq_len = 0U; rx_ring->sbq_size = 0U; rx_ring->sbq_buf_size = 0U; rx_ring->type = 3U; } i = i + 1; ldv_57381: ; if (i < qdev->rx_ring_count) { goto ldv_57380; } else { } return (0); } } static int qlge_open(struct net_device *ndev ) { int err ; struct ql_adapter *qdev ; void *tmp ; { { err = 0; tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; err = ql_adapter_reset(qdev); } if (err != 0) { return (err); } else { } { err = ql_configure_rings(qdev); } if (err != 0) { return (err); } else { } { err = ql_get_adapter_resources(qdev); } if (err != 0) { goto error_up; } else { } { err = ql_adapter_up(qdev); } if (err != 0) { goto error_up; } else { } return (err); error_up: { ql_release_adapter_resources(qdev); } return (err); } } static int ql_change_rx_buffers(struct ql_adapter *qdev ) { struct rx_ring *rx_ring ; int i ; int status ; u32 lbq_buf_len ; int i___0 ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___71 ; { { tmp___1 = constant_test_bit(0L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___1 == 0) { i___0 = 3; goto ldv_57398; ldv_57397: ; if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Waiting for adapter UP...\n"); } } else { } { ssleep(1U); } ldv_57398: tmp = i___0; i___0 = i___0 - 1; if (tmp != 0) { { tmp___0 = constant_test_bit(0L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___0 == 0) { goto ldv_57397; } else { goto ldv_57399; } } else { } ldv_57399: ; if (i___0 == 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Timed out waiting for adapter UP\n"); } } else { } return (-110); } else { } } else { } { status = ql_adapter_down(qdev); } if (status != 0) { goto error; } else { } { lbq_buf_len = (qdev->ndev)->mtu > 1500U ? 8192U : 2048U; tmp___71 = __get_order((unsigned long )lbq_buf_len); qdev->lbq_buf_order = (unsigned int )tmp___71; i = 0; } goto ldv_57402; ldv_57401: rx_ring = (struct rx_ring *)(& qdev->rx_ring) + (unsigned long )i; rx_ring->lbq_buf_size = lbq_buf_len; i = i + 1; ldv_57402: ; if ((u32 )i < qdev->rss_ring_count) { goto ldv_57401; } else { } { status = ql_adapter_up(qdev); } if (status != 0) { goto error; } else { } return (status); error: ; if ((qdev->msg_enable & 32U) != 0U) { { netdev_alert((struct net_device const *)qdev->ndev, "Driver up/down cycle failed, closing device.\n"); } } else { } { set_bit(0L, (unsigned long volatile *)(& qdev->flags)); dev_close(qdev->ndev); } return (status); } } static int qlge_change_mtu(struct net_device *ndev , int new_mtu ) { struct ql_adapter *qdev ; void *tmp ; int status ; bool tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; } if (ndev->mtu == 1500U && new_mtu == 9000) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Changing to jumbo MTU.\n"); } } else { } } else if (ndev->mtu == 9000U && new_mtu == 1500) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Changing to normal MTU.\n"); } } else { } } else { return (-22); } { queue_delayed_work(qdev->workqueue, & qdev->mpi_port_cfg_work, 750UL); ndev->mtu = (unsigned int )new_mtu; tmp___0 = netif_running((struct net_device const *)qdev->ndev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (0); } else { } { status = ql_change_rx_buffers(qdev); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Changing MTU failed.\n"); } } else { } } else { } return (status); } } static struct net_device_stats *qlge_get_stats(struct net_device *ndev ) { struct ql_adapter *qdev ; void *tmp ; struct rx_ring *rx_ring ; struct tx_ring *tx_ring ; unsigned long pkts ; unsigned long mcast ; unsigned long dropped ; unsigned long errors ; unsigned long bytes ; int i ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; rx_ring = (struct rx_ring *)(& qdev->rx_ring); tx_ring = (struct tx_ring *)(& qdev->tx_ring); bytes = 0UL; errors = bytes; dropped = errors; mcast = dropped; pkts = mcast; i = 0; } goto ldv_57423; ldv_57422: pkts = (unsigned long )((unsigned long long )pkts + rx_ring->rx_packets); bytes = (unsigned long )((unsigned long long )bytes + rx_ring->rx_bytes); dropped = (unsigned long )((unsigned long long )dropped + rx_ring->rx_dropped); errors = (unsigned long )((unsigned long long )errors + rx_ring->rx_errors); mcast = (unsigned long )((unsigned long long )mcast + rx_ring->rx_multicast); i = i + 1; rx_ring = rx_ring + 1; ldv_57423: ; if ((u32 )i < qdev->rss_ring_count) { goto ldv_57422; } else { } ndev->stats.rx_packets = pkts; ndev->stats.rx_bytes = bytes; ndev->stats.rx_dropped = dropped; ndev->stats.rx_errors = errors; ndev->stats.multicast = mcast; bytes = 0UL; errors = bytes; pkts = errors; i = 0; goto ldv_57426; ldv_57425: pkts = (unsigned long )((unsigned long long )pkts + tx_ring->tx_packets); bytes = (unsigned long )((unsigned long long )bytes + tx_ring->tx_bytes); errors = (unsigned long )((unsigned long long )errors + tx_ring->tx_errors); i = i + 1; tx_ring = tx_ring + 1; ldv_57426: ; if (i < qdev->tx_ring_count) { goto ldv_57425; } else { } ndev->stats.tx_packets = pkts; ndev->stats.tx_bytes = bytes; ndev->stats.tx_errors = errors; return (& ndev->stats); } } static void qlge_set_multicast_list(struct net_device *ndev ) { struct ql_adapter *qdev ; void *tmp ; struct netdev_hw_addr *ha ; int i ; int status ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; struct list_head const *__mptr ; int tmp___8 ; struct list_head const *__mptr___0 ; int tmp___9 ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; status = ql_sem_spinlock(qdev, 805306368U); } if (status != 0) { return; } else { } if ((ndev->flags & 256U) != 0U) { { tmp___1 = constant_test_bit(5L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___1 == 0) { { tmp___0 = ql_set_routing_reg(qdev, 15U, 8388608U, 1); } if (tmp___0 != 0) { if ((qdev->msg_enable & 8192U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to set promiscuous mode.\n"); } } else { } } else { { set_bit(5L, (unsigned long volatile *)(& qdev->flags)); } } } else { } } else { { tmp___3 = constant_test_bit(5L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___3 != 0) { { tmp___2 = ql_set_routing_reg(qdev, 15U, 8388608U, 0); } if (tmp___2 != 0) { if ((qdev->msg_enable & 8192U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to clear promiscuous mode.\n"); } } else { } } else { { clear_bit(5L, (unsigned long volatile *)(& qdev->flags)); } } } else { } } if ((ndev->flags & 512U) != 0U || ndev->mc.count > 32) { { tmp___5 = constant_test_bit(6L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___5 == 0) { { tmp___4 = ql_set_routing_reg(qdev, 5U, 2U, 1); } if (tmp___4 != 0) { if ((qdev->msg_enable & 8192U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to set all-multi mode.\n"); } } else { } } else { { set_bit(6L, (unsigned long volatile *)(& qdev->flags)); } } } else { } } else { { tmp___7 = constant_test_bit(6L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___7 != 0) { { tmp___6 = ql_set_routing_reg(qdev, 5U, 2U, 0); } if (tmp___6 != 0) { if ((qdev->msg_enable & 8192U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to clear all-multi mode.\n"); } } else { } } else { { clear_bit(6L, (unsigned long volatile *)(& qdev->flags)); } } } else { } } if (ndev->mc.count != 0) { { status = ql_sem_spinlock(qdev, 12582912U); } if (status != 0) { goto exit; } else { } i = 0; __mptr = (struct list_head const *)ndev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_57441; ldv_57440: { tmp___8 = ql_set_mac_addr_reg(qdev, (u8 *)(& ha->addr), 65536U, (int )((u16 )i)); } if (tmp___8 != 0) { if ((qdev->msg_enable & 8192U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to loadmulticast address.\n"); } } else { } { ql_sem_unlock(qdev, 12582912U); } goto exit; } else { } i = i + 1; __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; ldv_57441: ; if ((unsigned long )(& ha->list) != (unsigned long )(& ndev->mc.list)) { goto ldv_57440; } else { } { ql_sem_unlock(qdev, 12582912U); tmp___9 = ql_set_routing_reg(qdev, 4U, 4U, 1); } if (tmp___9 != 0) { if ((qdev->msg_enable & 8192U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to set multicast match mode.\n"); } } else { } } else { { set_bit(6L, (unsigned long volatile *)(& qdev->flags)); } } } else { } exit: { ql_sem_unlock(qdev, 805306368U); } return; } } static int qlge_set_mac_address(struct net_device *ndev , void *p ) { struct ql_adapter *qdev ; void *tmp ; struct sockaddr *addr ; int status ; bool tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; addr = (struct sockaddr *)p; tmp___0 = is_valid_ether_addr((u8 const *)(& addr->sa_data)); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-99); } else { } { memcpy((void *)ndev->dev_addr, (void const *)(& addr->sa_data), (size_t )ndev->addr_len); memcpy((void *)(& qdev->current_mac_addr), (void const *)ndev->dev_addr, (size_t )ndev->addr_len); status = ql_sem_spinlock(qdev, 12582912U); } if (status != 0) { return (status); } else { } { status = ql_set_mac_addr_reg(qdev, ndev->dev_addr, 0U, (int )((unsigned int )((u16 )qdev->func) * 128U)); } if (status != 0) { if ((qdev->msg_enable & 8192U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to load MAC address.\n"); } } else { } } else { } { ql_sem_unlock(qdev, 12582912U); } return (status); } } static void qlge_tx_timeout(struct net_device *ndev ) { struct ql_adapter *qdev ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; ql_queue_asic_error(qdev); } return; } } static void ql_asic_reset_work(struct work_struct *work ) { struct ql_adapter *qdev ; struct work_struct const *__mptr ; int status ; { { __mptr = (struct work_struct const *)work; qdev = (struct ql_adapter *)__mptr + 0xffffffffffffb130UL; ldv_rtnl_lock_141(); status = ql_adapter_down(qdev); } if (status != 0) { goto error; } else { } { status = ql_adapter_up(qdev); } if (status != 0) { goto error; } else { } { clear_bit(6L, (unsigned long volatile *)(& qdev->flags)); clear_bit(5L, (unsigned long volatile *)(& qdev->flags)); qlge_set_multicast_list(qdev->ndev); ldv_rtnl_unlock_142(); } return; error: ; if ((qdev->msg_enable & 32U) != 0U) { { netdev_alert((struct net_device const *)qdev->ndev, "Driver up/down cycle failed, closing device\n"); } } else { } { set_bit(0L, (unsigned long volatile *)(& qdev->flags)); dev_close(qdev->ndev); ldv_rtnl_unlock_143(); } return; } } static struct nic_operations const qla8012_nic_ops = {& ql_get_8012_flash_params, & ql_8012_port_initialize}; static struct nic_operations const qla8000_nic_ops = {& ql_get_8000_flash_params, & ql_8000_port_initialize}; static int ql_get_alt_pcie_func(struct ql_adapter *qdev ) { int status ; u32 temp ; u32 nic_func1 ; u32 nic_func2 ; { { status = 0; status = ql_read_mpi_reg(qdev, 4098U, & temp); } if (status != 0) { return (status); } else { } nic_func1 = (temp >> 1) & 7U; nic_func2 = (temp >> 5) & 7U; if (qdev->func == nic_func1) { qdev->alt_func = nic_func2; } else if (qdev->func == nic_func2) { qdev->alt_func = nic_func1; } else { status = -5; } return (status); } } static int ql_get_board_info(struct ql_adapter *qdev ) { int status ; u32 tmp ; { { tmp = ql_read32((struct ql_adapter const *)qdev, 48); qdev->func = (tmp & 192U) >> 6; } if (qdev->func > 3U) { return (-5); } else { } { status = ql_get_alt_pcie_func(qdev); } if (status != 0) { return (status); } else { } qdev->port = qdev->func >= qdev->alt_func; if (qdev->port != 0U) { qdev->xg_sem_mask = 786432U; qdev->port_link_up = 8U; qdev->port_init = 32U; qdev->mailbox_in = 4736U; qdev->mailbox_out = 4752U; } else { qdev->xg_sem_mask = 196608U; qdev->port_link_up = 4U; qdev->port_init = 16U; qdev->mailbox_in = 4480U; qdev->mailbox_out = 4496U; } { qdev->chip_rev_id = ql_read32((struct ql_adapter const *)qdev, 76); qdev->device_id = (qdev->pdev)->device; } if ((unsigned int )qdev->device_id == 32786U) { qdev->nic_ops = & qla8012_nic_ops; } else if ((unsigned int )qdev->device_id == 32768U) { qdev->nic_ops = & qla8000_nic_ops; } else { } return (status); } } static void ql_release_all(struct pci_dev *pdev ) { struct net_device *ndev ; void *tmp ; struct ql_adapter *qdev ; void *tmp___0 ; { { tmp = pci_get_drvdata(pdev); ndev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp___0; } if ((unsigned long )qdev->workqueue != (unsigned long )((struct workqueue_struct *)0)) { { destroy_workqueue(qdev->workqueue); qdev->workqueue = (struct workqueue_struct *)0; } } else { } if ((unsigned long )qdev->reg_base != (unsigned long )((void *)0)) { { ldv_iounmap_144((void volatile *)qdev->reg_base); } } else { } if ((unsigned long )qdev->doorbell_area != (unsigned long )((void *)0)) { { ldv_iounmap_145((void volatile *)qdev->doorbell_area); } } else { } { vfree((void const *)qdev->mpi_coredump); pci_release_regions(pdev); } return; } } static int ql_init_device(struct pci_dev *pdev , struct net_device *ndev , int cards_found ) { struct ql_adapter *qdev ; void *tmp ; int err ; int tmp___0 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; void *tmp___1 ; struct lock_class_key __key___1 ; char const *__lock_name ; struct workqueue_struct *tmp___2 ; struct lock_class_key __key___2 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___3 ; struct lock_class_key __key___4 ; atomic_long_t __constr_expr_1 ; struct lock_class_key __key___5 ; struct lock_class_key __key___6 ; atomic_long_t __constr_expr_2 ; struct lock_class_key __key___7 ; struct lock_class_key __key___8 ; atomic_long_t __constr_expr_3 ; struct lock_class_key __key___9 ; struct lock_class_key __key___10 ; atomic_long_t __constr_expr_4 ; struct lock_class_key __key___11 ; struct lock_class_key __key___12 ; atomic_long_t __constr_expr_5 ; struct lock_class_key __key___13 ; struct lock_class_key __key___14 ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; err = 0; memset((void *)qdev, 0, 21776UL); err = pci_enable_device(pdev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "PCI device enable failed.\n"); } return (err); } else { } { qdev->ndev = ndev; qdev->pdev = pdev; pci_set_drvdata(pdev, (void *)ndev); err = pcie_set_readrq(pdev, 4096); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Set readrq failed.\n"); } goto err_out1; } else { } { err = pci_request_regions(pdev, "qlge"); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "PCI region request failed.\n"); } return (err); } else { } { pci_set_master(pdev); tmp___0 = pci_set_dma_mask(pdev, 0xffffffffffffffffULL); } if (tmp___0 == 0) { { set_bit(4L, (unsigned long volatile *)(& qdev->flags)); err = pci_set_consistent_dma_mask(pdev, 0xffffffffffffffffULL); } } else { { err = pci_set_dma_mask(pdev, 4294967295ULL); } if (err == 0) { { err = pci_set_consistent_dma_mask(pdev, 4294967295ULL); } } else { } } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "No usable DMA configuration.\n"); } goto err_out2; } else { } { pdev->needs_freset = 1U; pci_save_state(pdev); qdev->reg_base = ldv_ioremap_nocache_146(pdev->resource[1].start, pdev->resource[1].start != 0ULL || pdev->resource[1].end != pdev->resource[1].start ? (unsigned long )((pdev->resource[1].end - pdev->resource[1].start) + 1ULL) : 0UL); } if ((unsigned long )qdev->reg_base == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& pdev->dev), "Register mapping failed.\n"); err = -12; } goto err_out2; } else { } { qdev->doorbell_area_size = pdev->resource[3].start != 0ULL || pdev->resource[3].end != pdev->resource[3].start ? ((u32 )pdev->resource[3].end - (u32 )pdev->resource[3].start) + 1U : 0U; qdev->doorbell_area = ldv_ioremap_nocache_147(pdev->resource[3].start, pdev->resource[3].start != 0ULL || pdev->resource[3].end != pdev->resource[3].start ? (unsigned long )((pdev->resource[3].end - pdev->resource[3].start) + 1ULL) : 0UL); } if ((unsigned long )qdev->doorbell_area == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& pdev->dev), "Doorbell register mapping failed.\n"); err = -12; } goto err_out2; } else { } { err = ql_get_board_info(qdev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Register access failed.\n"); err = -5; } goto err_out2; } else { } { qdev->msg_enable = netif_msg_init(debug, (int )default_msg); spinlock_check(& qdev->hw_lock); __raw_spin_lock_init(& qdev->hw_lock.__annonCompField18.rlock, "&(&qdev->hw_lock)->rlock", & __key); spinlock_check(& qdev->stats_lock); __raw_spin_lock_init(& qdev->stats_lock.__annonCompField18.rlock, "&(&qdev->stats_lock)->rlock", & __key___0); } if (qlge_mpi_coredump != 0) { { tmp___1 = ldv_vmalloc_148(176196UL); qdev->mpi_coredump = (struct ql_mpi_coredump *)tmp___1; } if ((unsigned long )qdev->mpi_coredump == (unsigned long )((struct ql_mpi_coredump *)0)) { err = -12; goto err_out2; } else { } if (qlge_force_coredump != 0) { { set_bit(11L, (unsigned long volatile *)(& qdev->flags)); } } else { } } else { } { err = (*((qdev->nic_ops)->get_flash))(qdev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Invalid FLASH.\n"); } goto err_out2; } else { } { memcpy((void *)(& qdev->current_mac_addr), (void const *)ndev->dev_addr, (size_t )ndev->addr_len); qdev->tx_ring_size = 256; qdev->rx_ring_size = 256; qdev->rx_coalesce_usecs = 100U; qdev->tx_coalesce_usecs = 100U; qdev->rx_max_coalesced_frames = 5U; qdev->tx_max_coalesced_frames = 5U; __lock_name = "\"%s\"ndev->name"; tmp___2 = __alloc_workqueue_key("%s", 131082U, 1, & __key___1, __lock_name, (char *)(& ndev->name)); qdev->workqueue = tmp___2; __init_work(& qdev->asic_reset_work.work, 0); __constr_expr_0.counter = 137438953408L; qdev->asic_reset_work.work.data = __constr_expr_0; lockdep_init_map(& qdev->asic_reset_work.work.lockdep_map, "(&(&qdev->asic_reset_work)->work)", & __key___2, 0); INIT_LIST_HEAD(& qdev->asic_reset_work.work.entry); qdev->asic_reset_work.work.func = & ql_asic_reset_work; init_timer_key(& qdev->asic_reset_work.timer, 2U, "(&(&qdev->asic_reset_work)->timer)", & __key___3); qdev->asic_reset_work.timer.function = & delayed_work_timer_fn; qdev->asic_reset_work.timer.data = (unsigned long )(& qdev->asic_reset_work); __init_work(& qdev->mpi_reset_work.work, 0); __constr_expr_1.counter = 137438953408L; qdev->mpi_reset_work.work.data = __constr_expr_1; lockdep_init_map(& qdev->mpi_reset_work.work.lockdep_map, "(&(&qdev->mpi_reset_work)->work)", & __key___4, 0); INIT_LIST_HEAD(& qdev->mpi_reset_work.work.entry); qdev->mpi_reset_work.work.func = & ql_mpi_reset_work; init_timer_key(& qdev->mpi_reset_work.timer, 2U, "(&(&qdev->mpi_reset_work)->timer)", & __key___5); qdev->mpi_reset_work.timer.function = & delayed_work_timer_fn; qdev->mpi_reset_work.timer.data = (unsigned long )(& qdev->mpi_reset_work); __init_work(& qdev->mpi_work.work, 0); __constr_expr_2.counter = 137438953408L; qdev->mpi_work.work.data = __constr_expr_2; lockdep_init_map(& qdev->mpi_work.work.lockdep_map, "(&(&qdev->mpi_work)->work)", & __key___6, 0); INIT_LIST_HEAD(& qdev->mpi_work.work.entry); qdev->mpi_work.work.func = & ql_mpi_work; init_timer_key(& qdev->mpi_work.timer, 2U, "(&(&qdev->mpi_work)->timer)", & __key___7); qdev->mpi_work.timer.function = & delayed_work_timer_fn; qdev->mpi_work.timer.data = (unsigned long )(& qdev->mpi_work); __init_work(& qdev->mpi_port_cfg_work.work, 0); __constr_expr_3.counter = 137438953408L; qdev->mpi_port_cfg_work.work.data = __constr_expr_3; lockdep_init_map(& qdev->mpi_port_cfg_work.work.lockdep_map, "(&(&qdev->mpi_port_cfg_work)->work)", & __key___8, 0); INIT_LIST_HEAD(& qdev->mpi_port_cfg_work.work.entry); qdev->mpi_port_cfg_work.work.func = & ql_mpi_port_cfg_work; init_timer_key(& qdev->mpi_port_cfg_work.timer, 2U, "(&(&qdev->mpi_port_cfg_work)->timer)", & __key___9); qdev->mpi_port_cfg_work.timer.function = & delayed_work_timer_fn; qdev->mpi_port_cfg_work.timer.data = (unsigned long )(& qdev->mpi_port_cfg_work); __init_work(& qdev->mpi_idc_work.work, 0); __constr_expr_4.counter = 137438953408L; qdev->mpi_idc_work.work.data = __constr_expr_4; lockdep_init_map(& qdev->mpi_idc_work.work.lockdep_map, "(&(&qdev->mpi_idc_work)->work)", & __key___10, 0); INIT_LIST_HEAD(& qdev->mpi_idc_work.work.entry); qdev->mpi_idc_work.work.func = & ql_mpi_idc_work; init_timer_key(& qdev->mpi_idc_work.timer, 2U, "(&(&qdev->mpi_idc_work)->timer)", & __key___11); qdev->mpi_idc_work.timer.function = & delayed_work_timer_fn; qdev->mpi_idc_work.timer.data = (unsigned long )(& qdev->mpi_idc_work); __init_work(& qdev->mpi_core_to_log.work, 0); __constr_expr_5.counter = 137438953408L; qdev->mpi_core_to_log.work.data = __constr_expr_5; lockdep_init_map(& qdev->mpi_core_to_log.work.lockdep_map, "(&(&qdev->mpi_core_to_log)->work)", & __key___12, 0); INIT_LIST_HEAD(& qdev->mpi_core_to_log.work.entry); qdev->mpi_core_to_log.work.func = & ql_mpi_core_to_log; init_timer_key(& qdev->mpi_core_to_log.timer, 2U, "(&(&qdev->mpi_core_to_log)->timer)", & __key___13); qdev->mpi_core_to_log.timer.function = & delayed_work_timer_fn; qdev->mpi_core_to_log.timer.data = (unsigned long )(& qdev->mpi_core_to_log); ldv_init_completion_149(& qdev->ide_completion); __mutex_init(& qdev->mpi_mutex, "&qdev->mpi_mutex", & __key___14); } if (cards_found == 0) { { _dev_info((struct device const *)(& pdev->dev), "%s\n", (char *)"QLogic 10 Gigabit PCI-E Ethernet Driver "); _dev_info((struct device const *)(& pdev->dev), "Driver name: %s, Version: %s.\n", (char *)"qlge", (char *)"1.00.00.34"); } } else { } return (0); err_out2: { ql_release_all(pdev); } err_out1: { pci_disable_device(pdev); } return (err); } } static struct net_device_ops const qlge_netdev_ops = {0, 0, & qlge_open, & qlge_close, & qlge_send, 0, 0, & qlge_set_multicast_list, & qlge_set_mac_address, & eth_validate_addr, 0, 0, & qlge_change_mtu, 0, & qlge_tx_timeout, 0, & qlge_get_stats, & qlge_vlan_rx_add_vid, & qlge_vlan_rx_kill_vid, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & qlge_fix_features, & qlge_set_features, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void ql_timer(unsigned long data ) { struct ql_adapter *qdev ; u32 var ; int tmp ; { { qdev = (struct ql_adapter *)data; var = 0U; var = ql_read32((struct ql_adapter const *)qdev, 48); tmp = pci_channel_offline(qdev->pdev); } if (tmp != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "EEH STS = 0x%.08x.\n", var); } } else { } return; } else { } { ldv_mod_timer_150(& qdev->timer, (unsigned long )jiffies + 1250UL); } return; } } static int qlge_probe(struct pci_dev *pdev , struct pci_device_id const *pci_entry ) { struct net_device *ndev ; struct ql_adapter *qdev ; int cards_found ; int err ; int _min1 ; int _min2 ; int tmp ; int _min1___0 ; int _min2___0 ; int tmp___0 ; void *tmp___1 ; int tmp___2 ; struct lock_class_key __key ; { { ndev = (struct net_device *)0; qdev = (struct ql_adapter *)0; cards_found = 0; err = 0; _min1 = 8; tmp = netif_get_num_default_rss_queues(); _min2 = tmp; _min1___0 = 8; tmp___0 = netif_get_num_default_rss_queues(); _min2___0 = tmp___0; ndev = ldv_alloc_etherdev_mqs_151(21776, (unsigned int )(_min1___0 < _min2___0 ? _min1___0 : _min2___0), (unsigned int )(_min1 < _min2 ? _min1 : _min2)); } if ((unsigned long )ndev == (unsigned long )((struct net_device *)0)) { return (-12); } else { } { err = ql_init_device(pdev, ndev, cards_found); } if (err < 0) { { ldv_free_netdev_152(ndev); } return (err); } else { } { tmp___1 = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp___1; ndev->dev.parent = & pdev->dev; ndev->hw_features = 17180459907ULL; ndev->features = ndev->hw_features; ndev->vlan_features = ndev->hw_features; ndev->vlan_features = ndev->vlan_features & 0xfffffffffffffc7fULL; tmp___2 = constant_test_bit(4L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___2 != 0) { ndev->features = ndev->features | 32ULL; } else { } { ndev->tx_queue_len = (unsigned long )qdev->tx_ring_size; ndev->irq = (int )pdev->irq; ndev->netdev_ops = & qlge_netdev_ops; ndev->ethtool_ops = & qlge_ethtool_ops; ndev->watchdog_timeo = 2500; err = ldv_register_netdev_153(ndev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "net device registration failed.\n"); ql_release_all(pdev); pci_disable_device(pdev); ldv_free_netdev_154(ndev); } return (err); } else { } { init_timer_key(& qdev->timer, 1U, "(&qdev->timer)", & __key); qdev->timer.data = (unsigned long )qdev; qdev->timer.function = & ql_timer; qdev->timer.expires = (unsigned long )jiffies + 1250UL; add_timer(& qdev->timer); ql_link_off(qdev); ql_display_dev_info(ndev); atomic_set(& qdev->lb_count, 0); cards_found = cards_found + 1; } return (0); } } netdev_tx_t ql_lb_send(struct sk_buff *skb , struct net_device *ndev ) { netdev_tx_t tmp ; { { tmp = qlge_send(skb, ndev); } return (tmp); } } int ql_clean_lb_rx_ring(struct rx_ring *rx_ring , int budget ) { int tmp ; { { tmp = ql_clean_inbound_rx_ring(rx_ring, budget); } return (tmp); } } static void qlge_remove(struct pci_dev *pdev ) { struct net_device *ndev ; void *tmp ; struct ql_adapter *qdev ; void *tmp___0 ; { { tmp = pci_get_drvdata(pdev); ndev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp___0; ldv_del_timer_sync_155(& qdev->timer); ql_cancel_all_work_sync(qdev); ldv_unregister_netdev_156(ndev); ql_release_all(pdev); pci_disable_device(pdev); ldv_free_netdev_157(ndev); } return; } } static void ql_eeh_close(struct net_device *ndev ) { int i ; struct ql_adapter *qdev ; void *tmp ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; tmp___0 = netif_carrier_ok((struct net_device const *)ndev); } if ((int )tmp___0) { { netif_carrier_off(ndev); netif_stop_queue(ndev); } } else { } { ldv_del_timer_sync_158(& qdev->timer); ql_cancel_all_work_sync(qdev); i = 0; } goto ldv_57553; ldv_57552: { netif_napi_del(& qdev->rx_ring[i].napi); i = i + 1; } ldv_57553: ; if ((u32 )i < qdev->rss_ring_count) { goto ldv_57552; } else { } { clear_bit(0L, (unsigned long volatile *)(& qdev->flags)); ql_tx_ring_clean(qdev); ql_free_rx_buffers(qdev); ql_release_adapter_resources(qdev); } return; } } static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev , enum pci_channel_state state ) { struct net_device *ndev ; void *tmp ; struct ql_adapter *qdev ; void *tmp___0 ; bool tmp___1 ; { { tmp = pci_get_drvdata(pdev); ndev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp___0; } { if ((unsigned int )state == 1U) { goto case_1; } else { } if ((unsigned int )state == 2U) { goto case_2; } else { } if ((unsigned int )state == 3U) { goto case_3; } else { } goto switch_break; case_1: /* CIL Label */ ; return (2U); case_2: /* CIL Label */ { netif_device_detach(ndev); tmp___1 = netif_running((struct net_device const *)ndev); } if ((int )tmp___1) { { ql_eeh_close(ndev); } } else { } { pci_disable_device(pdev); } return (3U); case_3: /* CIL Label */ { dev_err((struct device const *)(& pdev->dev), "%s: pci_channel_io_perm_failure.\n", "qlge_io_error_detected"); ql_eeh_close(ndev); set_bit(12L, (unsigned long volatile *)(& qdev->flags)); } return (4U); switch_break: /* CIL Label */ ; } return (3U); } } static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev ) { struct net_device *ndev ; void *tmp ; struct ql_adapter *qdev ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = pci_get_drvdata(pdev); ndev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp___0; pdev->error_state = 1U; pci_restore_state(pdev); tmp___1 = pci_enable_device(pdev); } if (tmp___1 != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Cannot re-enable PCI device after reset.\n"); } } else { } return (4U); } else { } { pci_set_master(pdev); tmp___2 = ql_adapter_reset(qdev); } if (tmp___2 != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "reset FAILED!\n"); } } else { } { set_bit(12L, (unsigned long volatile *)(& qdev->flags)); } return (4U); } else { } return (5U); } } static void qlge_io_resume(struct pci_dev *pdev ) { struct net_device *ndev ; void *tmp ; struct ql_adapter *qdev ; void *tmp___0 ; int err ; bool tmp___1 ; { { tmp = pci_get_drvdata(pdev); ndev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp___0; err = 0; tmp___1 = netif_running((struct net_device const *)ndev); } if ((int )tmp___1) { { err = qlge_open(ndev); } if (err != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Device initialization failed after reset.\n"); } } else { } return; } else { } } else if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Device was not running prior to EEH.\n"); } } else { } { ldv_mod_timer_159(& qdev->timer, (unsigned long )jiffies + 1250UL); netif_device_attach(ndev); } return; } } static struct pci_error_handlers const qlge_err_handler = {& qlge_io_error_detected, 0, 0, & qlge_io_slot_reset, 0, & qlge_io_resume}; static int qlge_suspend(struct pci_dev *pdev , pm_message_t state ) { struct net_device *ndev ; void *tmp ; struct ql_adapter *qdev ; void *tmp___0 ; int err ; bool tmp___1 ; pci_power_t tmp___2 ; { { tmp = pci_get_drvdata(pdev); ndev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp___0; netif_device_detach(ndev); ldv_del_timer_sync_160(& qdev->timer); tmp___1 = netif_running((struct net_device const *)ndev); } if ((int )tmp___1) { { err = ql_adapter_down(qdev); } if (err == 0) { return (err); } else { } } else { } { ql_wol(qdev); err = pci_save_state(pdev); } if (err != 0) { return (err); } else { } { pci_disable_device(pdev); tmp___2 = pci_choose_state(pdev, state); pci_set_power_state(pdev, tmp___2); } return (0); } } static int qlge_resume(struct pci_dev *pdev ) { struct net_device *ndev ; void *tmp ; struct ql_adapter *qdev ; void *tmp___0 ; int err ; bool tmp___1 ; { { tmp = pci_get_drvdata(pdev); ndev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp___0; pci_set_power_state(pdev, 0); pci_restore_state(pdev); err = pci_enable_device(pdev); } if (err != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Cannot enable PCI device from suspend\n"); } } else { } return (err); } else { } { pci_set_master(pdev); pci_enable_wake(pdev, 3, 0); pci_enable_wake(pdev, 4, 0); tmp___1 = netif_running((struct net_device const *)ndev); } if ((int )tmp___1) { { err = ql_adapter_up(qdev); } if (err != 0) { return (err); } else { } } else { } { ldv_mod_timer_161(& qdev->timer, (unsigned long )jiffies + 1250UL); netif_device_attach(ndev); } return (0); } } static void qlge_shutdown(struct pci_dev *pdev ) { struct pm_message __constr_expr_0 ; { { __constr_expr_0.event = 2; qlge_suspend(pdev, __constr_expr_0); } return; } } static struct pci_driver qlge_driver = {{0, 0}, "qlge", (struct pci_device_id const *)(& qlge_pci_tbl), & qlge_probe, & qlge_remove, & qlge_suspend, 0, 0, & qlge_resume, & qlge_shutdown, 0, & qlge_err_handler, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int qlge_driver_init(void) { int tmp ; { { tmp = ldv___pci_register_driver_162(& qlge_driver, & __this_module, "qlge"); } return (tmp); } } static void qlge_driver_exit(void) { { { ldv_pci_unregister_driver_163(& qlge_driver); } return; } } void ldv_EMGentry_exit_qlge_driver_exit_16_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_qlge_driver_init_16_9(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_13_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_14_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_resourceless_instance_14_16_4(void) ; void ldv_dispatch_instance_deregister_7_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_10_2(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_8_1(int arg0 ) ; void ldv_dispatch_irq_register_12_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_11_4(struct net_device *arg0 ) ; void ldv_dispatch_register_15_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_dummy_resourceless_instance_14_16_5(void) ; void ldv_dummy_resourceless_instance_callback_1_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_12(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_13(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_14(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_15(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_16(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_17(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_20(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_23(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_24(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_27(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_30(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_31(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_34(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_35(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_36(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_37(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_38(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_39(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_42(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_45(void (*arg0)(struct net_device * , struct ethtool_test * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_test *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_48(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_49(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_52(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_53(int (*arg0)(struct net_device * , enum ethtool_phys_id_state ) , struct net_device *arg1 , enum ethtool_phys_id_state arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_54(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_7(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_8(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_3(int (*arg0)(struct ql_adapter * ) , struct ql_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_7(int (*arg0)(struct ql_adapter * ) , struct ql_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_3(int (*arg0)(struct ql_adapter * ) , struct ql_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_7(int (*arg0)(struct ql_adapter * ) , struct ql_adapter *arg1 ) ; void ldv_entry_EMGentry_16(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) ; void ldv_net_dummy_resourceless_instance_1(void *arg0 ) ; void ldv_pci_instance_callback_2_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) ; void ldv_pci_instance_callback_2_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_callback_2_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_2(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_11_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_struct_nic_operations_dummy_resourceless_instance_3(void *arg0 ) ; void ldv_struct_nic_operations_dummy_resourceless_instance_4(void *arg0 ) ; void ldv_timer_instance_callback_5_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_5(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_13_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_16 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; void ldv_EMGentry_exit_qlge_driver_exit_16_2(void (*arg0)(void) ) { { { qlge_driver_exit(); } return; } } int ldv_EMGentry_init_qlge_driver_init_16_9(int (*arg0)(void) ) { int tmp ; { { tmp = qlge_driver_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_15_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not(arg0 == 0); ldv_15_pci_driver_pci_driver = arg1; ldv_dispatch_register_15_2(ldv_15_pci_driver_pci_driver); } return (arg0); } else { { assume_abort_if_not(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_6_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3264UL); ldv_6_netdev_net_device = (struct net_device *)tmp; } return (ldv_6_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_7_timer_list_timer_list ; { { ldv_7_timer_list_timer_list = arg1; ldv_dispatch_instance_deregister_7_1(ldv_7_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_deregister_13_1(struct net_device *arg0 ) { { return; } } void ldv_dispatch_deregister_14_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_14_16_4(void) { { return; } } void ldv_dispatch_instance_deregister_7_1(struct timer_list *arg0 ) { { return; } } void ldv_dispatch_instance_register_10_2(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_5 *cf_arg_5 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_5 = (struct ldv_struct_timer_instance_5 *)tmp; cf_arg_5->arg0 = arg0; ldv_timer_timer_instance_5((void *)cf_arg_5); } return; } } void ldv_dispatch_irq_deregister_8_1(int arg0 ) { { return; } } void ldv_dispatch_irq_register_12_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } return; } } void ldv_dispatch_register_11_4(struct net_device *arg0 ) { struct ldv_struct_dummy_resourceless_instance_1 *cf_arg_1 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_1 = (struct ldv_struct_dummy_resourceless_instance_1 *)tmp; cf_arg_1->arg0 = arg0; ldv_net_dummy_resourceless_instance_1((void *)cf_arg_1); } return; } } void ldv_dispatch_register_15_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_2 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_2 = (struct ldv_struct_pci_instance_2 *)tmp; cf_arg_2->arg0 = arg0; ldv_pci_pci_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_14_16_5(void) { struct ldv_struct_EMGentry_16 *cf_arg_3 ; struct ldv_struct_EMGentry_16 *cf_arg_4 ; void *tmp ; void *tmp___0 ; { { tmp = ldv_xmalloc(4UL); cf_arg_3 = (struct ldv_struct_EMGentry_16 *)tmp; ldv_struct_nic_operations_dummy_resourceless_instance_3((void *)cf_arg_3); tmp___0 = ldv_xmalloc(4UL); cf_arg_4 = (struct ldv_struct_EMGentry_16 *)tmp___0; ldv_struct_nic_operations_dummy_resourceless_instance_4((void *)cf_arg_4); } return; } } void ldv_dummy_resourceless_instance_callback_1_24(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { qlge_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_27(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { qlge_fix_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_30(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { qlge_get_stats(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_31(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { qlge_set_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_34(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { qlge_set_mac_address(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_35(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { qlge_set_multicast_list(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_36(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { qlge_send(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_37(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { qlge_tx_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_38(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_39(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) { { { qlge_vlan_rx_add_vid(arg1, (int )arg2, (int )arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_42(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) { { { qlge_vlan_rx_kill_vid(arg1, (int )arg2, (int )arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_3(int (*arg0)(struct ql_adapter * ) , struct ql_adapter *arg1 ) { { { ql_get_8000_flash_params(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_7(int (*arg0)(struct ql_adapter * ) , struct ql_adapter *arg1 ) { { { ql_8000_port_initialize(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_3(int (*arg0)(struct ql_adapter * ) , struct ql_adapter *arg1 ) { { { ql_get_8012_flash_params(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_7(int (*arg0)(struct ql_adapter * ) , struct ql_adapter *arg1 ) { { { ql_8012_port_initialize(arg1); } return; } } void ldv_entry_EMGentry_16(void *arg0 ) { void (*ldv_16_exit_qlge_driver_exit_default)(void) ; int (*ldv_16_init_qlge_driver_init_default)(void) ; int ldv_16_ret_default ; int tmp ; int tmp___0 ; { { ldv_16_ret_default = ldv_EMGentry_init_qlge_driver_init_16_9(ldv_16_init_qlge_driver_init_default); ldv_16_ret_default = ldv_ldv_post_init_164(ldv_16_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { assume_abort_if_not(ldv_16_ret_default != 0); ldv_ldv_check_final_state_165(); assume_abort_if_not(0); } return; } else { { assume_abort_if_not(ldv_16_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_dummy_resourceless_instance_14_16_5(); ldv_dispatch_deregister_dummy_resourceless_instance_14_16_4(); } } else { } { ldv_EMGentry_exit_qlge_driver_exit_16_2(ldv_16_exit_qlge_driver_exit_default); ldv_ldv_check_final_state_166(); assume_abort_if_not(0); } return; } return; } } int main(void) { { { ldv_ldv_initialize_167(); ldv_entry_EMGentry_16((void *)0); } return 0; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_8_line_line ; { { ldv_8_line_line = arg1; ldv_dispatch_irq_deregister_8_1(ldv_8_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_9_netdev_net_device ; { { ldv_9_netdev_net_device = arg1; ldv_free((void *)ldv_9_netdev_net_device); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = qlge_isr(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_0_line_line = data->arg0; ldv_0_callback_handler = data->arg1; ldv_0_thread_thread = data->arg2; ldv_0_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } } else { { assume_abort_if_not((unsigned int )ldv_0_ret_val_default != 2U); } } return; return; } } int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) { struct timer_list *ldv_10_timer_list_timer_list ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not(arg0 == 0); ldv_10_timer_list_timer_list = arg1; ldv_dispatch_instance_register_10_2(ldv_10_timer_list_timer_list); } return (arg0); } else { { assume_abort_if_not(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_net_dummy_resourceless_instance_1(void *arg0 ) { int (*ldv_1_callback_get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; void (*ldv_1_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) ; unsigned int (*ldv_1_callback_get_msglevel)(struct net_device * ) ; void (*ldv_1_callback_get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*ldv_1_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; int (*ldv_1_callback_get_regs_len)(struct net_device * ) ; int (*ldv_1_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_1_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_1_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; void (*ldv_1_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) ; unsigned long long (*ldv_1_callback_ndo_fix_features)(struct net_device * , unsigned long long ) ; struct net_device_stats *(*ldv_1_callback_ndo_get_stats)(struct net_device * ) ; int (*ldv_1_callback_ndo_set_features)(struct net_device * , unsigned long long ) ; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_1_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) ; int (*ldv_1_callback_ndo_vlan_rx_add_vid)(struct net_device * , unsigned short , unsigned short ) ; int (*ldv_1_callback_ndo_vlan_rx_kill_vid)(struct net_device * , unsigned short , unsigned short ) ; void (*ldv_1_callback_self_test)(struct net_device * , struct ethtool_test * , unsigned long long * ) ; int (*ldv_1_callback_set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*ldv_1_callback_set_msglevel)(struct net_device * , unsigned int ) ; int (*ldv_1_callback_set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*ldv_1_callback_set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; int (*ldv_1_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; enum ethtool_phys_id_state ldv_1_container_enum_ethtool_phys_id_state ; struct net_device *ldv_1_container_net_device ; struct ethtool_cmd *ldv_1_container_struct_ethtool_cmd_ptr ; struct ethtool_coalesce *ldv_1_container_struct_ethtool_coalesce_ptr ; struct ethtool_drvinfo *ldv_1_container_struct_ethtool_drvinfo_ptr ; struct ethtool_pauseparam *ldv_1_container_struct_ethtool_pauseparam_ptr ; struct ethtool_regs *ldv_1_container_struct_ethtool_regs_ptr ; struct ethtool_stats *ldv_1_container_struct_ethtool_stats_ptr ; struct ethtool_test *ldv_1_container_struct_ethtool_test_ptr ; struct ethtool_wolinfo *ldv_1_container_struct_ethtool_wolinfo_ptr ; struct sk_buff *ldv_1_container_struct_sk_buff_ptr ; int ldv_1_ldv_param_17_1_default ; unsigned int ldv_1_ldv_param_20_1_default ; unsigned char *ldv_1_ldv_param_20_2_default ; int ldv_1_ldv_param_24_1_default ; unsigned long long ldv_1_ldv_param_27_1_default ; unsigned long long ldv_1_ldv_param_31_1_default ; unsigned short ldv_1_ldv_param_39_1_default ; unsigned short ldv_1_ldv_param_39_2_default ; unsigned short ldv_1_ldv_param_42_1_default ; unsigned short ldv_1_ldv_param_42_2_default ; unsigned long long *ldv_1_ldv_param_45_2_default ; unsigned int ldv_1_ldv_param_49_1_default ; unsigned long long *ldv_1_ldv_param_8_2_default ; struct ldv_struct_dummy_resourceless_instance_1 *data ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; { data = (struct ldv_struct_dummy_resourceless_instance_1 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_1 *)0)) { { ldv_1_container_net_device = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_1; return; ldv_call_1: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } if (tmp == 23) { goto case_23; } else { } if (tmp == 24) { goto case_24; } else { } if (tmp == 25) { goto case_25; } else { } if (tmp == 26) { goto case_26; } else { } if (tmp == 27) { goto case_27; } else { } if (tmp == 28) { goto case_28; } else { } if (tmp == 29) { goto case_29; } else { } if (tmp == 30) { goto case_30; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_54(ldv_1_callback_set_wol, ldv_1_container_net_device, ldv_1_container_struct_ethtool_wolinfo_ptr); } goto ldv_call_1; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_53(ldv_1_callback_set_phys_id, ldv_1_container_net_device, ldv_1_container_enum_ethtool_phys_id_state); } goto ldv_call_1; goto ldv_call_1; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_52(ldv_1_callback_set_pauseparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_pauseparam_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_49(ldv_1_callback_set_msglevel, ldv_1_container_net_device, ldv_1_ldv_param_49_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_48(ldv_1_callback_set_coalesce, ldv_1_container_net_device, ldv_1_container_struct_ethtool_coalesce_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_6: /* CIL Label */ { tmp___0 = ldv_xmalloc(8UL); ldv_1_ldv_param_45_2_default = (unsigned long long *)tmp___0; ldv_dummy_resourceless_instance_callback_1_45(ldv_1_callback_self_test, ldv_1_container_net_device, ldv_1_container_struct_ethtool_test_ptr, ldv_1_ldv_param_45_2_default); ldv_free((void *)ldv_1_ldv_param_45_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_42(ldv_1_callback_ndo_vlan_rx_kill_vid, ldv_1_container_net_device, (int )ldv_1_ldv_param_42_1_default, (int )ldv_1_ldv_param_42_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_39(ldv_1_callback_ndo_vlan_rx_add_vid, ldv_1_container_net_device, (int )ldv_1_ldv_param_39_1_default, (int )ldv_1_ldv_param_39_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_38(ldv_1_callback_ndo_validate_addr, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_37(ldv_1_callback_ndo_tx_timeout, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_36(ldv_1_callback_ndo_start_xmit, ldv_1_container_struct_sk_buff_ptr, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_35(ldv_1_callback_ndo_set_rx_mode, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_34(ldv_1_callback_ndo_set_mac_address, ldv_1_container_net_device, (void *)ldv_1_container_struct_ethtool_cmd_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_31(ldv_1_callback_ndo_set_features, ldv_1_container_net_device, ldv_1_ldv_param_31_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_30(ldv_1_callback_ndo_get_stats, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_27(ldv_1_callback_ndo_fix_features, ldv_1_container_net_device, ldv_1_ldv_param_27_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_17: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_24(ldv_1_callback_ndo_change_mtu, ldv_1_container_net_device, ldv_1_ldv_param_24_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_18: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_23(ldv_1_callback_get_wol, ldv_1_container_net_device, ldv_1_container_struct_ethtool_wolinfo_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_19: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_1_ldv_param_20_2_default = (unsigned char *)tmp___1; ldv_dummy_resourceless_instance_callback_1_20(ldv_1_callback_get_strings, ldv_1_container_net_device, ldv_1_ldv_param_20_1_default, ldv_1_ldv_param_20_2_default); ldv_free((void *)ldv_1_ldv_param_20_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_20: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_17(ldv_1_callback_get_sset_count, ldv_1_container_net_device, ldv_1_ldv_param_17_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_21: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_16(ldv_1_callback_get_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_15(ldv_1_callback_get_regs_len, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_23: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_14(ldv_1_callback_get_regs, ldv_1_container_net_device, ldv_1_container_struct_ethtool_regs_ptr, (void *)ldv_1_container_struct_ethtool_cmd_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_24: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_13(ldv_1_callback_get_pauseparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_pauseparam_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_25: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_12(ldv_1_callback_get_msglevel, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_26: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_11(ldv_1_callback_get_link, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_27: /* CIL Label */ { tmp___2 = ldv_xmalloc(8UL); ldv_1_ldv_param_8_2_default = (unsigned long long *)tmp___2; ldv_dummy_resourceless_instance_callback_1_8(ldv_1_callback_get_ethtool_stats, ldv_1_container_net_device, ldv_1_container_struct_ethtool_stats_ptr, ldv_1_ldv_param_8_2_default); ldv_free((void *)ldv_1_ldv_param_8_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_7(ldv_1_callback_get_drvinfo, ldv_1_container_net_device, ldv_1_container_struct_ethtool_drvinfo_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_29: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_3(ldv_1_callback_get_coalesce, ldv_1_container_net_device, ldv_1_container_struct_ethtool_coalesce_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_30: /* CIL Label */ ; return; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_instance_callback_2_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) { { { qlge_io_error_detected(arg1, arg2); } return; } } void ldv_pci_instance_callback_2_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { qlge_io_resume(arg1); } return; } } void ldv_pci_instance_callback_2_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { qlge_io_slot_reset(arg1); } return; } } int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = qlge_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { qlge_remove(arg1); } return; } } void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { qlge_resume(arg1); } return; } } void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { qlge_shutdown(arg1); } return; } } int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = qlge_suspend(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_2(void *arg0 ) { unsigned int (*ldv_2_callback_error_detected)(struct pci_dev * , enum pci_channel_state ) ; void (*ldv_2_callback_func_1_ptr)(struct pci_dev * ) ; unsigned int (*ldv_2_callback_slot_reset)(struct pci_dev * ) ; struct pci_driver *ldv_2_container_pci_driver ; struct pci_dev *ldv_2_resource_dev ; enum pci_channel_state ldv_2_resource_enum_pci_channel_state ; struct pm_message ldv_2_resource_pm_message ; struct pci_device_id *ldv_2_resource_struct_pci_device_id_ptr ; int ldv_2_ret_default ; struct ldv_struct_pci_instance_2 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_2 *)arg0; ldv_2_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_2 *)0)) { { ldv_2_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2968UL); ldv_2_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_2_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_2; return; ldv_main_2: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_ldv_pre_probe_168(); ldv_2_ret_default = ldv_pci_instance_probe_2_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_2_container_pci_driver->probe, ldv_2_resource_dev, ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = ldv_ldv_post_probe_169(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { assume_abort_if_not(ldv_2_ret_default == 0); } goto ldv_call_2; } else { { assume_abort_if_not(ldv_2_ret_default != 0); } goto ldv_main_2; } } else { { ldv_free((void *)ldv_2_resource_dev); ldv_free((void *)ldv_2_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_2: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } if (tmp___3 == 4) { goto case_4; } else { } if (tmp___3 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_pci_instance_callback_2_24(ldv_2_callback_slot_reset, ldv_2_resource_dev); } goto ldv_call_2; case_2: /* CIL Label */ { ldv_pci_instance_callback_2_23(ldv_2_callback_func_1_ptr, ldv_2_resource_dev); } goto ldv_call_2; goto ldv_call_2; case_3: /* CIL Label */ { ldv_pci_instance_callback_2_10(ldv_2_callback_error_detected, ldv_2_resource_dev, ldv_2_resource_enum_pci_channel_state); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_4: /* CIL Label */ { ldv_2_ret_default = ldv_pci_instance_suspend_2_8(ldv_2_container_pci_driver->suspend, ldv_2_resource_dev, ldv_2_resource_pm_message); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); } if ((unsigned long )ldv_2_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_late_2_7(ldv_2_container_pci_driver->suspend_late, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); } if ((unsigned long )ldv_2_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_2_6(ldv_2_container_pci_driver->resume_early, ldv_2_resource_dev); } } else { } { ldv_pci_instance_resume_2_5(ldv_2_container_pci_driver->resume, ldv_2_resource_dev); } goto ldv_call_2; case_5: /* CIL Label */ { ldv_pci_instance_shutdown_2_3(ldv_2_container_pci_driver->shutdown, ldv_2_resource_dev); ldv_pci_instance_release_2_2(ldv_2_container_pci_driver->remove, ldv_2_resource_dev); } goto ldv_main_2; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_14_pci_driver_pci_driver ; { { ldv_14_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_14_1(ldv_14_pci_driver_pci_driver); } return; return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_11_netdev_net_device ; int ldv_11_ret_default ; int tmp ; int tmp___0 ; { { ldv_11_ret_default = 1; ldv_11_ret_default = ldv_pre_register_netdev(); ldv_11_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { assume_abort_if_not(ldv_11_ret_default == 0); ldv_11_ret_default = ldv_register_netdev_open_11_6((ldv_11_netdev_net_device->netdev_ops)->ndo_open, ldv_11_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not(ldv_11_ret_default == 0); ldv_dispatch_register_11_4(ldv_11_netdev_net_device); } } else { { assume_abort_if_not(ldv_11_ret_default != 0); } } } else { { assume_abort_if_not(ldv_11_ret_default != 0); } } return (ldv_11_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_11_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = qlge_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_12_callback_handler)(int , void * ) ; void *ldv_12_data_data ; int ldv_12_line_line ; enum irqreturn (*ldv_12_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not(arg0 == 0); ldv_12_line_line = (int )arg1; ldv_12_callback_handler = arg2; ldv_12_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_12_data_data = arg5; ldv_dispatch_irq_register_12_2(ldv_12_line_line, ldv_12_callback_handler, ldv_12_thread_thread, ldv_12_data_data); } return (arg0); } else { { assume_abort_if_not(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_struct_nic_operations_dummy_resourceless_instance_3(void *arg0 ) { int (*ldv_3_callback_get_flash)(struct ql_adapter * ) ; int (*ldv_3_callback_port_initialize)(struct ql_adapter * ) ; struct ql_adapter *ldv_3_container_struct_ql_adapter_ptr ; int tmp ; { goto ldv_call_3; return; ldv_call_3: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_7(ldv_3_callback_port_initialize, ldv_3_container_struct_ql_adapter_ptr); } goto ldv_call_3; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_3(ldv_3_callback_get_flash, ldv_3_container_struct_ql_adapter_ptr); } goto ldv_call_3; goto ldv_call_3; case_3: /* CIL Label */ ; return; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } return; } } void ldv_struct_nic_operations_dummy_resourceless_instance_4(void *arg0 ) { int (*ldv_4_callback_get_flash)(struct ql_adapter * ) ; int (*ldv_4_callback_port_initialize)(struct ql_adapter * ) ; struct ql_adapter *ldv_4_container_struct_ql_adapter_ptr ; int tmp ; { goto ldv_call_4; return; ldv_call_4: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_7(ldv_4_callback_port_initialize, ldv_4_container_struct_ql_adapter_ptr); } goto ldv_call_4; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_3(ldv_4_callback_get_flash, ldv_4_container_struct_ql_adapter_ptr); } goto ldv_call_4; goto ldv_call_4; case_3: /* CIL Label */ ; return; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } return; } } void ldv_timer_instance_callback_5_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_5(void *arg0 ) { struct timer_list *ldv_5_container_timer_list ; struct ldv_struct_timer_instance_5 *data ; { data = (struct ldv_struct_timer_instance_5 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_5 *)0)) { { ldv_5_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_5_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_5_2(ldv_5_container_timer_list->function, ldv_5_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_13_netdev_net_device ; { { ldv_13_netdev_net_device = arg1; ldv_unregister_netdev_stop_13_2((ldv_13_netdev_net_device->netdev_ops)->ndo_stop, ldv_13_netdev_net_device); ldv_dispatch_deregister_13_1(ldv_13_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_13_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { qlge_close(arg1); } return; } } __inline static void atomic_inc(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_inc(v); } return; } } __inline static void atomic_dec(atomic_t *v ) { { { ldv_linux_usb_dev_atomic_dec(v); } return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { int tmp ; { { tmp = ldv_linux_usb_dev_atomic_dec_and_test(v); } return (tmp); } } __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct page)); } return ((struct page *)tmp); } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc(size); ldv_after_alloc(res); } return (res); } } void *ldv_calloc(size_t nmemb , size_t size ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_calloc(n, size); ldv_after_alloc(res); } return (res); } } __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_zalloc(size); } return (tmp); } } static struct sk_buff *ldv___netdev_alloc_skb_103(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); } return ((struct sk_buff *)tmp); } } static int ldv_pskb_expand_head_106(struct sk_buff *ldv_func_arg1 , int ldv_func_arg2 , int ldv_func_arg3 , gfp_t flags ) { { { ldv_check_alloc_flags(flags); } return __VERIFIER_nondet_int(); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_126(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_hw_lock_of_ql_adapter(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_127(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_hw_lock_of_ql_adapter(); spin_unlock_irqrestore(lock, flags); } return; } } __inline static void ldv_spin_lock_128(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_hw_lock_of_ql_adapter(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_129(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_hw_lock_of_ql_adapter(); spin_unlock(lock); } return; } } static unsigned long ldv_find_first_bit_130(unsigned long const *addr , unsigned long size ) { unsigned long tmp ; { { tmp = ldv_linux_lib_find_bit_find_first_bit(size); } return (tmp); } } static unsigned long ldv_find_next_bit_131(unsigned long const *addr , unsigned long size , unsigned long offset ) { unsigned long tmp ; { { tmp = ldv_linux_lib_find_bit_find_next_bit(size, offset); } return (tmp); } } static void ldv_free_irq_137(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_138(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static int ldv_request_irq_139(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_140(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_rtnl_lock_141(void) { { { rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_lock(); } return; } } static void ldv_rtnl_unlock_142(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_rtnl_unlock_143(void) { { { rtnl_unlock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } static void ldv_iounmap_144(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void ldv_iounmap_145(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void *ldv_ioremap_nocache_146(resource_size_t ldv_func_arg1 , unsigned long ldv_func_arg2 ) { void *tmp ; { { tmp = ldv_linux_arch_io_io_mem_remap(ldv_func_arg2); } return (tmp); } } static void *ldv_ioremap_nocache_147(resource_size_t ldv_func_arg1 , unsigned long ldv_func_arg2 ) { void *tmp ; { { tmp = ldv_linux_arch_io_io_mem_remap(ldv_func_arg2); } return (tmp); } } static void *ldv_vmalloc_148(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc(ldv_func_arg1); } return (tmp); } } __inline static void ldv_init_completion_149(struct completion *x ) { { { ldv_linux_kernel_sched_completion_init_completion_ide_completion_of_ql_adapter(); } return; } } static int ldv_mod_timer_150(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static struct net_device *ldv_alloc_etherdev_mqs_151(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___4 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_152(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv_register_netdev_153(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_154(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv_del_timer_sync_155(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_unregister_netdev_156(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_157(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv_del_timer_sync_158(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___7 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_159(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___8 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_160(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___9 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_161(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___10 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv___pci_register_driver_162(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___11 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_163(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_init_164(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_165(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_166(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_167(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_168(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_169(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } int ql_write_mpi_reg(struct ql_adapter *qdev , u32 reg , u32 data ) ; int ql_unpause_mpi_risc(struct ql_adapter *qdev ) ; int ql_pause_mpi_risc(struct ql_adapter *qdev ) ; int ql_hard_reset_mpi_risc(struct ql_adapter *qdev ) ; int ql_soft_reset_mpi_risc(struct ql_adapter *qdev ) ; int ql_dump_risc_ram_area(struct ql_adapter *qdev , void *buf , u32 ram_addr , int word_count ) ; int ql_core_dump(struct ql_adapter *qdev , struct ql_mpi_coredump *mpi_coredump ) ; void ql_get_dump(struct ql_adapter *qdev , void *buff ) ; int ql_own_firmware(struct ql_adapter *qdev ) ; static u32 ql_read_other_func_reg(struct ql_adapter *qdev , u32 reg ) { u32 register_to_read ; u32 reg_val ; unsigned int status ; int tmp ; { { status = 0U; register_to_read = ((qdev->alt_func << 6) | reg) | 131072U; tmp = ql_read_mpi_reg(qdev, register_to_read, & reg_val); status = (unsigned int )tmp; } if (status != 0U) { return (4294967295U); } else { } return (reg_val); } } static int ql_write_other_func_reg(struct ql_adapter *qdev , u32 reg , u32 reg_val ) { u32 register_to_read ; int status ; { { status = 0; register_to_read = ((qdev->alt_func << 6) | reg) | 131072U; status = ql_write_mpi_reg(qdev, register_to_read, reg_val); } return (status); } } static int ql_wait_other_func_reg_rdy(struct ql_adapter *qdev , u32 reg , u32 bit , u32 err_bit ) { u32 temp ; int count ; unsigned long __ms ; unsigned long tmp ; { count = 10; goto ldv_48303; ldv_48302: { temp = ql_read_other_func_reg(qdev, reg); } if ((temp & err_bit) != 0U) { return (-1); } else if ((temp & bit) != 0U) { return (0); } else { } __ms = 10UL; goto ldv_48300; ldv_48299: { __const_udelay(4295000UL); } ldv_48300: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_48299; } else { } count = count - 1; ldv_48303: ; if (count != 0) { goto ldv_48302; } else { } return (-1); } } static int ql_read_other_func_serdes_reg(struct ql_adapter *qdev , u32 reg , u32 *data ) { int status ; { { status = ql_wait_other_func_reg_rdy(qdev, 60U, 2147483648U, 0U); } if (status != 0) { goto exit; } else { } { ql_write_other_func_reg(qdev, 60U, reg | 1073741824U); status = ql_wait_other_func_reg_rdy(qdev, 60U, 2147483648U, 0U); } if (status != 0) { goto exit; } else { } { *data = ql_read_other_func_reg(qdev, 61U); } exit: ; return (status); } } static int ql_read_serdes_reg(struct ql_adapter *qdev , u32 reg , u32 *data ) { int status ; { { status = ql_wait_reg_rdy(qdev, 240U, 2147483648U, 0U); } if (status != 0) { goto exit; } else { } { ql_write32((struct ql_adapter const *)qdev, 240, reg | 1073741824U); status = ql_wait_reg_rdy(qdev, 240U, 2147483648U, 0U); } if (status != 0) { goto exit; } else { } { *data = ql_read32((struct ql_adapter const *)qdev, 244); } exit: ; return (status); } } static void ql_get_both_serdes(struct ql_adapter *qdev , u32 addr , u32 *direct_ptr , u32 *indirect_ptr , unsigned int direct_valid , unsigned int indirect_valid ) { unsigned int status ; int tmp ; int tmp___0 ; { status = 1U; if (direct_valid != 0U) { { tmp = ql_read_serdes_reg(qdev, addr, direct_ptr); status = (unsigned int )tmp; } } else { } if (status != 0U) { *direct_ptr = 3735928559U; } else { } status = 1U; if (indirect_valid != 0U) { { tmp___0 = ql_read_other_func_serdes_reg(qdev, addr, indirect_ptr); status = (unsigned int )tmp___0; } } else { } if (status != 0U) { *indirect_ptr = 3735928559U; } else { } return; } } static int ql_get_serdes_regs(struct ql_adapter *qdev , struct ql_mpi_coredump *mpi_coredump ) { int status ; unsigned int xfi_direct_valid ; unsigned int xfi_indirect_valid ; unsigned int xaui_direct_valid ; unsigned int xaui_indirect_valid ; unsigned int i ; u32 *direct_ptr ; u32 temp ; u32 *indirect_ptr ; { xfi_indirect_valid = 0U; xfi_direct_valid = xfi_indirect_valid; xaui_indirect_valid = 1U; xaui_direct_valid = xaui_indirect_valid; if ((int )qdev->func & 1) { { status = ql_read_other_func_serdes_reg(qdev, 2048U, & temp); } if (status != 0) { temp = 1U; } else { } if ((int )temp & 1) { xaui_indirect_valid = 0U; } else { } { status = ql_read_serdes_reg(qdev, 2048U, & temp); } if (status != 0) { temp = 1U; } else { } if ((int )temp & 1) { xaui_direct_valid = 0U; } else { } } else { { status = ql_read_other_func_serdes_reg(qdev, 2048U, & temp); } if (status != 0) { temp = 1U; } else { } if ((int )temp & 1) { xaui_indirect_valid = 0U; } else { } { status = ql_read_serdes_reg(qdev, 2048U, & temp); } if (status != 0) { temp = 1U; } else { } if ((int )temp & 1) { xaui_direct_valid = 0U; } else { } } { status = ql_read_serdes_reg(qdev, 7686U, & temp); } if (status != 0) { temp = 0U; } else { } if ((temp & 5U) == 5U) { if ((int )qdev->func & 1) { xfi_indirect_valid = 1U; } else { xfi_direct_valid = 1U; } } else { } if ((temp & 10U) == 10U) { if ((int )qdev->func & 1) { xfi_direct_valid = 1U; } else { xfi_indirect_valid = 1U; } } else { } if ((int )qdev->func & 1) { direct_ptr = (u32 *)(& mpi_coredump->serdes2_xaui_an); indirect_ptr = (u32 *)(& mpi_coredump->serdes_xaui_an); } else { direct_ptr = (u32 *)(& mpi_coredump->serdes_xaui_an); indirect_ptr = (u32 *)(& mpi_coredump->serdes2_xaui_an); } i = 0U; goto ldv_48342; ldv_48341: { ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr, xaui_direct_valid, xaui_indirect_valid); i = i + 4U; direct_ptr = direct_ptr + 1; indirect_ptr = indirect_ptr + 1; } ldv_48342: ; if (i <= 52U) { goto ldv_48341; } else { } if ((int )qdev->func & 1) { direct_ptr = (u32 *)(& mpi_coredump->serdes2_xaui_hss_pcs); indirect_ptr = (u32 *)(& mpi_coredump->serdes_xaui_hss_pcs); } else { direct_ptr = (u32 *)(& mpi_coredump->serdes_xaui_hss_pcs); indirect_ptr = (u32 *)(& mpi_coredump->serdes2_xaui_hss_pcs); } i = 2048U; goto ldv_48345; ldv_48344: { ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr, xaui_direct_valid, xaui_indirect_valid); i = i + 4U; direct_ptr = direct_ptr + 1; indirect_ptr = indirect_ptr + 1; } ldv_48345: ; if (i <= 2176U) { goto ldv_48344; } else { } if ((int )qdev->func & 1) { direct_ptr = (u32 *)(& mpi_coredump->serdes2_xfi_an); indirect_ptr = (u32 *)(& mpi_coredump->serdes_xfi_an); } else { direct_ptr = (u32 *)(& mpi_coredump->serdes_xfi_an); indirect_ptr = (u32 *)(& mpi_coredump->serdes2_xfi_an); } i = 4096U; goto ldv_48348; ldv_48347: { ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr, xfi_direct_valid, xfi_indirect_valid); i = i + 4U; direct_ptr = direct_ptr + 1; indirect_ptr = indirect_ptr + 1; } ldv_48348: ; if (i <= 4148U) { goto ldv_48347; } else { } if ((int )qdev->func & 1) { direct_ptr = (u32 *)(& mpi_coredump->serdes2_xfi_train); indirect_ptr = (u32 *)(& mpi_coredump->serdes_xfi_train); } else { direct_ptr = (u32 *)(& mpi_coredump->serdes_xfi_train); indirect_ptr = (u32 *)(& mpi_coredump->serdes2_xfi_train); } i = 4176U; goto ldv_48351; ldv_48350: { ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr, xfi_direct_valid, xfi_indirect_valid); i = i + 4U; direct_ptr = direct_ptr + 1; indirect_ptr = indirect_ptr + 1; } ldv_48351: ; if (i <= 4220U) { goto ldv_48350; } else { } if ((int )qdev->func & 1) { direct_ptr = (u32 *)(& mpi_coredump->serdes2_xfi_hss_pcs); indirect_ptr = (u32 *)(& mpi_coredump->serdes_xfi_hss_pcs); } else { direct_ptr = (u32 *)(& mpi_coredump->serdes_xfi_hss_pcs); indirect_ptr = (u32 *)(& mpi_coredump->serdes2_xfi_hss_pcs); } i = 6144U; goto ldv_48354; ldv_48353: { ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr, xfi_direct_valid, xfi_indirect_valid); i = i + 4U; direct_ptr = direct_ptr + 1; indirect_ptr = indirect_ptr + 1; } ldv_48354: ; if (i <= 6200U) { goto ldv_48353; } else { } if ((int )qdev->func & 1) { direct_ptr = (u32 *)(& mpi_coredump->serdes2_xfi_hss_tx); indirect_ptr = (u32 *)(& mpi_coredump->serdes_xfi_hss_tx); } else { direct_ptr = (u32 *)(& mpi_coredump->serdes_xfi_hss_tx); indirect_ptr = (u32 *)(& mpi_coredump->serdes2_xfi_hss_tx); } i = 7168U; goto ldv_48357; ldv_48356: { ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr, xfi_direct_valid, xfi_indirect_valid); i = i + 1U; direct_ptr = direct_ptr + 1; indirect_ptr = indirect_ptr + 1; } ldv_48357: ; if (i <= 7199U) { goto ldv_48356; } else { } if ((int )qdev->func & 1) { direct_ptr = (u32 *)(& mpi_coredump->serdes2_xfi_hss_rx); indirect_ptr = (u32 *)(& mpi_coredump->serdes_xfi_hss_rx); } else { direct_ptr = (u32 *)(& mpi_coredump->serdes_xfi_hss_rx); indirect_ptr = (u32 *)(& mpi_coredump->serdes2_xfi_hss_rx); } i = 7232U; goto ldv_48360; ldv_48359: { ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr, xfi_direct_valid, xfi_indirect_valid); i = i + 1U; direct_ptr = direct_ptr + 1; indirect_ptr = indirect_ptr + 1; } ldv_48360: ; if (i <= 7263U) { goto ldv_48359; } else { } if ((int )qdev->func & 1) { direct_ptr = (u32 *)(& mpi_coredump->serdes2_xfi_hss_pll); indirect_ptr = (u32 *)(& mpi_coredump->serdes_xfi_hss_pll); } else { direct_ptr = (u32 *)(& mpi_coredump->serdes_xfi_hss_pll); indirect_ptr = (u32 *)(& mpi_coredump->serdes2_xfi_hss_pll); } i = 7680U; goto ldv_48363; ldv_48362: { ql_get_both_serdes(qdev, i, direct_ptr, indirect_ptr, xfi_direct_valid, xfi_indirect_valid); i = i + 1U; direct_ptr = direct_ptr + 1; indirect_ptr = indirect_ptr + 1; } ldv_48363: ; if (i <= 7711U) { goto ldv_48362; } else { } return (0); } } static int ql_read_other_func_xgmac_reg(struct ql_adapter *qdev , u32 reg , u32 *data ) { int status ; { { status = 0; status = ql_wait_other_func_reg_rdy(qdev, 30U, 2147483648U, 536870912U); } if (status != 0) { goto exit; } else { } { ql_write_other_func_reg(qdev, 30U, reg | 1073741824U); status = ql_wait_other_func_reg_rdy(qdev, 30U, 2147483648U, 536870912U); } if (status != 0) { goto exit; } else { } { *data = ql_read_other_func_reg(qdev, 31U); } exit: ; return (status); } } static int ql_get_xgmac_regs(struct ql_adapter *qdev , u32 *buf , unsigned int other_function ) { int status ; int i ; { status = 0; i = 256; goto ldv_48381; ldv_48380: ; if (((((((((((((((i == 276 || i == 280) || (i == 316 || i == 320)) || (unsigned int )i - 337U <= 170U) || (unsigned int )i - 633U <= 38U) || (unsigned int )i - 705U <= 13U) || (unsigned int )i - 733U <= 18U) || (unsigned int )i - 969U <= 54U) || (unsigned int )i - 1025U <= 14U) || (unsigned int )i - 1041U <= 14U) || (unsigned int )i - 1057U <= 14U) || (unsigned int )i - 1073U <= 14U) || (unsigned int )i - 1089U <= 14U) || (unsigned int )i - 1105U <= 174U) || (unsigned int )i - 1357U <= 26U) || (unsigned int )i - 1481U <= 54U) { if (other_function != 0U) { { status = ql_read_other_func_xgmac_reg(qdev, (u32 )i, buf); } } else { { status = ql_read_xgmac_reg(qdev, (u32 )i, buf); } } if (status != 0) { *buf = 3735928559U; } else { } goto ldv_48379; } else { } i = i + 4; buf = buf + 1; ldv_48381: ; if (i <= 1855) { goto ldv_48380; } else { } ldv_48379: ; return (status); } } static int ql_get_ets_regs(struct ql_adapter *qdev , u32 *buf ) { int status ; int i ; { status = 0; i = 0; goto ldv_48389; ldv_48388: { ql_write32((struct ql_adapter const *)qdev, 128, (u32 )((i << 29) | 134217728)); *buf = ql_read32((struct ql_adapter const *)qdev, 128); i = i + 1; buf = buf + 1; } ldv_48389: ; if (i <= 7) { goto ldv_48388; } else { } i = 0; goto ldv_48392; ldv_48391: { ql_write32((struct ql_adapter const *)qdev, 132, (u32 )((i << 29) | 134217728)); *buf = ql_read32((struct ql_adapter const *)qdev, 132); i = i + 1; buf = buf + 1; } ldv_48392: ; if (i <= 1) { goto ldv_48391; } else { } return (status); } } static void ql_get_intr_states(struct ql_adapter *qdev , u32 *buf ) { int i ; { i = 0; goto ldv_48400; ldv_48399: { ql_write32((struct ql_adapter const *)qdev, 52, qdev->intr_context[i].intr_read_mask); *buf = ql_read32((struct ql_adapter const *)qdev, 52); i = i + 1; buf = buf + 1; } ldv_48400: ; if (i < qdev->rx_ring_count) { goto ldv_48399; } else { } return; } } static int ql_get_cam_entries(struct ql_adapter *qdev , u32 *buf ) { int i ; int status ; u32 value[3U] ; u32 *tmp ; u32 *tmp___0 ; u32 *tmp___1 ; u32 *tmp___2 ; u32 *tmp___3 ; { { status = ql_sem_spinlock(qdev, 12582912U); } if (status != 0) { return (status); } else { } i = 0; goto ldv_48411; ldv_48410: { status = ql_get_mac_addr_reg(qdev, 0U, (int )((u16 )i), (u32 *)(& value)); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed read of mac index register\n"); } } else { } goto err; } else { } tmp = buf; buf = buf + 1; *tmp = value[0]; tmp___0 = buf; buf = buf + 1; *tmp___0 = value[1]; tmp___1 = buf; buf = buf + 1; *tmp___1 = value[2]; i = i + 1; ldv_48411: ; if (i <= 15) { goto ldv_48410; } else { } i = 0; goto ldv_48414; ldv_48413: { status = ql_get_mac_addr_reg(qdev, 65536U, (int )((u16 )i), (u32 *)(& value)); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed read of mac index register\n"); } } else { } goto err; } else { } tmp___2 = buf; buf = buf + 1; *tmp___2 = value[0]; tmp___3 = buf; buf = buf + 1; *tmp___3 = value[1]; i = i + 1; ldv_48414: ; if (i <= 31) { goto ldv_48413; } else { } err: { ql_sem_unlock(qdev, 12582912U); } return (status); } } static int ql_get_routing_entries(struct ql_adapter *qdev , u32 *buf ) { int status ; u32 value ; u32 i ; u32 *tmp ; { { status = ql_sem_spinlock(qdev, 805306368U); } if (status != 0) { return (status); } else { } i = 0U; goto ldv_48425; ldv_48424: { status = ql_get_routing_reg(qdev, i, & value); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed read of routing index register\n"); } } else { } goto err; } else { tmp = buf; buf = buf + 1; *tmp = value; } i = i + 1U; ldv_48425: ; if (i <= 15U) { goto ldv_48424; } else { } err: { ql_sem_unlock(qdev, 805306368U); } return (status); } } static int ql_get_mpi_shadow_regs(struct ql_adapter *qdev , u32 *buf ) { u32 i ; int status ; { i = 0U; goto ldv_48435; ldv_48434: { status = ql_write_mpi_reg(qdev, 196732U, (i << 20) | 2952790016U); } if (status != 0) { goto end; } else { } { status = ql_read_mpi_reg(qdev, 196735U, buf); } if (status != 0) { goto end; } else { } i = i + 1U; buf = buf + 1; ldv_48435: ; if (i <= 15U) { goto ldv_48434; } else { } end: ; return (status); } } static int ql_get_mpi_regs(struct ql_adapter *qdev , u32 *buf , u32 offset , u32 count ) { int i ; int status ; { status = 0; i = 0; goto ldv_48446; ldv_48445: { status = ql_read_mpi_reg(qdev, offset + (u32 )i, buf); } if (status != 0) { return (status); } else { } i = i + 1; buf = buf + 1; ldv_48446: ; if ((u32 )i < count) { goto ldv_48445; } else { } return (status); } } static unsigned int *ql_get_probe(struct ql_adapter *qdev , u32 clock , u32 valid , u32 *buf ) { u32 module ; u32 mux_sel ; u32 probe ; u32 lo_val ; u32 hi_val ; { module = 0U; goto ldv_48464; ldv_48463: ; if (((valid >> (int )module) & 1U) == 0U) { goto ldv_48459; } else { } mux_sel = 0U; goto ldv_48461; ldv_48460: { probe = ((clock | mux_sel) | (module << 9)) | 65536U; ql_write32((struct ql_adapter const *)qdev, 248, probe); lo_val = ql_read32((struct ql_adapter const *)qdev, 252); } if (mux_sel == 0U) { *buf = probe; buf = buf + 1; } else { } { probe = probe | 32768U; ql_write32((struct ql_adapter const *)qdev, 248, probe); hi_val = ql_read32((struct ql_adapter const *)qdev, 252); *buf = lo_val; buf = buf + 1; *buf = hi_val; buf = buf + 1; mux_sel = mux_sel + 1U; } ldv_48461: ; if (mux_sel <= 63U) { goto ldv_48460; } else { } ldv_48459: module = module + 1U; ldv_48464: ; if (module <= 20U) { goto ldv_48463; } else { } return (buf); } } static int ql_get_probe_dump(struct ql_adapter *qdev , unsigned int *buf ) { { { ql_write_mpi_reg(qdev, 4110U, 413270016U); buf = ql_get_probe(qdev, 0U, 1015799U, buf); buf = ql_get_probe(qdev, 2U, 16577U, buf); buf = ql_get_probe(qdev, 6U, 226057U, buf); buf = ql_get_probe(qdev, 5U, 12289U, buf); } return (0); } } static int ql_get_routing_index_registers(struct ql_adapter *qdev , u32 *buf ) { int status ; u32 type ; u32 index ; u32 index_max ; u32 result_index ; u32 result_data ; u32 val ; { { status = ql_sem_spinlock(qdev, 805306368U); } if (status != 0) { return (status); } else { } type = 0U; goto ldv_48488; ldv_48487: ; if (type <= 1U) { index_max = 8U; } else { index_max = 16U; } index = 0U; goto ldv_48485; ldv_48484: { val = ((type << 16) | (index << 8)) | 67108864U; ql_write32((struct ql_adapter const *)qdev, 228, val); result_index = 0U; } goto ldv_48482; ldv_48481: { result_index = ql_read32((struct ql_adapter const *)qdev, 228); } ldv_48482: ; if ((result_index & 1073741824U) == 0U) { goto ldv_48481; } else { } { result_data = ql_read32((struct ql_adapter const *)qdev, 232); *buf = type; buf = buf + 1; *buf = index; buf = buf + 1; *buf = result_index; buf = buf + 1; *buf = result_data; buf = buf + 1; index = index + 1U; } ldv_48485: ; if (index < index_max) { goto ldv_48484; } else { } type = type + 1U; ldv_48488: ; if (type <= 3U) { goto ldv_48487; } else { } { ql_sem_unlock(qdev, 805306368U); } return (status); } } static void ql_get_mac_protocol_registers(struct ql_adapter *qdev , u32 *buf ) { u32 result_index ; u32 result_data ; u32 type ; u32 index ; u32 offset ; u32 val ; u32 initial_val ; u32 max_index ; u32 max_offset ; { initial_val = 67108864U; type = 0U; goto ldv_48525; ldv_48524: ; { if (type == 0U) { goto case_0; } else { } if (type == 1U) { goto case_1; } else { } if (type == 2U) { goto case_2; } else { } if (type == 3U) { goto case_3; } else { } if (type == 4U) { goto case_4; } else { } if (type == 5U) { goto case_5; } else { } if (type == 6U) { goto case_6; } else { } if (type == 7U) { goto case_7; } else { } if (type == 8U) { goto case_8; } else { } if (type == 9U) { goto case_9; } else { } goto switch_default; case_0: /* CIL Label */ initial_val = initial_val | 33554432U; max_index = 512U; max_offset = 3U; goto ldv_48504; case_1: /* CIL Label */ max_index = 3U; max_offset = 3U; goto ldv_48504; case_2: /* CIL Label */ ; case_3: /* CIL Label */ max_index = 3U; max_offset = 3U; goto ldv_48504; case_4: /* CIL Label */ max_index = 4U; max_offset = 2U; goto ldv_48504; case_5: /* CIL Label */ max_index = 8U; max_offset = 2U; goto ldv_48504; case_6: /* CIL Label */ max_index = 16U; max_offset = 1U; goto ldv_48504; case_7: /* CIL Label */ max_index = 4U; max_offset = 1U; goto ldv_48504; case_8: /* CIL Label */ max_index = 4U; max_offset = 4U; goto ldv_48504; case_9: /* CIL Label */ max_index = 4U; max_offset = 1U; goto ldv_48504; switch_default: /* CIL Label */ { printk("\vqlge: Bad type!!! 0x%08x\n", type); max_index = 0U; max_offset = 0U; } goto ldv_48504; switch_break: /* CIL Label */ ; } ldv_48504: index = 0U; goto ldv_48522; ldv_48521: offset = 0U; goto ldv_48519; ldv_48518: { val = ((initial_val | (type << 16)) | (index << 4)) | offset; ql_write32((struct ql_adapter const *)qdev, 168, val); result_index = 0U; } goto ldv_48516; ldv_48515: { result_index = ql_read32((struct ql_adapter const *)qdev, 168); } ldv_48516: ; if ((result_index & 1073741824U) == 0U) { goto ldv_48515; } else { } { result_data = ql_read32((struct ql_adapter const *)qdev, 172); *buf = result_index; buf = buf + 1; *buf = result_data; buf = buf + 1; offset = offset + 1U; } ldv_48519: ; if (offset < max_offset) { goto ldv_48518; } else { } index = index + 1U; ldv_48522: ; if (index < max_index) { goto ldv_48521; } else { } type = type + 1U; ldv_48525: ; if (type <= 9U) { goto ldv_48524; } else { } return; } } static void ql_get_sem_registers(struct ql_adapter *qdev , u32 *buf ) { u32 func_num ; u32 reg ; u32 reg_val ; int status ; { func_num = 0U; goto ldv_48536; ldv_48535: { reg = (func_num << 6) | 131097U; status = ql_read_mpi_reg(qdev, reg, & reg_val); *buf = reg_val; } if (status == 0) { *buf = 3735928559U; } else { } buf = buf + 1; func_num = func_num + 1U; ldv_48536: ; if (func_num <= 3U) { goto ldv_48535; } else { } return; } } static void ql_build_coredump_seg_header(struct mpi_coredump_segment_header *seg_hdr , u32 seg_number , u32 seg_size , u8 *desc ) { { { memset((void *)seg_hdr, 0, 32UL); seg_hdr->cookie = 1431677610U; seg_hdr->segNum = seg_number; seg_hdr->segSize = seg_size; memcpy((void *)(& seg_hdr->description), (void const *)desc, 15UL); } return; } } int ql_core_dump(struct ql_adapter *qdev , struct ql_mpi_coredump *mpi_coredump ) { int status ; int i ; { if ((unsigned long )mpi_coredump == (unsigned long )((struct ql_mpi_coredump *)0)) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "No memory allocated\n"); } } else { } return (-22); } else { } { ql_sem_spinlock(qdev, 3221225472U); status = ql_pause_mpi_risc(qdev); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed RISC pause. Status = 0x%.08x\n", status); } } else { } goto err; } else { } { memset((void *)(& mpi_coredump->mpi_global_header), 0, 256UL); mpi_coredump->mpi_global_header.cookie = 1431677610U; mpi_coredump->mpi_global_header.headerSize = 256U; mpi_coredump->mpi_global_header.imageSize = 176196U; memcpy((void *)(& mpi_coredump->mpi_global_header.idString), (void const *)"MPI Coredump", 16UL); ql_build_coredump_seg_header(& mpi_coredump->nic_regs_seg_hdr, 16U, 288U, (u8 *)"NIC1 Registers"); ql_build_coredump_seg_header(& mpi_coredump->nic2_regs_seg_hdr, 17U, 288U, (u8 *)"NIC2 Registers"); ql_build_coredump_seg_header(& mpi_coredump->xgmac1_seg_hdr, 18U, 1888U, (u8 *)"NIC1 XGMac Registers"); ql_build_coredump_seg_header(& mpi_coredump->xgmac2_seg_hdr, 19U, 1888U, (u8 *)"NIC2 XGMac Registers"); } if ((int )qdev->func & 1) { i = 0; goto ldv_48552; ldv_48551: { mpi_coredump->nic2_regs[i] = ql_read32((struct ql_adapter const *)qdev, (int )((unsigned int )i * 4U)); i = i + 1; } ldv_48552: ; if (i <= 63) { goto ldv_48551; } else { } i = 0; goto ldv_48555; ldv_48554: { mpi_coredump->nic_regs[i] = ql_read_other_func_reg(qdev, (u32 )(((unsigned long )i * 4UL) / 4UL)); i = i + 1; } ldv_48555: ; if (i <= 63) { goto ldv_48554; } else { } { ql_get_xgmac_regs(qdev, (u32 *)(& mpi_coredump->xgmac2), 0U); ql_get_xgmac_regs(qdev, (u32 *)(& mpi_coredump->xgmac1), 1U); } } else { i = 0; goto ldv_48558; ldv_48557: { mpi_coredump->nic_regs[i] = ql_read32((struct ql_adapter const *)qdev, (int )((unsigned int )i * 4U)); i = i + 1; } ldv_48558: ; if (i <= 63) { goto ldv_48557; } else { } i = 0; goto ldv_48561; ldv_48560: { mpi_coredump->nic2_regs[i] = ql_read_other_func_reg(qdev, (u32 )(((unsigned long )i * 4UL) / 4UL)); i = i + 1; } ldv_48561: ; if (i <= 63) { goto ldv_48560; } else { } { ql_get_xgmac_regs(qdev, (u32 *)(& mpi_coredump->xgmac1), 0U); ql_get_xgmac_regs(qdev, (u32 *)(& mpi_coredump->xgmac2), 1U); } } { ql_build_coredump_seg_header(& mpi_coredump->xaui_an_hdr, 22U, 88U, (u8 *)"XAUI AN Registers"); ql_build_coredump_seg_header(& mpi_coredump->xaui_hss_pcs_hdr, 23U, 164U, (u8 *)"XAUI HSS PCS Registers"); ql_build_coredump_seg_header(& mpi_coredump->xfi_an_hdr, 24U, 88U, (u8 *)"XFI AN Registers"); ql_build_coredump_seg_header(& mpi_coredump->xfi_train_hdr, 25U, 80U, (u8 *)"XFI TRAIN Registers"); ql_build_coredump_seg_header(& mpi_coredump->xfi_hss_pcs_hdr, 26U, 92U, (u8 *)"XFI HSS PCS Registers"); ql_build_coredump_seg_header(& mpi_coredump->xfi_hss_tx_hdr, 27U, 160U, (u8 *)"XFI HSS TX Registers"); ql_build_coredump_seg_header(& mpi_coredump->xfi_hss_rx_hdr, 28U, 160U, (u8 *)"XFI HSS RX Registers"); ql_build_coredump_seg_header(& mpi_coredump->xfi_hss_pll_hdr, 29U, 160U, (u8 *)"XFI HSS PLL Registers"); ql_build_coredump_seg_header(& mpi_coredump->xaui2_an_hdr, 38U, 88U, (u8 *)"XAUI2 AN Registers"); ql_build_coredump_seg_header(& mpi_coredump->xaui2_hss_pcs_hdr, 39U, 164U, (u8 *)"XAUI2 HSS PCS Registers"); ql_build_coredump_seg_header(& mpi_coredump->xfi2_an_hdr, 40U, 88U, (u8 *)"XFI2 AN Registers"); ql_build_coredump_seg_header(& mpi_coredump->xfi2_train_hdr, 41U, 80U, (u8 *)"XFI2 TRAIN Registers"); ql_build_coredump_seg_header(& mpi_coredump->xfi2_hss_pcs_hdr, 42U, 92U, (u8 *)"XFI2 HSS PCS Registers"); ql_build_coredump_seg_header(& mpi_coredump->xfi2_hss_tx_hdr, 43U, 160U, (u8 *)"XFI2 HSS TX Registers"); ql_build_coredump_seg_header(& mpi_coredump->xfi2_hss_rx_hdr, 44U, 160U, (u8 *)"XFI2 HSS RX Registers"); ql_build_coredump_seg_header(& mpi_coredump->xfi2_hss_pll_hdr, 45U, 160U, (u8 *)"XFI2 HSS PLL Registers"); status = ql_get_serdes_regs(qdev, mpi_coredump); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed Dump of Serdes Registers. Status = 0x%.08x\n", status); } } else { } goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->core_regs_seg_hdr, 1U, 604U, (u8 *)"Core Registers"); status = ql_get_mpi_regs(qdev, (u32 *)(& mpi_coredump->mpi_core_regs), 196608U, 127U); } if (status != 0) { goto err; } else { } { status = ql_get_mpi_shadow_regs(qdev, (u32 *)(& mpi_coredump->mpi_core_sh_regs)); } if (status != 0) { goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->test_logic_regs_seg_hdr, 2U, 124U, (u8 *)"Test Logic Regs"); status = ql_get_mpi_regs(qdev, (u32 *)(& mpi_coredump->test_logic_regs), 4096U, 23U); } if (status != 0) { goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->rmii_regs_seg_hdr, 3U, 288U, (u8 *)"RMII Registers"); status = ql_get_mpi_regs(qdev, (u32 *)(& mpi_coredump->rmii_regs), 4160U, 64U); } if (status != 0) { goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->fcmac1_regs_seg_hdr, 4U, 288U, (u8 *)"FCMAC1 Registers"); status = ql_get_mpi_regs(qdev, (u32 *)(& mpi_coredump->fcmac1_regs), 4224U, 64U); } if (status != 0) { goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->fcmac2_regs_seg_hdr, 5U, 288U, (u8 *)"FCMAC2 Registers"); status = ql_get_mpi_regs(qdev, (u32 *)(& mpi_coredump->fcmac2_regs), 4288U, 64U); } if (status != 0) { goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->fc1_mbx_regs_seg_hdr, 6U, 288U, (u8 *)"FC1 MBox Regs"); status = ql_get_mpi_regs(qdev, (u32 *)(& mpi_coredump->fc1_mbx_regs), 4352U, 64U); } if (status != 0) { goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->ide_regs_seg_hdr, 7U, 288U, (u8 *)"IDE Registers"); status = ql_get_mpi_regs(qdev, (u32 *)(& mpi_coredump->ide_regs), 4416U, 64U); } if (status != 0) { goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->nic1_mbx_regs_seg_hdr, 8U, 288U, (u8 *)"NIC1 MBox Regs"); status = ql_get_mpi_regs(qdev, (u32 *)(& mpi_coredump->nic1_mbx_regs), 4480U, 64U); } if (status != 0) { goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->smbus_regs_seg_hdr, 9U, 288U, (u8 *)"SMBus Registers"); status = ql_get_mpi_regs(qdev, (u32 *)(& mpi_coredump->smbus_regs), 4608U, 64U); } if (status != 0) { goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->fc2_mbx_regs_seg_hdr, 10U, 288U, (u8 *)"FC2 MBox Regs"); status = ql_get_mpi_regs(qdev, (u32 *)(& mpi_coredump->fc2_mbx_regs), 4672U, 64U); } if (status != 0) { goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->nic2_mbx_regs_seg_hdr, 11U, 288U, (u8 *)"NIC2 MBox Regs"); status = ql_get_mpi_regs(qdev, (u32 *)(& mpi_coredump->nic2_mbx_regs), 4736U, 64U); } if (status != 0) { goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->i2c_regs_seg_hdr, 12U, 288U, (u8 *)"I2C Registers"); status = ql_get_mpi_regs(qdev, (u32 *)(& mpi_coredump->i2c_regs), 8128U, 64U); } if (status != 0) { goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->memc_regs_seg_hdr, 13U, 1056U, (u8 *)"MEMC Registers"); status = ql_get_mpi_regs(qdev, (u32 *)(& mpi_coredump->memc_regs), 12288U, 256U); } if (status != 0) { goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->pbus_regs_seg_hdr, 14U, 1056U, (u8 *)"PBUS Registers"); status = ql_get_mpi_regs(qdev, (u32 *)(& mpi_coredump->pbus_regs), 31744U, 256U); } if (status != 0) { goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->mde_regs_seg_hdr, 15U, 56U, (u8 *)"MDE Registers"); status = ql_get_mpi_regs(qdev, (u32 *)(& mpi_coredump->mde_regs), 65536U, 6U); } if (status != 0) { goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->misc_nic_seg_hdr, 30U, 48U, (u8 *)"MISC NIC INFO"); mpi_coredump->misc_nic_info.rx_ring_count = (u32 )qdev->rx_ring_count; mpi_coredump->misc_nic_info.tx_ring_count = (u32 )qdev->tx_ring_count; mpi_coredump->misc_nic_info.intr_count = qdev->intr_count; mpi_coredump->misc_nic_info.function = qdev->func; ql_build_coredump_seg_header(& mpi_coredump->intr_states_seg_hdr, 31U, 100U, (u8 *)"INTR States"); ql_get_intr_states(qdev, (u32 *)(& mpi_coredump->intr_states)); ql_build_coredump_seg_header(& mpi_coredump->cam_entries_seg_hdr, 32U, 608U, (u8 *)"CAM Entries"); status = ql_get_cam_entries(qdev, (u32 *)(& mpi_coredump->cam_entries)); } if (status != 0) { goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->nic_routing_words_seg_hdr, 33U, 96U, (u8 *)"Routing Words"); status = ql_get_routing_entries(qdev, (u32 *)(& mpi_coredump->nic_routing_words)); } if (status != 0) { goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->ets_seg_hdr, 34U, 72U, (u8 *)"ETS Registers"); status = ql_get_ets_regs(qdev, (u32 *)(& mpi_coredump->ets)); } if (status != 0) { goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->probe_dump_seg_hdr, 35U, 17576U, (u8 *)"Probe Dump"); ql_get_probe_dump(qdev, (unsigned int *)(& mpi_coredump->probe_dump)); ql_build_coredump_seg_header(& mpi_coredump->routing_reg_seg_hdr, 36U, 800U, (u8 *)"Routing Regs"); status = ql_get_routing_index_registers(qdev, (u32 *)(& mpi_coredump->routing_regs)); } if (status != 0) { goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->mac_prot_reg_seg_hdr, 37U, 78880U, (u8 *)"MAC Prot Regs"); ql_get_mac_protocol_registers(qdev, (u32 *)(& mpi_coredump->mac_prot_regs)); ql_build_coredump_seg_header(& mpi_coredump->sem_regs_seg_hdr, 50U, 48U, (u8 *)"Sem Registers"); ql_get_sem_registers(qdev, (u32 *)(& mpi_coredump->sem_regs)); ql_write_mpi_reg(qdev, 4106U, 3U); status = ql_unpause_mpi_risc(qdev); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed RISC unpause. Status = 0x%.08x\n", status); } } else { } goto err; } else { } { status = ql_hard_reset_mpi_risc(qdev); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed RISC reset. Status = 0x%.08x\n", status); } } else { } goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->code_ram_seg_hdr, 20U, 32800U, (u8 *)"WCS RAM"); status = ql_dump_risc_ram_area(qdev, (void *)(& mpi_coredump->code_ram), 131072U, 8192); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed Dump of CODE RAM. Status = 0x%.08x\n", status); } } else { } goto err; } else { } { ql_build_coredump_seg_header(& mpi_coredump->memc_ram_seg_hdr, 21U, 32800U, (u8 *)"MEMC RAM"); status = ql_dump_risc_ram_area(qdev, (void *)(& mpi_coredump->memc_ram), 1048576U, 8192); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed Dump of MEMC RAM. Status = 0x%.08x\n", status); } } else { } goto err; } else { } err: { ql_sem_unlock(qdev, 3221225472U); } return (status); } } static void ql_get_core_dump(struct ql_adapter *qdev ) { int tmp ; bool tmp___0 ; int tmp___1 ; { { tmp = ql_own_firmware(qdev); } if (tmp == 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Don\'t own firmware!\n"); } } else { } return; } else { } { tmp___0 = netif_running((struct net_device const *)qdev->ndev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Force Coredump can only be done from interface that is up\n"); } } else { } return; } else { } { ql_queue_fw_error(qdev); } return; } } static void ql_gen_reg_dump(struct ql_adapter *qdev , struct ql_reg_dump *mpi_coredump ) { int i ; int status ; { { memset((void *)(& mpi_coredump->mpi_global_header), 0, 256UL); mpi_coredump->mpi_global_header.cookie = 1431677610U; mpi_coredump->mpi_global_header.headerSize = 256U; mpi_coredump->mpi_global_header.imageSize = 1432U; memcpy((void *)(& mpi_coredump->mpi_global_header.idString), (void const *)"MPI Coredump", 16UL); ql_build_coredump_seg_header(& mpi_coredump->misc_nic_seg_hdr, 30U, 48U, (u8 *)"MISC NIC INFO"); mpi_coredump->misc_nic_info.rx_ring_count = (u32 )qdev->rx_ring_count; mpi_coredump->misc_nic_info.tx_ring_count = (u32 )qdev->tx_ring_count; mpi_coredump->misc_nic_info.intr_count = qdev->intr_count; mpi_coredump->misc_nic_info.function = qdev->func; ql_build_coredump_seg_header(& mpi_coredump->nic_regs_seg_hdr, 16U, 288U, (u8 *)"NIC Registers"); i = 0; } goto ldv_48573; ldv_48572: { mpi_coredump->nic_regs[i] = ql_read32((struct ql_adapter const *)qdev, (int )((unsigned int )i * 4U)); i = i + 1; } ldv_48573: ; if (i <= 63) { goto ldv_48572; } else { } { ql_build_coredump_seg_header(& mpi_coredump->intr_states_seg_hdr, 31U, 64U, (u8 *)"INTR States"); ql_get_intr_states(qdev, (u32 *)(& mpi_coredump->intr_states)); ql_build_coredump_seg_header(& mpi_coredump->cam_entries_seg_hdr, 32U, 608U, (u8 *)"CAM Entries"); status = ql_get_cam_entries(qdev, (u32 *)(& mpi_coredump->cam_entries)); } if (status != 0) { return; } else { } { ql_build_coredump_seg_header(& mpi_coredump->nic_routing_words_seg_hdr, 33U, 96U, (u8 *)"Routing Words"); status = ql_get_routing_entries(qdev, (u32 *)(& mpi_coredump->nic_routing_words)); } if (status != 0) { return; } else { } { ql_build_coredump_seg_header(& mpi_coredump->ets_seg_hdr, 34U, 72U, (u8 *)"ETS Registers"); status = ql_get_ets_regs(qdev, (u32 *)(& mpi_coredump->ets)); } if (status != 0) { return; } else { } return; } } void ql_get_dump(struct ql_adapter *qdev , void *buff ) { int tmp ; int tmp___0 ; { { tmp___0 = constant_test_bit(11L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___0 == 0) { { tmp = ql_core_dump(qdev, (struct ql_mpi_coredump *)buff); } if (tmp == 0) { { ql_soft_reset_mpi_risc(qdev); } } else if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "coredump failed!\n"); } } else { } } else { { ql_gen_reg_dump(qdev, (struct ql_reg_dump *)buff); ql_get_core_dump(qdev); } } return; } } void ql_mpi_core_to_log(struct work_struct *work ) { struct ql_adapter *qdev ; struct work_struct const *__mptr ; u32 *tmp ; u32 count ; int i ; { __mptr = (struct work_struct const *)work; qdev = (struct ql_adapter *)__mptr + 0xffffffffffffacd0UL; count = 44049U; tmp = (u32 *)qdev->mpi_coredump; if ((int )qdev->msg_enable & 1) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "Core is dumping to log file!\n"); } } else { } i = 0; goto ldv_48589; ldv_48588: { printk("\vqlge: %.08x: %.08x %.08x %.08x %.08x %.08x %.08x %.08x %.08x\n", i, *(tmp + (unsigned long )i), *(tmp + ((unsigned long )i + 1UL)), *(tmp + ((unsigned long )i + 2UL)), *(tmp + ((unsigned long )i + 3UL)), *(tmp + ((unsigned long )i + 4UL)), *(tmp + ((unsigned long )i + 5UL)), *(tmp + ((unsigned long )i + 6UL)), *(tmp + ((unsigned long )i + 7UL))); msleep(5U); i = i + 8; } ldv_48589: ; if ((u32 )i < count) { goto ldv_48588; } else { } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion_ide_completion_of_ql_adapter(void) ; static void ldv_mutex_lock_121(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_124(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_mpi_mutex_of_ql_adapter(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_mpi_mutex_of_ql_adapter(struct mutex *lock ) ; static void ldv_mutex_unlock_122(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_125(struct mutex *ldv_func_arg1 ) ; extern unsigned long wait_for_completion_timeout(struct completion * , unsigned long ) ; static unsigned long ldv_wait_for_completion_timeout_123(struct completion *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern void complete(struct completion * ) ; int ql_mb_set_led_cfg(struct ql_adapter *qdev , u32 led_config ) ; int ql_mb_get_led_cfg(struct ql_adapter *qdev ) ; int ql_mb_get_port_cfg(struct ql_adapter *qdev ) ; int ql_mb_set_port_cfg(struct ql_adapter *qdev ) ; int ql_unpause_mpi_risc(struct ql_adapter *qdev ) { u32 tmp ; { { tmp = ql_read32((struct ql_adapter const *)qdev, 20); } if ((tmp & 1024U) == 0U) { return (-5); } else { } { ql_write32((struct ql_adapter const *)qdev, 20, 1073741824U); } return (0); } } int ql_pause_mpi_risc(struct ql_adapter *qdev ) { u32 tmp ; int count ; unsigned long __ms ; unsigned long tmp___0 ; { { count = 3; ql_write32((struct ql_adapter const *)qdev, 20, 805306368U); } ldv_48312: { tmp = ql_read32((struct ql_adapter const *)qdev, 20); } if ((tmp & 1024U) != 0U) { goto ldv_48307; } else { } __ms = 100UL; goto ldv_48310; ldv_48309: { __const_udelay(4295000UL); } ldv_48310: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_48309; } else { } count = count - 1; if (count != 0) { goto ldv_48312; } else { } ldv_48307: ; return (count == 0 ? -110 : 0); } } int ql_hard_reset_mpi_risc(struct ql_adapter *qdev ) { u32 tmp ; int count ; unsigned long __ms ; unsigned long tmp___0 ; { { count = 3; ql_write32((struct ql_adapter const *)qdev, 20, 268435456U); } ldv_48323: { tmp = ql_read32((struct ql_adapter const *)qdev, 20); } if ((tmp & 256U) != 0U) { { ql_write32((struct ql_adapter const *)qdev, 20, 536870912U); } goto ldv_48318; } else { } __ms = 100UL; goto ldv_48321; ldv_48320: { __const_udelay(4295000UL); } ldv_48321: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_48320; } else { } count = count - 1; if (count != 0) { goto ldv_48323; } else { } ldv_48318: ; return (count == 0 ? -110 : 0); } } int ql_read_mpi_reg(struct ql_adapter *qdev , u32 reg , u32 *data ) { int status ; { { status = ql_wait_reg_rdy(qdev, 0U, 2147483648U, 536870912U); } if (status != 0) { goto exit; } else { } { ql_write32((struct ql_adapter const *)qdev, 0, reg | 1073741824U); status = ql_wait_reg_rdy(qdev, 0U, 2147483648U, 536870912U); } if (status != 0) { goto exit; } else { } { *data = ql_read32((struct ql_adapter const *)qdev, 4); } exit: ; return (status); } } int ql_write_mpi_reg(struct ql_adapter *qdev , u32 reg , u32 data ) { int status ; { { status = 0; status = ql_wait_reg_rdy(qdev, 0U, 2147483648U, 536870912U); } if (status != 0) { goto exit; } else { } { ql_write32((struct ql_adapter const *)qdev, 4, data); ql_write32((struct ql_adapter const *)qdev, 0, reg); status = ql_wait_reg_rdy(qdev, 0U, 2147483648U, 536870912U); } if (status != 0) { } else { } exit: ; return (status); } } int ql_soft_reset_mpi_risc(struct ql_adapter *qdev ) { int status ; { { status = ql_write_mpi_reg(qdev, 4112U, 1U); } return (status); } } int ql_own_firmware(struct ql_adapter *qdev ) { u32 temp ; { if (qdev->func < qdev->alt_func) { return (1); } else { } { temp = ql_read32((struct ql_adapter const *)qdev, 48); } if ((temp & (u32 )(1 << (int )(qdev->alt_func + 8U))) == 0U) { return (1); } else { } return (0); } } static int ql_get_mb_sts(struct ql_adapter *qdev , struct mbox_params *mbcp ) { int i ; int status ; { { status = ql_sem_spinlock(qdev, 3221225472U); } if (status != 0) { return (-16); } else { } i = 0; goto ldv_48354; ldv_48353: { status = ql_read_mpi_reg(qdev, qdev->mailbox_out + (u32 )i, (u32 *)(& mbcp->mbox_out) + (unsigned long )i); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed mailbox read.\n"); } } else { } goto ldv_48352; } else { } i = i + 1; ldv_48354: ; if (i < mbcp->out_count) { goto ldv_48353; } else { } ldv_48352: { ql_sem_unlock(qdev, 3221225472U); } return (status); } } static int ql_wait_mbx_cmd_cmplt(struct ql_adapter *qdev ) { int count ; u32 value ; unsigned long __ms ; unsigned long tmp ; { count = 100; ldv_48364: { value = ql_read32((struct ql_adapter const *)qdev, 48); } if ((value & 2U) != 0U) { return (0); } else { } __ms = 100UL; goto ldv_48362; ldv_48361: { __const_udelay(4295000UL); } ldv_48362: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_48361; } else { } count = count - 1; if (count != 0) { goto ldv_48364; } else { } return (-110); } } static int ql_exec_mb_cmd(struct ql_adapter *qdev , struct mbox_params *mbcp ) { int i ; int status ; u32 tmp ; { { tmp = ql_read32((struct ql_adapter const *)qdev, 20); } if ((tmp & 512U) != 0U) { return (-5); } else { } { status = ql_sem_spinlock(qdev, 3221225472U); } if (status != 0) { return (status); } else { } i = 0; goto ldv_48374; ldv_48373: { status = ql_write_mpi_reg(qdev, qdev->mailbox_in + (u32 )i, mbcp->mbox_in[i]); } if (status != 0) { goto end; } else { } i = i + 1; ldv_48374: ; if (i < mbcp->in_count) { goto ldv_48373; } else { } { ql_write32((struct ql_adapter const *)qdev, 20, 1342177280U); } end: { ql_sem_unlock(qdev, 3221225472U); } return (status); } } static int ql_idc_req_aen(struct ql_adapter *qdev ) { int status ; struct mbox_params *mbcp ; { mbcp = & qdev->idc_mbc; if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Enter!\n"); } } else { } { mbcp = & qdev->idc_mbc; mbcp->out_count = 4; status = ql_get_mb_sts(qdev, mbcp); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Could not read MPI, resetting ASIC!\n"); } } else { } { ql_queue_asic_error(qdev); } } else { { ql_write32((struct ql_adapter const *)qdev, 56, 65536U); queue_delayed_work(qdev->workqueue, & qdev->mpi_idc_work, 0UL); } } return (status); } } static int ql_idc_cmplt_aen(struct ql_adapter *qdev ) { int status ; struct mbox_params *mbcp ; { { mbcp = & qdev->idc_mbc; mbcp->out_count = 4; status = ql_get_mb_sts(qdev, mbcp); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Could not read MPI, resetting RISC!\n"); } } else { } { ql_queue_fw_error(qdev); } } else { { complete(& qdev->ide_completion); } } return (status); } } static void ql_link_up(struct ql_adapter *qdev , struct mbox_params *mbcp ) { int status ; int tmp ; int tmp___0 ; { { mbcp->out_count = 2; status = ql_get_mb_sts(qdev, mbcp); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "%s: Could not get mailbox status.\n", "ql_link_up"); } } else { } return; } else { } qdev->link_status = mbcp->mbox_out[1]; if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Link Up.\n"); } } else { } { tmp = constant_test_bit(8L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp != 0) { { status = ql_cam_route_initialize(qdev); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to init CAM/Routing tables.\n"); } } else { } return; } else { { clear_bit(8L, (unsigned long volatile *)(& qdev->flags)); } } } else { } { tmp___0 = constant_test_bit(7L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___0 == 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Queue Port Config Worker!\n"); } } else { } { set_bit(7L, (unsigned long volatile *)(& qdev->flags)); ql_write32((struct ql_adapter const *)qdev, 56, 65536U); queue_delayed_work(qdev->workqueue, & qdev->mpi_port_cfg_work, 0UL); } } else { } { ql_link_on(qdev); } return; } } static void ql_link_down(struct ql_adapter *qdev , struct mbox_params *mbcp ) { int status ; { { mbcp->out_count = 3; status = ql_get_mb_sts(qdev, mbcp); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Link down AEN broken!\n"); } } else { } } else { } { ql_link_off(qdev); } return; } } static int ql_sfp_in(struct ql_adapter *qdev , struct mbox_params *mbcp ) { int status ; { { mbcp->out_count = 5; status = ql_get_mb_sts(qdev, mbcp); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "SFP in AEN broken!\n"); } } else { } } else if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "SFP insertion detected.\n"); } } else { } return (status); } } static int ql_sfp_out(struct ql_adapter *qdev , struct mbox_params *mbcp ) { int status ; { { mbcp->out_count = 1; status = ql_get_mb_sts(qdev, mbcp); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "SFP out AEN broken!\n"); } } else { } } else if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "SFP removal detected.\n"); } } else { } return (status); } } static int ql_aen_lost(struct ql_adapter *qdev , struct mbox_params *mbcp ) { int status ; int i ; { { mbcp->out_count = 6; status = ql_get_mb_sts(qdev, mbcp); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Lost AEN broken!\n"); } } else { } } else { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Lost AEN detected.\n"); } } else { } i = 0; goto ldv_48414; ldv_48413: ; if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "mbox_out[%d] = 0x%.08x.\n", i, mbcp->mbox_out[i]); } } else { } i = i + 1; ldv_48414: ; if (i < mbcp->out_count) { goto ldv_48413; } else { } } return (status); } } static void ql_init_fw_done(struct ql_adapter *qdev , struct mbox_params *mbcp ) { int status ; { { mbcp->out_count = 2; status = ql_get_mb_sts(qdev, mbcp); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Firmware did not initialize!\n"); } } else { } } else { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Firmware Revision = 0x%.08x.\n", mbcp->mbox_out[1]); } } else { } { qdev->fw_rev_id = mbcp->mbox_out[1]; status = ql_cam_route_initialize(qdev); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to init CAM/Routing tables.\n"); } } else { } } else { } } return; } } static int ql_mpi_handler(struct ql_adapter *qdev , struct mbox_params *mbcp ) { int status ; int orig_count ; { { orig_count = mbcp->out_count; mbcp->out_count = 1; status = ql_get_mb_sts(qdev, mbcp); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Could not read MPI, resetting ASIC!\n"); } } else { } { ql_queue_asic_error(qdev); } goto end; } else { } { if (mbcp->mbox_out[0] == 4096U) { goto case_4096; } else { } if (mbcp->mbox_out[0] == 16384U) { goto case_16384; } else { } if (mbcp->mbox_out[0] == 16385U) { goto case_16385; } else { } if (mbcp->mbox_out[0] == 16386U) { goto case_16386; } else { } if (mbcp->mbox_out[0] == 16387U) { goto case_16387; } else { } if (mbcp->mbox_out[0] == 16389U) { goto case_16389; } else { } if (mbcp->mbox_out[0] == 16390U) { goto case_16390; } else { } if (mbcp->mbox_out[0] == 33025U) { goto case_33025; } else { } if (mbcp->mbox_out[0] == 33024U) { goto case_33024; } else { } if (mbcp->mbox_out[0] == 33026U) { goto case_33026; } else { } if (mbcp->mbox_out[0] == 32785U) { goto case_32785; } else { } if (mbcp->mbox_out[0] == 32786U) { goto case_32786; } else { } if (mbcp->mbox_out[0] == 33792U) { goto case_33792; } else { } if (mbcp->mbox_out[0] == 33072U) { goto case_33072; } else { } if (mbcp->mbox_out[0] == 33073U) { goto case_33073; } else { } if (mbcp->mbox_out[0] == 33793U) { goto case_33793; } else { } if (mbcp->mbox_out[0] == 32770U) { goto case_32770; } else { } if (mbcp->mbox_out[0] == 33056U) { goto case_33056; } else { } if (mbcp->mbox_out[0] == 33040U) { goto case_33040; } else { } goto switch_default; case_4096: /* CIL Label */ ; case_16384: /* CIL Label */ ; case_16385: /* CIL Label */ ; case_16386: /* CIL Label */ ; case_16387: /* CIL Label */ ; case_16389: /* CIL Label */ ; case_16390: /* CIL Label */ { mbcp->out_count = orig_count; status = ql_get_mb_sts(qdev, mbcp); } return (status); case_33025: /* CIL Label */ { status = ql_idc_req_aen(qdev); } goto ldv_48436; case_33024: /* CIL Label */ ; case_33026: /* CIL Label */ { status = ql_idc_cmplt_aen(qdev); } goto ldv_48436; case_32785: /* CIL Label */ { ql_link_up(qdev, mbcp); } goto ldv_48436; case_32786: /* CIL Label */ { ql_link_down(qdev, mbcp); } goto ldv_48436; case_33792: /* CIL Label */ ; if (mbcp->mbox_in[0] == 2U) { { mbcp->out_count = orig_count; status = ql_get_mb_sts(qdev, mbcp); mbcp->mbox_out[0] = 16384U; } return (status); } else { } { ql_init_fw_done(qdev, mbcp); } goto ldv_48436; case_33072: /* CIL Label */ { ql_sfp_in(qdev, mbcp); } goto ldv_48436; case_33073: /* CIL Label */ { ql_sfp_out(qdev, mbcp); } goto ldv_48436; case_33793: /* CIL Label */ ; if (mbcp->mbox_in[0] == 2U) { { mbcp->out_count = orig_count; status = ql_get_mb_sts(qdev, mbcp); mbcp->mbox_out[0] = 16389U; } return (status); } else { } if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Firmware initialization failed.\n"); } } else { } { status = -5; ql_queue_fw_error(qdev); } goto ldv_48436; case_32770: /* CIL Label */ ; if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "System Error.\n"); } } else { } { ql_queue_fw_error(qdev); status = -5; } goto ldv_48436; case_33056: /* CIL Label */ { ql_aen_lost(qdev, mbcp); } goto ldv_48436; case_33040: /* CIL Label */ ; goto ldv_48436; switch_default: /* CIL Label */ ; if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Unsupported AE %.08x.\n", mbcp->mbox_out[0]); } } else { } switch_break: /* CIL Label */ ; } ldv_48436: ; end: { ql_write32((struct ql_adapter const *)qdev, 20, 2684354560U); mbcp->out_count = orig_count; } return (status); } } static int ql_mailbox_command(struct ql_adapter *qdev , struct mbox_params *mbcp ) { int status ; unsigned long count ; { { ldv_mutex_lock_121(& qdev->mpi_mutex); ql_write32((struct ql_adapter const *)qdev, 56, 65536U); status = ql_exec_mb_cmd(qdev, mbcp); } if (status != 0) { goto end; } else { } if (mbcp->mbox_in[0] == 42U) { goto end; } else { } count = (unsigned long )jiffies + 1250UL; ldv_48464: { status = ql_wait_mbx_cmd_cmplt(qdev); } if (status != 0) { goto ldv_48456; } else { } { status = ql_mpi_handler(qdev, mbcp); } if (status != 0) { goto end; } else { } if ((mbcp->mbox_out[0] & 61440U) == 16384U || (mbcp->mbox_out[0] & 61440U) == 4096U) { goto done; } else { } ldv_48456: ; if ((long )((unsigned long )jiffies - count) < 0L) { goto ldv_48464; } else { } if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Timed out waiting for mailbox complete.\n"); } } else { } status = -110; goto end; done: { ql_write32((struct ql_adapter const *)qdev, 20, 2684354560U); } if ((mbcp->mbox_out[0] & 61440U) != 16384U && (mbcp->mbox_out[0] & 61440U) != 4096U) { status = -5; } else { } end: { ql_write32((struct ql_adapter const *)qdev, 56, 65537U); ldv_mutex_unlock_122(& qdev->mpi_mutex); } return (status); } } int ql_mb_about_fw(struct ql_adapter *qdev ) { struct mbox_params mbc ; struct mbox_params *mbcp ; int status ; { { mbcp = & mbc; status = 0; memset((void *)mbcp, 0, 136UL); mbcp->in_count = 1; mbcp->out_count = 3; mbcp->mbox_in[0] = 8U; status = ql_mailbox_command(qdev, mbcp); } if (status != 0) { return (status); } else { } if (mbcp->mbox_out[0] != 16384U) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed about firmware command\n"); } } else { } status = -5; } else { } qdev->fw_rev_id = mbcp->mbox_out[1]; return (status); } } int ql_mb_get_fw_state(struct ql_adapter *qdev ) { struct mbox_params mbc ; struct mbox_params *mbcp ; int status ; { { mbcp = & mbc; status = 0; memset((void *)mbcp, 0, 136UL); mbcp->in_count = 1; mbcp->out_count = 2; mbcp->mbox_in[0] = 105U; status = ql_mailbox_command(qdev, mbcp); } if (status != 0) { return (status); } else { } if (mbcp->mbox_out[0] != 16384U) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed Get Firmware State.\n"); } } else { } status = -5; } else { } if ((int )mbcp->mbox_out[1] & 1) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Firmware waiting for initialization.\n"); } } else { } status = -5; } else { } return (status); } } static int ql_mb_idc_ack(struct ql_adapter *qdev ) { struct mbox_params mbc ; struct mbox_params *mbcp ; int status ; { { mbcp = & mbc; status = 0; memset((void *)mbcp, 0, 136UL); mbcp->in_count = 5; mbcp->out_count = 1; mbcp->mbox_in[0] = 257U; mbcp->mbox_in[1] = qdev->idc_mbc.mbox_out[1]; mbcp->mbox_in[2] = qdev->idc_mbc.mbox_out[2]; mbcp->mbox_in[3] = qdev->idc_mbc.mbox_out[3]; mbcp->mbox_in[4] = qdev->idc_mbc.mbox_out[4]; status = ql_mailbox_command(qdev, mbcp); } if (status != 0) { return (status); } else { } if (mbcp->mbox_out[0] != 16384U) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed IDC ACK send.\n"); } } else { } status = -5; } else { } return (status); } } int ql_mb_set_port_cfg(struct ql_adapter *qdev ) { struct mbox_params mbc ; struct mbox_params *mbcp ; int status ; { { mbcp = & mbc; status = 0; memset((void *)mbcp, 0, 136UL); mbcp->in_count = 3; mbcp->out_count = 1; mbcp->mbox_in[0] = 290U; mbcp->mbox_in[1] = qdev->link_config; mbcp->mbox_in[2] = qdev->max_frame_size; status = ql_mailbox_command(qdev, mbcp); } if (status != 0) { return (status); } else { } if (mbcp->mbox_out[0] == 4096U) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Port Config sent, wait for IDC.\n"); } } else { } } else if (mbcp->mbox_out[0] != 16384U) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed Set Port Configuration.\n"); } } else { } status = -5; } else { } return (status); } } static int ql_mb_dump_ram(struct ql_adapter *qdev , u64 req_dma , u32 addr , u32 size ) { int status ; struct mbox_params mbc ; struct mbox_params *mbcp ; { { status = 0; mbcp = & mbc; memset((void *)mbcp, 0, 136UL); mbcp->in_count = 9; mbcp->out_count = 1; mbcp->mbox_in[0] = 12U; mbcp->mbox_in[1] = (u32 )((unsigned short )addr); mbcp->mbox_in[2] = (u32 )((unsigned short )((unsigned int )req_dma >> 16)); mbcp->mbox_in[3] = (u32 )((unsigned short )req_dma); mbcp->mbox_in[4] = (u32 )((unsigned short )(size >> 16)); mbcp->mbox_in[5] = (u32 )((unsigned short )size); mbcp->mbox_in[6] = (u32 )((unsigned short )((unsigned int )(req_dma >> 32) >> 16)); mbcp->mbox_in[7] = (u32 )((unsigned short )(req_dma >> 32)); mbcp->mbox_in[8] = (u32 )((unsigned short )(addr >> 16)); status = ql_mailbox_command(qdev, mbcp); } if (status != 0) { return (status); } else { } if (mbcp->mbox_out[0] != 16384U) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to dump risc RAM.\n"); } } else { } status = -5; } else { } return (status); } } int ql_dump_risc_ram_area(struct ql_adapter *qdev , void *buf , u32 ram_addr , int word_count ) { int status ; char *my_buf ; dma_addr_t buf_dma ; void *tmp ; { { tmp = pci_alloc_consistent(qdev->pdev, (unsigned long )word_count * 4UL, & buf_dma); my_buf = (char *)tmp; } if ((unsigned long )my_buf == (unsigned long )((char *)0)) { return (-5); } else { } { status = ql_mb_dump_ram(qdev, buf_dma, ram_addr, (u32 )word_count); } if (status == 0) { { memcpy(buf, (void const *)my_buf, (unsigned long )word_count * 4UL); } } else { } { pci_free_consistent(qdev->pdev, (unsigned long )word_count * 4UL, (void *)my_buf, buf_dma); } return (status); } } int ql_mb_get_port_cfg(struct ql_adapter *qdev ) { struct mbox_params mbc ; struct mbox_params *mbcp ; int status ; { { mbcp = & mbc; status = 0; memset((void *)mbcp, 0, 136UL); mbcp->in_count = 1; mbcp->out_count = 3; mbcp->mbox_in[0] = 291U; status = ql_mailbox_command(qdev, mbcp); } if (status != 0) { return (status); } else { } if (mbcp->mbox_out[0] != 16384U) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed Get Port Configuration.\n"); } } else { } status = -5; } else { if ((int )qdev->msg_enable & 1) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "Passed Get Port Configuration.\n"); } } else { } qdev->link_config = mbcp->mbox_out[1]; qdev->max_frame_size = mbcp->mbox_out[2]; } return (status); } } int ql_mb_wol_mode(struct ql_adapter *qdev , u32 wol ) { struct mbox_params mbc ; struct mbox_params *mbcp ; int status ; { { mbcp = & mbc; memset((void *)mbcp, 0, 136UL); mbcp->in_count = 2; mbcp->out_count = 1; mbcp->mbox_in[0] = 272U; mbcp->mbox_in[1] = wol; status = ql_mailbox_command(qdev, mbcp); } if (status != 0) { return (status); } else { } if (mbcp->mbox_out[0] != 16384U) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to set WOL mode.\n"); } } else { } status = -5; } else { } return (status); } } int ql_mb_wol_set_magic(struct ql_adapter *qdev , u32 enable_wol ) { struct mbox_params mbc ; struct mbox_params *mbcp ; int status ; u8 *addr ; { { mbcp = & mbc; addr = (qdev->ndev)->dev_addr; memset((void *)mbcp, 0, 136UL); mbcp->in_count = 8; mbcp->out_count = 1; mbcp->mbox_in[0] = 275U; } if (enable_wol != 0U) { mbcp->mbox_in[1] = (unsigned int )*addr; mbcp->mbox_in[2] = (unsigned int )*(addr + 1UL); mbcp->mbox_in[3] = (unsigned int )*(addr + 2UL); mbcp->mbox_in[4] = (unsigned int )*(addr + 3UL); mbcp->mbox_in[5] = (unsigned int )*(addr + 4UL); mbcp->mbox_in[6] = (unsigned int )*(addr + 5UL); mbcp->mbox_in[7] = 0U; } else { mbcp->mbox_in[1] = 0U; mbcp->mbox_in[2] = 1U; mbcp->mbox_in[3] = 1U; mbcp->mbox_in[4] = 1U; mbcp->mbox_in[5] = 1U; mbcp->mbox_in[6] = 1U; mbcp->mbox_in[7] = 0U; } { status = ql_mailbox_command(qdev, mbcp); } if (status != 0) { return (status); } else { } if (mbcp->mbox_out[0] != 16384U) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to set WOL mode.\n"); } } else { } status = -5; } else { } return (status); } } static int ql_idc_wait(struct ql_adapter *qdev ) { int status ; long wait_time ; struct mbox_params *mbcp ; unsigned long tmp ; { status = -110; wait_time = 250L; mbcp = & qdev->idc_mbc; ldv_48536: { tmp = ldv_wait_for_completion_timeout_123(& qdev->ide_completion, (unsigned long )wait_time); wait_time = (long )tmp; } if (wait_time == 0L) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "IDC Timeout.\n"); } } else { } goto ldv_48535; } else { } if (mbcp->mbox_out[0] == 33026U) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "IDC Time Extension from function.\n"); } } else { } wait_time = wait_time + ((long )(mbcp->mbox_out[1] >> 8) & 15L); } else if (mbcp->mbox_out[0] == 33024U) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "IDC Success.\n"); } } else { } status = 0; goto ldv_48535; } else { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "IDC: Invalid State 0x%.04x.\n", mbcp->mbox_out[0]); } } else { } status = -5; goto ldv_48535; } if (wait_time != 0L) { goto ldv_48536; } else { } ldv_48535: ; return (status); } } int ql_mb_set_led_cfg(struct ql_adapter *qdev , u32 led_config ) { struct mbox_params mbc ; struct mbox_params *mbcp ; int status ; { { mbcp = & mbc; memset((void *)mbcp, 0, 136UL); mbcp->in_count = 2; mbcp->out_count = 1; mbcp->mbox_in[0] = 293U; mbcp->mbox_in[1] = led_config; status = ql_mailbox_command(qdev, mbcp); } if (status != 0) { return (status); } else { } if (mbcp->mbox_out[0] != 16384U) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to set LED Configuration.\n"); } } else { } status = -5; } else { } return (status); } } int ql_mb_get_led_cfg(struct ql_adapter *qdev ) { struct mbox_params mbc ; struct mbox_params *mbcp ; int status ; { { mbcp = & mbc; memset((void *)mbcp, 0, 136UL); mbcp->in_count = 1; mbcp->out_count = 2; mbcp->mbox_in[0] = 294U; status = ql_mailbox_command(qdev, mbcp); } if (status != 0) { return (status); } else { } if (mbcp->mbox_out[0] != 16384U) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to get LED Configuration.\n"); } } else { } status = -5; } else { qdev->led_config = mbcp->mbox_out[1]; } return (status); } } int ql_mb_set_mgmnt_traffic_ctl(struct ql_adapter *qdev , u32 control ) { struct mbox_params mbc ; struct mbox_params *mbcp ; int status ; { { mbcp = & mbc; memset((void *)mbcp, 0, 136UL); mbcp->in_count = 1; mbcp->out_count = 2; mbcp->mbox_in[0] = 352U; mbcp->mbox_in[1] = control; status = ql_mailbox_command(qdev, mbcp); } if (status != 0) { return (status); } else { } if (mbcp->mbox_out[0] == 16384U) { return (status); } else { } if (mbcp->mbox_out[0] == 16385U) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Command not supported by firmware.\n"); } } else { } status = -22; } else if (mbcp->mbox_out[0] == 16389U) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Command parameters make no change.\n"); } } else { } } else { } return (status); } } static int ql_mb_get_mgmnt_traffic_ctl(struct ql_adapter *qdev , u32 *control ) { struct mbox_params mbc ; struct mbox_params *mbcp ; int status ; { { mbcp = & mbc; memset((void *)mbcp, 0, 136UL); *control = 0U; mbcp->in_count = 1; mbcp->out_count = 1; mbcp->mbox_in[0] = 353U; status = ql_mailbox_command(qdev, mbcp); } if (status != 0) { return (status); } else { } if (mbcp->mbox_out[0] == 16384U) { *control = mbcp->mbox_in[1]; return (status); } else { } if (mbcp->mbox_out[0] == 16385U) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Command not supported by firmware.\n"); } } else { } status = -22; } else if (mbcp->mbox_out[0] == 16389U) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to get MPI traffic control.\n"); } } else { } status = -5; } else { } return (status); } } int ql_wait_fifo_empty(struct ql_adapter *qdev ) { int count ; u32 mgmnt_fifo_empty ; u32 nic_fifo_empty ; u32 tmp ; int tmp___0 ; { count = 5; ldv_48570: { tmp = ql_read32((struct ql_adapter const *)qdev, 48); nic_fifo_empty = tmp & 4096U; ql_mb_get_mgmnt_traffic_ctl(qdev, & mgmnt_fifo_empty); mgmnt_fifo_empty = mgmnt_fifo_empty & 2U; } if (nic_fifo_empty != 0U && mgmnt_fifo_empty != 0U) { return (0); } else { } { msleep(100U); tmp___0 = count; count = count - 1; } if (tmp___0 > 0) { goto ldv_48570; } else { } return (-110); } } static int ql_set_port_cfg(struct ql_adapter *qdev ) { int status ; { { status = ql_mb_set_port_cfg(qdev); } if (status != 0) { return (status); } else { } { status = ql_idc_wait(qdev); } return (status); } } void ql_mpi_port_cfg_work(struct work_struct *work ) { struct ql_adapter *qdev ; struct work_struct const *__mptr ; int status ; { { __mptr = (struct work_struct const *)work; qdev = (struct ql_adapter *)__mptr + 0xffffffffffffae90UL; status = ql_mb_get_port_cfg(qdev); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Bug: Failed to get port config data.\n"); } } else { } goto err; } else { } if ((qdev->link_config & 65536U) != 0U && qdev->max_frame_size == 9600U) { goto end; } else { } { qdev->link_config = qdev->link_config | 65536U; qdev->max_frame_size = 9600U; status = ql_set_port_cfg(qdev); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Bug: Failed to set port config data.\n"); } } else { } goto err; } else { } end: { clear_bit(7L, (unsigned long volatile *)(& qdev->flags)); } return; err: { ql_queue_fw_error(qdev); } goto end; } } void ql_mpi_idc_work(struct work_struct *work ) { struct ql_adapter *qdev ; struct work_struct const *__mptr ; int status ; struct mbox_params *mbcp ; u32 aen ; int timeout ; { __mptr = (struct work_struct const *)work; qdev = (struct ql_adapter *)__mptr + 0xffffffffffffadb0UL; mbcp = & qdev->idc_mbc; aen = mbcp->mbox_out[1] >> 16; timeout = (int )(mbcp->mbox_out[1] >> 8) & 15; { if (aen == 288U) { goto case_288; } else { } if (aen == 20U) { goto case_20; } else { } if (aen == 290U) { goto case_290; } else { } if (aen == 258U) { goto case_258; } else { } if (aen == 16U) { goto case_16; } else { } if (aen == 256U) { goto case_256; } else { } if (aen == 257U) { goto case_257; } else { } if (aen == 259U) { goto case_259; } else { } if (aen == 1U) { goto case_1; } else { } if (aen == 2U) { goto case_2; } else { } if (aen == 0U) { goto case_0; } else { } goto switch_default; switch_default: /* CIL Label */ ; if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Bug: Unhandled IDC action.\n"); } } else { } goto ldv_48596; case_288: /* CIL Label */ ; case_20: /* CIL Label */ { ql_link_off(qdev); } case_290: /* CIL Label */ { set_bit(8L, (unsigned long volatile *)(& qdev->flags)); } if (timeout != 0) { { status = ql_mb_idc_ack(qdev); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Bug: No pending IDC!\n"); } } else { } } else { } } else { if ((int )qdev->msg_enable & 1) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "IDC ACK not required\n"); } } else { } status = 0; } goto ldv_48596; case_258: /* CIL Label */ ; case_16: /* CIL Label */ { ql_link_off(qdev); set_bit(8L, (unsigned long volatile *)(& qdev->flags)); } case_256: /* CIL Label */ ; case_257: /* CIL Label */ ; case_259: /* CIL Label */ ; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_0: /* CIL Label */ ; if (timeout != 0) { { status = ql_mb_idc_ack(qdev); } if (status != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Bug: No pending IDC!\n"); } } else { } } else { } } else { if ((int )qdev->msg_enable & 1) { { netdev_printk("\017", (struct net_device const *)qdev->ndev, "IDC ACK not required\n"); } } else { } status = 0; } goto ldv_48596; switch_break: /* CIL Label */ ; } ldv_48596: ; return; } } void ql_mpi_work(struct work_struct *work ) { struct ql_adapter *qdev ; struct work_struct const *__mptr ; struct mbox_params mbc ; struct mbox_params *mbcp ; int err ; u32 tmp ; { { __mptr = (struct work_struct const *)work; qdev = (struct ql_adapter *)__mptr + 0xffffffffffffaf70UL; mbcp = & mbc; err = 0; ldv_mutex_lock_124(& qdev->mpi_mutex); ql_write32((struct ql_adapter const *)qdev, 56, 65536U); } goto ldv_48619; ldv_48618: { memset((void *)mbcp, 0, 136UL); mbcp->out_count = 1; err = ql_mpi_handler(qdev, mbcp); } if (err != 0) { goto ldv_48617; } else { } ldv_48619: { tmp = ql_read32((struct ql_adapter const *)qdev, 48); } if ((tmp & 2U) != 0U) { goto ldv_48618; } else { } ldv_48617: { ql_write32((struct ql_adapter const *)qdev, 56, 65537U); ldv_mutex_unlock_125(& qdev->mpi_mutex); ql_enable_completion_interrupt(qdev, 0U); } return; } } void ql_mpi_reset_work(struct work_struct *work ) { struct ql_adapter *qdev ; struct work_struct const *__mptr ; int tmp ; int tmp___0 ; { { __mptr = (struct work_struct const *)work; qdev = (struct ql_adapter *)__mptr + 0xffffffffffffb050UL; cancel_delayed_work_sync(& qdev->mpi_work); cancel_delayed_work_sync(& qdev->mpi_port_cfg_work); cancel_delayed_work_sync(& qdev->mpi_idc_work); tmp = ql_own_firmware(qdev); } if (tmp == 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Don\'t own firmware!\n"); } } else { } return; } else { } if ((unsigned long )qdev->mpi_coredump != (unsigned long )((struct ql_mpi_coredump *)0)) { { tmp___0 = ql_core_dump(qdev, qdev->mpi_coredump); } if (tmp___0 == 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Core is dumped!\n"); } } else { } { qdev->core_is_dumped = 1U; queue_delayed_work(qdev->workqueue, & qdev->mpi_core_to_log, 1250UL); } } else { } } else { } { ql_soft_reset_mpi_risc(qdev); } return; } } static void ldv_mutex_lock_121(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mpi_mutex_of_ql_adapter(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_122(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mpi_mutex_of_ql_adapter(ldv_func_arg1); } return; } } static unsigned long ldv_wait_for_completion_timeout_123(struct completion *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { unsigned long tmp ; { { ldv_linux_kernel_sched_completion_wait_for_completion_ide_completion_of_ql_adapter(); tmp = wait_for_completion_timeout(ldv_func_arg1, ldv_func_arg2); } return (tmp); } } static void ldv_mutex_lock_124(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_mpi_mutex_of_ql_adapter(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_125(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_mpi_mutex_of_ql_adapter(ldv_func_arg1); } return; } } extern int snprintf(char * , size_t , char const * , ...) ; extern size_t strlcpy(char * , char const * , size_t ) ; __inline static void atomic_inc(atomic_t *v ) ; __inline static void atomic_dec(atomic_t *v ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_stats_lock_of_ql_adapter(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_stats_lock_of_ql_adapter(void) ; __inline static void ldv_spin_lock_126(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_127(spinlock_t *lock ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } extern unsigned long msleep_interruptible(unsigned int ) ; static struct sk_buff *ldv___netdev_alloc_skb_103___0(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct sk_buff *netdev_alloc_skb___0(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = ldv___netdev_alloc_skb_103___0(dev, length, 32U); } return (tmp); } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } extern u32 ethtool_op_get_link(struct net_device * ) ; __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } static struct ql_stats const ql_gstrings_stats[66U] = { {{'t', 'x', '_', 'p', 'k', 't', 's', '\000'}, 8, 1104}, {{'t', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, 8, 1112}, {{'t', 'x', '_', 'm', 'c', 'a', 's', 't', '_', 'p', 'k', 't', 's', '\000'}, 8, 1120}, {{'t', 'x', '_', 'b', 'c', 'a', 's', 't', '_', 'p', 'k', 't', 's', '\000'}, 8, 1128}, {{'t', 'x', '_', 'u', 'c', 'a', 's', 't', '_', 'p', 'k', 't', 's', '\000'}, 8, 1136}, {{'t', 'x', '_', 'c', 't', 'l', '_', 'p', 'k', 't', 's', '\000'}, 8, 1144}, {{'t', 'x', '_', 'p', 'a', 'u', 's', 'e', '_', 'p', 'k', 't', 's', '\000'}, 8, 1152}, {{'t', 'x', '_', '6', '4', '_', 'p', 'k', 't', 's', '\000'}, 8, 1160}, {{'t', 'x', '_', '6', '5', '_', 't', 'o', '_', '1', '2', '7', '_', 'p', 'k', 't', 's', '\000'}, 8, 1168}, {{'t', 'x', '_', '1', '2', '8', '_', 't', 'o', '_', '2', '5', '5', '_', 'p', 'k', 't', 's', '\000'}, 8, 1176}, {{'t', 'x', '_', '2', '5', '6', '_', '5', '1', '1', '_', 'p', 'k', 't', 's', '\000'}, 8, 1184}, {{'t', 'x', '_', '5', '1', '2', '_', 't', 'o', '_', '1', '0', '2', '3', '_', 'p', 'k', 't', 's', '\000'}, 8, 1192}, {{'t', 'x', '_', '1', '0', '2', '4', '_', 't', 'o', '_', '1', '5', '1', '8', '_', 'p', 'k', 't', 's', '\000'}, 8, 1200}, {{'t', 'x', '_', '1', '5', '1', '9', '_', 't', 'o', '_', 'm', 'a', 'x', '_', 'p', 'k', 't', 's', '\000'}, 8, 1208}, {{'t', 'x', '_', 'u', 'n', 'd', 'e', 'r', 's', 'i', 'z', 'e', '_', 'p', 'k', 't', 's', '\000'}, 8, 1216}, {{'t', 'x', '_', 'o', 'v', 'e', 'r', 's', 'i', 'z', 'e', '_', 'p', 'k', 't', 's', '\000'}, 8, 1224}, {{'r', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, 8, 1232}, {{'r', 'x', '_', 'b', 'y', 't', 'e', 's', '_', 'o', 'k', '\000'}, 8, 1240}, {{'r', 'x', '_', 'p', 'k', 't', 's', '\000'}, 8, 1248}, {{'r', 'x', '_', 'p', 'k', 't', 's', '_', 'o', 'k', '\000'}, 8, 1256}, {{'r', 'x', '_', 'b', 'c', 'a', 's', 't', '_', 'p', 'k', 't', 's', '\000'}, 8, 1264}, {{'r', 'x', '_', 'm', 'c', 'a', 's', 't', '_', 'p', 'k', 't', 's', '\000'}, 8, 1272}, {{'r', 'x', '_', 'u', 'c', 'a', 's', 't', '_', 'p', 'k', 't', 's', '\000'}, 8, 1280}, {{'r', 'x', '_', 'u', 'n', 'd', 'e', 'r', 's', 'i', 'z', 'e', '_', 'p', 'k', 't', 's', '\000'}, 8, 1288}, {{'r', 'x', '_', 'o', 'v', 'e', 'r', 's', 'i', 'z', 'e', '_', 'p', 'k', 't', 's', '\000'}, 8, 1296}, {{'r', 'x', '_', 'j', 'a', 'b', 'b', 'e', 'r', '_', 'p', 'k', 't', 's', '\000'}, 8, 1304}, {{'r', 'x', '_', 'u', 'n', 'd', 'e', 'r', 's', 'i', 'z', 'e', '_', 'f', 'c', 'e', 'r', 'r', '_', 'p', 'k', 't', 's', '\000'}, 8, 1312}, {{'r', 'x', '_', 'd', 'r', 'o', 'p', '_', 'e', 'v', 'e', 'n', 't', 's', '\000'}, 8, 1320}, {{'r', 'x', '_', 'f', 'c', 'e', 'r', 'r', '_', 'p', 'k', 't', 's', '\000'}, 8, 1328}, {{'r', 'x', '_', 'a', 'l', 'i', 'g', 'n', '_', 'e', 'r', 'r', '\000'}, 8, 1336}, {{'r', 'x', '_', 's', 'y', 'm', 'b', 'o', 'l', '_', 'e', 'r', 'r', '\000'}, 8, 1344}, {{'r', 'x', '_', 'm', 'a', 'c', '_', 'e', 'r', 'r', '\000'}, 8, 1352}, {{'r', 'x', '_', 'c', 't', 'l', '_', 'p', 'k', 't', 's', '\000'}, 8, 1360}, {{'r', 'x', '_', 'p', 'a', 'u', 's', 'e', '_', 'p', 'k', 't', 's', '\000'}, 8, 1368}, {{'r', 'x', '_', '6', '4', '_', 'p', 'k', 't', 's', '\000'}, 8, 1376}, {{'r', 'x', '_', '6', '5', '_', 't', 'o', '_', '1', '2', '7', '_', 'p', 'k', 't', 's', '\000'}, 8, 1384}, {{'r', 'x', '_', '1', '2', '8', '_', '2', '5', '5', '_', 'p', 'k', 't', 's', '\000'}, 8, 1392}, {{'r', 'x', '_', '2', '5', '6', '_', '5', '1', '1', '_', 'p', 'k', 't', 's', '\000'}, 8, 1400}, {{'r', 'x', '_', '5', '1', '2', '_', 't', 'o', '_', '1', '0', '2', '3', '_', 'p', 'k', 't', 's', '\000'}, 8, 1408}, {{'r', 'x', '_', '1', '0', '2', '4', '_', 't', 'o', '_', '1', '5', '1', '8', '_', 'p', 'k', 't', 's', '\000'}, 8, 1416}, {{'r', 'x', '_', '1', '5', '1', '9', '_', 't', 'o', '_', 'm', 'a', 'x', '_', 'p', 'k', 't', 's', '\000'}, 8, 1424}, {{'r', 'x', '_', 'l', 'e', 'n', '_', 'e', 'r', 'r', '_', 'p', 'k', 't', 's', '\000'}, 8, 1432}, {{'r', 'x', '_', 'c', 'o', 'd', 'e', '_', 'e', 'r', 'r', '\000'}, 8, 1440}, {{'r', 'x', '_', 'o', 'v', 'e', 'r', 's', 'i', 'z', 'e', '_', 'e', 'r', 'r', '\000'}, 8, 1448}, {{'r', 'x', '_', 'u', 'n', 'd', 'e', 'r', 's', 'i', 'z', 'e', '_', 'e', 'r', 'r', '\000'}, 8, 1456}, {{'r', 'x', '_', 'p', 'r', 'e', 'a', 'm', 'b', 'l', 'e', '_', 'e', 'r', 'r', '\000'}, 8, 1464}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', '_', 'l', 'e', 'n', '_', 'e', 'r', 'r', '\000'}, 8, 1472}, {{'r', 'x', '_', 'c', 'r', 'c', '_', 'e', 'r', 'r', '\000'}, 8, 1480}, {{'r', 'x', '_', 'e', 'r', 'r', '_', 'c', 'o', 'u', 'n', 't', '\000'}, 8, 1488}, {{'t', 'x', '_', 'c', 'b', 'f', 'c', '_', 'p', 'a', 'u', 's', 'e', '_', 'f', 'r', 'a', 'm', 'e', 's', '0', '\000'}, 8, 1496}, {{'t', 'x', '_', 'c', 'b', 'f', 'c', '_', 'p', 'a', 'u', 's', 'e', '_', 'f', 'r', 'a', 'm', 'e', 's', '1', '\000'}, 8, 1504}, {{'t', 'x', '_', 'c', 'b', 'f', 'c', '_', 'p', 'a', 'u', 's', 'e', '_', 'f', 'r', 'a', 'm', 'e', 's', '2', '\000'}, 8, 1512}, {{'t', 'x', '_', 'c', 'b', 'f', 'c', '_', 'p', 'a', 'u', 's', 'e', '_', 'f', 'r', 'a', 'm', 'e', 's', '3', '\000'}, 8, 1520}, {{'t', 'x', '_', 'c', 'b', 'f', 'c', '_', 'p', 'a', 'u', 's', 'e', '_', 'f', 'r', 'a', 'm', 'e', 's', '4', '\000'}, 8, 1528}, {{'t', 'x', '_', 'c', 'b', 'f', 'c', '_', 'p', 'a', 'u', 's', 'e', '_', 'f', 'r', 'a', 'm', 'e', 's', '5', '\000'}, 8, 1536}, {{'t', 'x', '_', 'c', 'b', 'f', 'c', '_', 'p', 'a', 'u', 's', 'e', '_', 'f', 'r', 'a', 'm', 'e', 's', '6', '\000'}, 8, 1544}, {{'t', 'x', '_', 'c', 'b', 'f', 'c', '_', 'p', 'a', 'u', 's', 'e', '_', 'f', 'r', 'a', 'm', 'e', 's', '7', '\000'}, 8, 1552}, {{'r', 'x', '_', 'c', 'b', 'f', 'c', '_', 'p', 'a', 'u', 's', 'e', '_', 'f', 'r', 'a', 'm', 'e', 's', '0', '\000'}, 8, 1560}, {{'r', 'x', '_', 'c', 'b', 'f', 'c', '_', 'p', 'a', 'u', 's', 'e', '_', 'f', 'r', 'a', 'm', 'e', 's', '1', '\000'}, 8, 1568}, {{'r', 'x', '_', 'c', 'b', 'f', 'c', '_', 'p', 'a', 'u', 's', 'e', '_', 'f', 'r', 'a', 'm', 'e', 's', '2', '\000'}, 8, 1576}, {{'r', 'x', '_', 'c', 'b', 'f', 'c', '_', 'p', 'a', 'u', 's', 'e', '_', 'f', 'r', 'a', 'm', 'e', 's', '3', '\000'}, 8, 1584}, {{'r', 'x', '_', 'c', 'b', 'f', 'c', '_', 'p', 'a', 'u', 's', 'e', '_', 'f', 'r', 'a', 'm', 'e', 's', '4', '\000'}, 8, 1592}, {{'r', 'x', '_', 'c', 'b', 'f', 'c', '_', 'p', 'a', 'u', 's', 'e', '_', 'f', 'r', 'a', 'm', 'e', 's', '5', '\000'}, 8, 1600}, {{'r', 'x', '_', 'c', 'b', 'f', 'c', '_', 'p', 'a', 'u', 's', 'e', '_', 'f', 'r', 'a', 'm', 'e', 's', '6', '\000'}, 8, 1608}, {{'r', 'x', '_', 'c', 'b', 'f', 'c', '_', 'p', 'a', 'u', 's', 'e', '_', 'f', 'r', 'a', 'm', 'e', 's', '7', '\000'}, 8, 1616}, {{'r', 'x', '_', 'n', 'i', 'c', '_', 'f', 'i', 'f', 'o', '_', 'd', 'r', 'o', 'p', '\000'}, 8, 1624}}; static char const ql_gstrings_test[1U][32U] = { { 'L', 'o', 'o', 'p', 'b', 'a', 'c', 'k', ' ', 't', 'e', 's', 't', ' ', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}}; static int ql_update_ring_coalescing(struct ql_adapter *qdev ) { int i ; int status ; struct rx_ring *rx_ring ; struct cqicb *cqicb ; bool tmp ; int tmp___0 ; { { status = 0; tmp = netif_running((struct net_device const *)qdev->ndev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (status); } else { } cqicb = (struct cqicb *)(& qdev->rx_ring) + (unsigned long )qdev->rss_ring_count; if ((int )cqicb->irq_delay != (int )qdev->tx_coalesce_usecs || (int )cqicb->pkt_delay != (int )qdev->tx_max_coalesced_frames) { i = (int )qdev->rss_ring_count; goto ldv_55298; ldv_55297: { rx_ring = (struct rx_ring *)(& qdev->rx_ring) + (unsigned long )i; cqicb = (struct cqicb *)rx_ring; cqicb->irq_delay = qdev->tx_coalesce_usecs; cqicb->pkt_delay = qdev->tx_max_coalesced_frames; cqicb->flags = 64U; status = ql_write_cfg(qdev, (void *)cqicb, 52, 64U, (int )rx_ring->cq_id); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to load CQICB.\n"); } } else { } goto exit; } else { } i = i + 1; ldv_55298: ; if (i < qdev->rx_ring_count) { goto ldv_55297; } else { } } else { } cqicb = (struct cqicb *)(& qdev->rx_ring); if ((int )cqicb->irq_delay != (int )qdev->rx_coalesce_usecs || (int )cqicb->pkt_delay != (int )qdev->rx_max_coalesced_frames) { i = 0; goto ldv_55301; ldv_55300: { rx_ring = (struct rx_ring *)(& qdev->rx_ring) + (unsigned long )i; cqicb = (struct cqicb *)rx_ring; cqicb->irq_delay = qdev->rx_coalesce_usecs; cqicb->pkt_delay = qdev->rx_max_coalesced_frames; cqicb->flags = 64U; status = ql_write_cfg(qdev, (void *)cqicb, 52, 64U, (int )rx_ring->cq_id); } if (status != 0) { if ((qdev->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)qdev->ndev, "Failed to load CQICB.\n"); } } else { } goto exit; } else { } i = i + 1; rx_ring = rx_ring + 1; ldv_55301: ; if ((u32 )i < qdev->rss_ring_count) { goto ldv_55300; } else { } } else { } exit: ; return (status); } } static void ql_update_stats(struct ql_adapter *qdev ) { u32 i ; u64 data ; u64 *iter ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { iter = & qdev->nic_stats.tx_pkts; ldv_spin_lock_126(& qdev->stats_lock); tmp = ql_sem_spinlock(qdev, qdev->xg_sem_mask); } if (tmp != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Couldn\'t get xgmac sem.\n"); } } else { } goto quit; } else { } i = 512U; goto ldv_55312; ldv_55311: { tmp___0 = ql_read_xgmac_reg64(qdev, i, & data); } if (tmp___0 != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Error reading status register 0x%.04x.\n", i); } } else { } goto end; } else { *iter = data; } iter = iter + 1; i = i + 8U; ldv_55312: ; if (i <= 639U) { goto ldv_55311; } else { } i = 768U; goto ldv_55315; ldv_55314: { tmp___1 = ql_read_xgmac_reg64(qdev, i, & data); } if (tmp___1 != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Error reading status register 0x%.04x.\n", i); } } else { } goto end; } else { *iter = data; } iter = iter + 1; i = i + 8U; ldv_55315: ; if (i <= 975U) { goto ldv_55314; } else { } iter = iter + 7UL; i = 1280U; goto ldv_55318; ldv_55317: { tmp___2 = ql_read_xgmac_reg64(qdev, i, & data); } if (tmp___2 != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Error reading status register 0x%.04x.\n", i); } } else { } goto end; } else { *iter = data; } iter = iter + 1; i = i + 8U; ldv_55318: ; if (i <= 1343U) { goto ldv_55317; } else { } i = 1384U; goto ldv_55321; ldv_55320: { tmp___3 = ql_read_xgmac_reg64(qdev, i, & data); } if (tmp___3 != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Error reading status register 0x%.04x.\n", i); } } else { } goto end; } else { *iter = data; } iter = iter + 1; i = i + 8U; ldv_55321: ; if (i <= 1447U) { goto ldv_55320; } else { } { tmp___4 = ql_read_xgmac_reg64(qdev, 1464U, & data); } if (tmp___4 != 0) { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "Error reading status register 0x%.04x.\n", i); } } else { } goto end; } else { *iter = data; } end: { ql_sem_unlock(qdev, qdev->xg_sem_mask); } quit: { ldv_spin_unlock_127(& qdev->stats_lock); } return; } } static void ql_get_strings(struct net_device *dev , u32 stringset , u8 *buf ) { int index ; { { if (stringset == 0U) { goto case_0; } else { } if (stringset == 1U) { goto case_1; } else { } goto switch_break; case_0: /* CIL Label */ { memcpy((void *)buf, (void const *)(& ql_gstrings_test), 32UL); } goto ldv_55330; case_1: /* CIL Label */ index = 0; goto ldv_55335; ldv_55334: { memcpy((void *)buf + (unsigned long )(index * 32), (void const *)(& ql_gstrings_stats[index].stat_string), 32UL); index = index + 1; } ldv_55335: ; if ((unsigned int )index <= 65U) { goto ldv_55334; } else { } goto ldv_55330; switch_break: /* CIL Label */ ; } ldv_55330: ; return; } } static int ql_get_sset_count(struct net_device *dev , int sset ) { { { if (sset == 0) { goto case_0; } else { } if (sset == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (66); switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } } } static void ql_get_ethtool_stats(struct net_device *ndev , struct ethtool_stats *stats , u64 *data ) { struct ql_adapter *qdev ; void *tmp ; int index ; int length ; char *p ; u64 *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; length = 66; ql_update_stats(qdev); index = 0; } goto ldv_55358; ldv_55357: p = (char *)qdev + (unsigned long )ql_gstrings_stats[index].stat_offset; tmp___0 = data; data = data + 1; *tmp___0 = ql_gstrings_stats[index].sizeof_stat == 8 ? *((u64 *)p) : (u64 )*((u32 *)p); index = index + 1; ldv_55358: ; if (index < length) { goto ldv_55357; } else { } return; } } static int ql_get_settings(struct net_device *ndev , struct ethtool_cmd *ecmd ) { struct ql_adapter *qdev ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; ecmd->supported = 4096U; ecmd->advertising = 4096U; ecmd->transceiver = 1U; } if ((qdev->link_status & 7U) == 5U) { ecmd->supported = ecmd->supported | 192U; ecmd->advertising = ecmd->advertising | 192U; ecmd->port = 0U; ecmd->autoneg = 1U; } else { ecmd->supported = ecmd->supported | 1024U; ecmd->advertising = ecmd->advertising | 1024U; ecmd->port = 3U; } { ethtool_cmd_speed_set(ecmd, 10000U); ecmd->duplex = 1U; } return (0); } } static void ql_get_drvinfo(struct net_device *ndev , struct ethtool_drvinfo *drvinfo ) { struct ql_adapter *qdev ; void *tmp ; char const *tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; strlcpy((char *)(& drvinfo->driver), (char const *)(& qlge_driver_name), 32UL); strlcpy((char *)(& drvinfo->version), (char const *)(& qlge_driver_version), 32UL); snprintf((char *)(& drvinfo->fw_version), 32UL, "v%d.%d.%d", (qdev->fw_rev_id & 16711680U) >> 16, (qdev->fw_rev_id & 65280U) >> 8, qdev->fw_rev_id & 255U); tmp___0 = pci_name((struct pci_dev const *)qdev->pdev); strlcpy((char *)(& drvinfo->bus_info), tmp___0, 32UL); drvinfo->n_stats = 0U; drvinfo->testinfo_len = 0U; tmp___1 = constant_test_bit(11L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___1 == 0) { drvinfo->regdump_len = 176196U; } else { drvinfo->regdump_len = 1432U; } drvinfo->eedump_len = 0U; return; } } static void ql_get_wol(struct net_device *ndev , struct ethtool_wolinfo *wol ) { struct ql_adapter *qdev ; void *tmp ; unsigned short ssys_dev ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; ssys_dev = (qdev->pdev)->subsystem_device; } if ((unsigned int )ssys_dev == 104U || (unsigned int )ssys_dev == 384U) { wol->supported = 32U; wol->wolopts = qdev->wol; } else { } return; } } static int ql_set_wol(struct net_device *ndev , struct ethtool_wolinfo *wol ) { struct ql_adapter *qdev ; void *tmp ; unsigned short ssys_dev ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; ssys_dev = (qdev->pdev)->subsystem_device; } if ((unsigned int )ssys_dev != 104U && (unsigned int )ssys_dev != 384U) { if ((int )qdev->msg_enable & 1) { { netdev_info((struct net_device const *)qdev->ndev, "WOL is only supported for mezz card\n"); } } else { } return (-95); } else { } if ((wol->wolopts & 4294967263U) != 0U) { return (-22); } else { } qdev->wol = wol->wolopts; if ((int )qdev->msg_enable & 1) { { netdev_info((struct net_device const *)qdev->ndev, "Set wol option 0x%x\n", qdev->wol); } } else { } return (0); } } static int ql_set_phys_id(struct net_device *ndev , enum ethtool_phys_id_state state ) { struct ql_adapter *qdev ; void *tmp ; int tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; } { if ((unsigned int )state == 1U) { goto case_1; } else { } if ((unsigned int )state == 0U) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___0 = ql_mb_get_led_cfg(qdev); } if (tmp___0 != 0) { return (-5); } else { } { ql_mb_set_led_cfg(qdev, 65537000U); } return (0); case_0: /* CIL Label */ { tmp___1 = ql_mb_set_led_cfg(qdev, qdev->led_config); } if (tmp___1 != 0) { return (-5); } else { } return (0); switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } } } static int ql_start_loopback(struct ql_adapter *qdev ) { bool tmp ; int tmp___0 ; { { tmp = netif_carrier_ok((struct net_device const *)qdev->ndev); } if ((int )tmp) { { set_bit(10L, (unsigned long volatile *)(& qdev->flags)); netif_carrier_off(qdev->ndev); } } else { { clear_bit(10L, (unsigned long volatile *)(& qdev->flags)); } } { qdev->link_config = qdev->link_config | 2U; tmp___0 = ql_mb_set_port_cfg(qdev); } return (tmp___0); } } static void ql_stop_loopback(struct ql_adapter *qdev ) { int tmp ; { { qdev->link_config = qdev->link_config & 4294967293U; ql_mb_set_port_cfg(qdev); tmp = constant_test_bit(10L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp != 0) { { netif_carrier_on(qdev->ndev); clear_bit(10L, (unsigned long volatile *)(& qdev->flags)); } } else { } return; } } static void ql_create_lb_frame(struct sk_buff *skb , unsigned int frame_size ) { { { memset((void *)skb->data, 255, (size_t )frame_size); frame_size = frame_size & 4294967294U; memset((void *)skb->data + (unsigned long )(frame_size / 2U), 170, (size_t )(frame_size / 2U - 1U)); memset((void *)skb->data + (unsigned long )(frame_size / 2U + 10U), 190, 1UL); memset((void *)skb->data + (unsigned long )(frame_size / 2U + 12U), 175, 1UL); } return; } } void ql_check_lb_frame(struct ql_adapter *qdev , struct sk_buff *skb ) { unsigned int frame_size ; { frame_size = skb->len; if (((unsigned int )*(skb->data + 3UL) == 255U && (unsigned int )*(skb->data + ((unsigned long )(frame_size / 2U) + 10UL)) == 190U) && (unsigned int )*(skb->data + ((unsigned long )(frame_size / 2U) + 12UL)) == 175U) { { atomic_dec(& qdev->lb_count); } return; } else { } return; } } static int ql_run_loopback_test(struct ql_adapter *qdev ) { int i ; netdev_tx_t rc ; struct sk_buff *skb ; unsigned int size ; int tmp ; { size = 256U; i = 0; goto ldv_55413; ldv_55412: { skb = netdev_alloc_skb___0(qdev->ndev, size); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return (-12); } else { } { skb->queue_mapping = 0U; skb_put(skb, size); ql_create_lb_frame(skb, size); rc = ql_lb_send(skb, qdev->ndev); } if ((int )rc != 0) { return (-32); } else { } { atomic_inc(& qdev->lb_count); i = i + 1; } ldv_55413: ; if (i <= 63) { goto ldv_55412; } else { } { msleep(2U); ql_clean_lb_rx_ring((struct rx_ring *)(& qdev->rx_ring), 128); tmp = atomic_read((atomic_t const *)(& qdev->lb_count)); } return (tmp != 0 ? -5 : 0); } } static int ql_loopback_test(struct ql_adapter *qdev , u64 *data ) { int tmp ; int tmp___0 ; { { tmp = ql_start_loopback(qdev); *data = (u64 )tmp; } if (*data != 0ULL) { goto out; } else { } { tmp___0 = ql_run_loopback_test(qdev); *data = (u64 )tmp___0; } out: { ql_stop_loopback(qdev); } return ((int )*data); } } static void ql_self_test(struct net_device *ndev , struct ethtool_test *eth_test , u64 *data ) { struct ql_adapter *qdev ; void *tmp ; int tmp___0 ; bool tmp___1 ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; memset((void *)data, 0, 8UL); tmp___1 = netif_running((struct net_device const *)ndev); } if ((int )tmp___1) { { set_bit(9L, (unsigned long volatile *)(& qdev->flags)); } if (eth_test->flags == 1U) { { tmp___0 = ql_loopback_test(qdev, data); } if (tmp___0 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } } else { *data = 0ULL; } { clear_bit(9L, (unsigned long volatile *)(& qdev->flags)); msleep_interruptible(4000U); } } else { if ((int )qdev->msg_enable & 1) { { netdev_err((struct net_device const *)qdev->ndev, "is down, Loopback test will fail.\n"); } } else { } eth_test->flags = eth_test->flags | 2U; } return; } } static int ql_get_regs_len(struct net_device *ndev ) { struct ql_adapter *qdev ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; tmp___0 = constant_test_bit(11L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___0 == 0) { return (176196); } else { return (1432); } } } static void ql_get_regs(struct net_device *ndev , struct ethtool_regs *regs , void *p ) { struct ql_adapter *qdev ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; ql_get_dump(qdev, p); qdev->core_is_dumped = 0U; tmp___0 = constant_test_bit(11L, (unsigned long const volatile *)(& qdev->flags)); } if (tmp___0 == 0) { regs->len = 176196U; } else { regs->len = 1432U; } return; } } static int ql_get_coalesce(struct net_device *dev , struct ethtool_coalesce *c ) { struct ql_adapter *qdev ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); qdev = (struct ql_adapter *)tmp; c->rx_coalesce_usecs = (__u32 )qdev->rx_coalesce_usecs; c->tx_coalesce_usecs = (__u32 )qdev->tx_coalesce_usecs; c->rx_max_coalesced_frames = (__u32 )qdev->rx_max_coalesced_frames; c->tx_max_coalesced_frames = (__u32 )qdev->tx_max_coalesced_frames; } return (0); } } static int ql_set_coalesce(struct net_device *ndev , struct ethtool_coalesce *c ) { struct ql_adapter *qdev ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; } if (c->rx_coalesce_usecs > (__u32 )(qdev->rx_ring_size / 2)) { return (-22); } else { } if (c->rx_max_coalesced_frames > 10U) { return (-22); } else { } if (c->tx_coalesce_usecs > (__u32 )(qdev->tx_ring_size / 2)) { return (-22); } else { } if (c->tx_max_coalesced_frames > 10U) { return (-22); } else { } if ((((__u32 )qdev->rx_coalesce_usecs == c->rx_coalesce_usecs && (__u32 )qdev->tx_coalesce_usecs == c->tx_coalesce_usecs) && (__u32 )qdev->rx_max_coalesced_frames == c->rx_max_coalesced_frames) && (__u32 )qdev->tx_max_coalesced_frames == c->tx_max_coalesced_frames) { return (0); } else { } { qdev->rx_coalesce_usecs = (u16 )c->rx_coalesce_usecs; qdev->tx_coalesce_usecs = (u16 )c->tx_coalesce_usecs; qdev->rx_max_coalesced_frames = (u16 )c->rx_max_coalesced_frames; qdev->tx_max_coalesced_frames = (u16 )c->tx_max_coalesced_frames; tmp___0 = ql_update_ring_coalescing(qdev); } return (tmp___0); } } static void ql_get_pauseparam(struct net_device *netdev , struct ethtool_pauseparam *pause ) { struct ql_adapter *qdev ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); qdev = (struct ql_adapter *)tmp; ql_mb_get_port_cfg(qdev); } if ((qdev->link_config & 32U) != 0U) { pause->rx_pause = 1U; pause->tx_pause = 1U; } else { } return; } } static int ql_set_pauseparam(struct net_device *netdev , struct ethtool_pauseparam *pause ) { struct ql_adapter *qdev ; void *tmp ; int status ; { { tmp = netdev_priv((struct net_device const *)netdev); qdev = (struct ql_adapter *)tmp; status = 0; } if (pause->rx_pause != 0U && pause->tx_pause != 0U) { qdev->link_config = qdev->link_config | 32U; } else if (pause->rx_pause == 0U && pause->tx_pause == 0U) { qdev->link_config = qdev->link_config & 4294967263U; } else { return (-22); } { status = ql_mb_set_port_cfg(qdev); } return (status); } } static u32 ql_get_msglevel(struct net_device *ndev ) { struct ql_adapter *qdev ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; } return (qdev->msg_enable); } } static void ql_set_msglevel(struct net_device *ndev , u32 value ) { struct ql_adapter *qdev ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)ndev); qdev = (struct ql_adapter *)tmp; qdev->msg_enable = value; } return; } } struct ethtool_ops const qlge_ethtool_ops = {& ql_get_settings, 0, & ql_get_drvinfo, & ql_get_regs_len, & ql_get_regs, & ql_get_wol, & ql_set_wol, & ql_get_msglevel, & ql_set_msglevel, 0, & ethtool_op_get_link, 0, 0, 0, & ql_get_coalesce, & ql_set_coalesce, 0, 0, & ql_get_pauseparam, & ql_set_pauseparam, & ql_self_test, & ql_get_strings, & ql_set_phys_id, & ql_get_ethtool_stats, 0, 0, 0, 0, & ql_get_sset_count, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; void ldv_dummy_resourceless_instance_callback_1_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ethtool_op_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_12(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ql_get_msglevel(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_13(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { ql_get_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_14(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) { { { ql_get_regs(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_15(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ql_get_regs_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_16(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { ql_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_17(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { ql_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_20(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { ql_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_23(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { ql_get_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { ql_get_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_45(void (*arg0)(struct net_device * , struct ethtool_test * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_test *arg2 , unsigned long long *arg3 ) { { { ql_self_test(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_48(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { ql_set_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_49(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) { { { ql_set_msglevel(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_52(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { ql_set_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_53(int (*arg0)(struct net_device * , enum ethtool_phys_id_state ) , struct net_device *arg1 , enum ethtool_phys_id_state arg2 ) { { { ql_set_phys_id(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_54(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { ql_set_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_7(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { ql_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_8(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { ql_get_ethtool_stats(arg1, arg2, arg3); } return; } } static struct sk_buff *ldv___netdev_alloc_skb_103___0(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc(sizeof(struct sk_buff)); } return ((struct sk_buff *)tmp); } } __inline static void ldv_spin_lock_126(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_stats_lock_of_ql_adapter(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_127(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_stats_lock_of_ql_adapter(); spin_unlock(lock); } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(size_t size ) { void *ptr ; void *tmp ; { { tmp = ldv_malloc(size); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_malloc(sizeof(struct class)); assume_abort_if_not((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); assume_abort_if_not(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { assume_abort_if_not(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); assume_abort_if_not(nondet <= size); assume_abort_if_not(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; assume_abort_if_not(nondet <= size); assume_abort_if_not(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { assume_abort_if_not(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(size_t size ) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_malloc(size); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void *is_got ) { long tmp ; { { assume_abort_if_not((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); assume_abort_if_not(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; assume_abort_if_not(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; assume_abort_if_not(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mpi_mutex_of_ql_adapter ; void ldv_linux_kernel_locking_mutex_mutex_lock_mpi_mutex_of_ql_adapter(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mpi_mutex_of_ql_adapter); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mpi_mutex_of_ql_adapter = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mpi_mutex_of_ql_adapter(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mpi_mutex_of_ql_adapter); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mpi_mutex_of_ql_adapter = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mpi_mutex_of_ql_adapter(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mpi_mutex_of_ql_adapter) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mpi_mutex_of_ql_adapter(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mpi_mutex_of_ql_adapter); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mpi_mutex_of_ql_adapter(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mpi_mutex_of_ql_adapter = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mpi_mutex_of_ql_adapter(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mpi_mutex_of_ql_adapter(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mpi_mutex_of_ql_adapter(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mpi_mutex_of_ql_adapter); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mpi_mutex_of_ql_adapter = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mpi_mutex_of_ql_adapter = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mpi_mutex_of_ql_adapter); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; void ldv_linux_kernel_locking_spinlock_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2); ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_hw_lock_of_ql_adapter = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_hw_lock_of_ql_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_hw_lock_of_ql_adapter == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_hw_lock_of_ql_adapter == 1); ldv_linux_kernel_locking_spinlock_spin_hw_lock_of_ql_adapter = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_hw_lock_of_ql_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_hw_lock_of_ql_adapter == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_hw_lock_of_ql_adapter == 2); ldv_linux_kernel_locking_spinlock_spin_hw_lock_of_ql_adapter = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_hw_lock_of_ql_adapter(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_hw_lock_of_ql_adapter == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_hw_lock_of_ql_adapter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_hw_lock_of_ql_adapter = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_hw_lock_of_ql_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_hw_lock_of_ql_adapter == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_hw_lock_of_ql_adapter == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_hw_lock_of_ql_adapter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_hw_lock_of_ql_adapter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_hw_lock_of_ql_adapter(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_hw_lock_of_ql_adapter(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_hw_lock_of_ql_adapter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_hw_lock_of_ql_adapter(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_hw_lock_of_ql_adapter == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_hw_lock_of_ql_adapter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_hw_lock_of_ql_adapter = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_slock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_slock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_slock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_slock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_stats_lock_of_ql_adapter = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_stats_lock_of_ql_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_stats_lock_of_ql_adapter == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_stats_lock_of_ql_adapter == 1); ldv_linux_kernel_locking_spinlock_spin_stats_lock_of_ql_adapter = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_stats_lock_of_ql_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_stats_lock_of_ql_adapter == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_stats_lock_of_ql_adapter == 2); ldv_linux_kernel_locking_spinlock_spin_stats_lock_of_ql_adapter = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_stats_lock_of_ql_adapter(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_stats_lock_of_ql_adapter == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_stats_lock_of_ql_adapter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_stats_lock_of_ql_adapter = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_stats_lock_of_ql_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_stats_lock_of_ql_adapter == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_stats_lock_of_ql_adapter == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_stats_lock_of_ql_adapter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_stats_lock_of_ql_adapter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_stats_lock_of_ql_adapter(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_stats_lock_of_ql_adapter(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_stats_lock_of_ql_adapter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_stats_lock_of_ql_adapter(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_stats_lock_of_ql_adapter == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_stats_lock_of_ql_adapter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_stats_lock_of_ql_adapter = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2); ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_hw_lock_of_ql_adapter == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_stats_lock_of_ql_adapter == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_hw_lock_of_ql_adapter == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_slock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_stats_lock_of_ql_adapter == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion_ide_completion_of_ql_adapter = 0; void ldv_linux_kernel_sched_completion_init_completion_ide_completion_of_ql_adapter(void) { { ldv_linux_kernel_sched_completion_completion_ide_completion_of_ql_adapter = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro_ide_completion_of_ql_adapter(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion_ide_completion_of_ql_adapter != 0); ldv_linux_kernel_sched_completion_completion_ide_completion_of_ql_adapter = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion_ide_completion_of_ql_adapter(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion_ide_completion_of_ql_adapter != 0); ldv_linux_kernel_sched_completion_completion_ide_completion_of_ql_adapter = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } void reach_error_linux_net_rtnetlink(void) { reach_error(); } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { reach_error_linux_net_rtnetlink(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { reach_error_linux_net_rtnetlink(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { reach_error_linux_net_rtnetlink(); } } else { } return; } } void reach_error_linux_kernel_locking_rwlock(void) { reach_error(); } void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void reach_error_linux_lib_idr(void) { reach_error(); } void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void reach_error_linux_kernel_sched_completion(void) { reach_error(); } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { reach_error_linux_kernel_sched_completion(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { reach_error_linux_kernel_sched_completion(); } } else { } return; } } void reach_error_linux_net_register(void) { reach_error(); } void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { reach_error_linux_net_register(); } } else { } return; } } void reach_error_linux_fs_char_dev(void) { reach_error(); } void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { reach_error_linux_fs_char_dev(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { reach_error_linux_fs_char_dev(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { reach_error_linux_fs_char_dev(); } } else { } return; } } void reach_error_linux_kernel_rcu_srcu(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_srcu(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_srcu(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_srcu(); } } else { } return; } } void reach_error_linux_kernel_module(void) { reach_error(); } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_kernel_module(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_module(); } } else { } return; } } void reach_error_linux_alloc_spinlock(void) { reach_error(); } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { reach_error_linux_alloc_spinlock(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { reach_error_linux_alloc_spinlock(); } } else { } return; } } void reach_error_linux_lib_find_bit(void) { reach_error(); } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { reach_error_linux_lib_find_bit(); } } else { } return; } } void reach_error_linux_mmc_sdio_func(void) { reach_error(); } void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void reach_error_linux_usb_coherent(void) { reach_error(); } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_coherent(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_coherent(); } } else { } return; } } void reach_error_linux_kernel_rcu_update_lock(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock(); } } else { } return; } } void reach_error_linux_net_sock(void) { reach_error(); } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { reach_error_linux_net_sock(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { reach_error_linux_net_sock(); } } else { } return; } } void reach_error_linux_kernel_rcu_update_lock_bh(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_bh(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_bh(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_bh(); } } else { } return; } } void reach_error_linux_usb_dev(void) { reach_error(); } void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void reach_error_linux_kernel_locking_mutex(void) { reach_error(); } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void reach_error_linux_usb_gadget(void) { reach_error(); } void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void reach_error_linux_alloc_usb_lock(void) { reach_error(); } void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { reach_error_linux_alloc_usb_lock(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { reach_error_linux_alloc_usb_lock(); } } else { } return; } } void reach_error_linux_block_request(void) { reach_error(); } void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { reach_error_linux_block_request(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { reach_error_linux_block_request(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { reach_error_linux_block_request(); } } else { } return; } } void reach_error_linux_alloc_irq(void) { reach_error(); } void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { reach_error_linux_alloc_irq(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { reach_error_linux_alloc_irq(); } } else { } return; } } void reach_error_linux_drivers_base_class(void) { reach_error(); } void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { reach_error_linux_drivers_base_class(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { reach_error_linux_drivers_base_class(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { reach_error_linux_drivers_base_class(); } } else { } return; } } void reach_error_linux_block_queue(void) { reach_error(); } void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_queue(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_queue(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_block_queue(); } } else { } return; } } void reach_error_linux_block_genhd(void) { reach_error(); } void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void reach_error_linux_arch_io(void) { reach_error(); } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_arch_io(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_arch_io(); } } else { } return; } } void reach_error_linux_usb_register(void) { reach_error(); } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { reach_error_linux_usb_register(); } } else { } return; } } void reach_error_linux_fs_sysfs(void) { reach_error(); } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_fs_sysfs(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_fs_sysfs(); } } else { } return; } } void reach_error_linux_kernel_locking_spinlock(void) { reach_error(); } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void reach_error_linux_usb_urb(void) { reach_error(); } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_urb(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_urb(); } } else { } return; } } void reach_error_linux_kernel_rcu_update_lock_sched(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_sched(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_sched(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_sched(); } } else { } return; } }