/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); void reach_error() { __assert_fail("0", "linux-4.0-rc1---drivers--scsi--advansys.ko.cil.c", 5, "reach_error"); } typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __le32; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef unsigned short ushort; typedef unsigned int uint; typedef unsigned long ulong; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; struct request; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; typedef void (*ctor_fn_t)(void); struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct eisa_device_id { char sig[8U] ; kernel_ulong_t driver_data ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_33 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_34 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_35 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_32 { struct __anonstruct_futex_33 futex ; struct __anonstruct_nanosleep_34 nanosleep ; struct __anonstruct_poll_35 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_32 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_48 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_48 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; union __anonunion____missing_field_name_49 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_49 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_50 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_50 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_51 { uid_t val ; }; typedef struct __anonstruct_kuid_t_51 kuid_t; struct __anonstruct_kgid_t_52 { gid_t val ; }; typedef struct __anonstruct_kgid_t_52 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct execute_work { struct work_struct work ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_53 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_53 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_118 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_118 mm_context_t; struct bio_vec; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct call_single_data { struct llist_node llist ; void (*func)(void * ) ; void *info ; u16 flags ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_151 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_152 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_150 { struct __anonstruct____missing_field_name_151 __annonCompField34 ; struct __anonstruct____missing_field_name_152 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_150 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_153 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_155 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_159 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_158 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_159 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_157 { union __anonunion____missing_field_name_158 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_156 { unsigned long counters ; struct __anonstruct____missing_field_name_157 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField38 ; union __anonunion____missing_field_name_156 __annonCompField42 ; }; struct __anonstruct____missing_field_name_161 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_162 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_160 { struct list_head lru ; struct __anonstruct____missing_field_name_161 __annonCompField44 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_162 __annonCompField45 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_163 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_153 __annonCompField37 ; struct __anonstruct____missing_field_name_154 __annonCompField43 ; union __anonunion____missing_field_name_160 __annonCompField46 ; union __anonunion____missing_field_name_163 __annonCompField47 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_164 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_164 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_166 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_166 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_169 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_170 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_171 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_173 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_172 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_173 _addr_bnd ; }; struct __anonstruct__sigpoll_174 { long _band ; int _fd ; }; struct __anonstruct__sigsys_175 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_167 { int _pad[28U] ; struct __anonstruct__kill_168 _kill ; struct __anonstruct__timer_169 _timer ; struct __anonstruct__rt_170 _rt ; struct __anonstruct__sigchld_171 _sigchld ; struct __anonstruct__sigfault_172 _sigfault ; struct __anonstruct__sigpoll_174 _sigpoll ; struct __anonstruct__sigsys_175 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_167 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_180 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_181 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_183 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_182 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_183 __annonCompField52 ; }; union __anonunion_type_data_184 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_186 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_185 { union __anonunion_payload_186 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_180 __annonCompField50 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_181 __annonCompField51 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_182 __annonCompField53 ; union __anonunion_type_data_184 type_data ; union __anonunion____missing_field_name_185 __annonCompField54 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion____missing_field_name_191 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_191 __annonCompField58 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_193 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_192 { struct __anonstruct____missing_field_name_193 __annonCompField59 ; }; struct lockref { union __anonunion____missing_field_name_192 __annonCompField60 ; }; struct vfsmount; struct __anonstruct____missing_field_name_195 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_194 { struct __anonstruct____missing_field_name_195 __annonCompField61 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_194 __annonCompField62 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_196 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_196 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_198 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_197 { struct __anonstruct____missing_field_name_198 __annonCompField63 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_197 __annonCompField64 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct bio_set; struct bio; struct bio_integrity_payload; struct block_device; struct cgroup_subsys_state; typedef void bio_end_io_t(struct bio * , int ); struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct bvec_iter { sector_t bi_sector ; unsigned int bi_size ; unsigned int bi_idx ; unsigned int bi_bvec_done ; }; union __anonunion____missing_field_name_199 { struct bio_integrity_payload *bi_integrity ; }; struct bio { struct bio *bi_next ; struct block_device *bi_bdev ; unsigned long bi_flags ; unsigned long bi_rw ; struct bvec_iter bi_iter ; unsigned int bi_phys_segments ; unsigned int bi_seg_front_size ; unsigned int bi_seg_back_size ; atomic_t bi_remaining ; bio_end_io_t *bi_end_io ; void *bi_private ; struct io_context *bi_ioc ; struct cgroup_subsys_state *bi_css ; union __anonunion____missing_field_name_199 __annonCompField65 ; unsigned short bi_vcnt ; unsigned short bi_max_vecs ; atomic_t bi_cnt ; struct bio_vec *bi_io_vec ; struct bio_set *bi_pool ; struct bio_vec bi_inline_vecs[0U] ; }; struct export_operations; struct hd_geometry; struct iovec; struct nameidata; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_200 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_200 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_201 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_201 __annonCompField66 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_204 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_205 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_206 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_204 __annonCompField67 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_205 __annonCompField68 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_206 __annonCompField69 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_207 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_207 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_209 { struct list_head link ; int state ; }; union __anonunion_fl_u_208 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_209 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_208 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct block_device_operations; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct disk_stats { unsigned long sectors[2U] ; unsigned long ios[2U] ; unsigned long merges[2U] ; unsigned long ticks[2U] ; unsigned long io_ticks ; unsigned long time_in_queue ; }; struct partition_meta_info { char uuid[37U] ; u8 volname[64U] ; }; struct hd_struct { sector_t start_sect ; sector_t nr_sects ; seqcount_t nr_sects_seq ; sector_t alignment_offset ; unsigned int discard_alignment ; struct device __dev ; struct kobject *holder_dir ; int policy ; int partno ; struct partition_meta_info *info ; int make_it_fail ; unsigned long stamp ; atomic_t in_flight[2U] ; struct disk_stats *dkstats ; atomic_t ref ; struct callback_head callback_head ; }; struct disk_part_tbl { struct callback_head callback_head ; int len ; struct hd_struct *last_lookup ; struct hd_struct *part[] ; }; struct disk_events; struct timer_rand_state; struct blk_integrity; struct gendisk { int major ; int first_minor ; int minors ; char disk_name[32U] ; char *(*devnode)(struct gendisk * , umode_t * ) ; unsigned int events ; unsigned int async_events ; struct disk_part_tbl *part_tbl ; struct hd_struct part0 ; struct block_device_operations const *fops ; struct request_queue *queue ; void *private_data ; int flags ; struct device *driverfs_dev ; struct kobject *slave_dir ; struct timer_rand_state *random ; atomic_t sync_io ; struct disk_events *ev ; struct blk_integrity *integrity ; int node_id ; }; struct exception_table_entry { int insn ; int fixup ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct fprop_local_percpu { struct percpu_counter events ; unsigned int period ; raw_spinlock_t lock ; }; enum writeback_sync_modes { WB_SYNC_NONE = 0, WB_SYNC_ALL = 1 } ; struct writeback_control { long nr_to_write ; long pages_skipped ; loff_t range_start ; loff_t range_end ; enum writeback_sync_modes sync_mode ; unsigned char for_kupdate : 1 ; unsigned char for_background : 1 ; unsigned char tagged_writepages : 1 ; unsigned char for_reclaim : 1 ; unsigned char range_cyclic : 1 ; unsigned char for_sync : 1 ; }; struct bdi_writeback; typedef int congested_fn(void * , int ); struct bdi_writeback { struct backing_dev_info *bdi ; unsigned long last_old_flush ; struct delayed_work dwork ; struct list_head b_dirty ; struct list_head b_io ; struct list_head b_more_io ; struct list_head b_dirty_time ; spinlock_t list_lock ; }; struct backing_dev_info { struct list_head bdi_list ; unsigned long ra_pages ; unsigned long state ; unsigned int capabilities ; congested_fn *congested_fn ; void *congested_data ; char *name ; struct percpu_counter bdi_stat[4U] ; unsigned long bw_time_stamp ; unsigned long dirtied_stamp ; unsigned long written_stamp ; unsigned long write_bandwidth ; unsigned long avg_write_bandwidth ; unsigned long dirty_ratelimit ; unsigned long balanced_dirty_ratelimit ; struct fprop_local_percpu completions ; int dirty_exceeded ; unsigned int min_ratio ; unsigned int max_ratio ; unsigned int max_prop_frac ; struct bdi_writeback wb ; spinlock_t wb_lock ; struct list_head work_list ; struct device *dev ; struct timer_list laptop_mode_wb_timer ; struct dentry *debug_dir ; struct dentry *debug_stats ; }; typedef void *mempool_alloc_t(gfp_t , void * ); typedef void mempool_free_t(void * , void * ); struct mempool_s { spinlock_t lock ; int min_nr ; int curr_nr ; void **elements ; void *pool_data ; mempool_alloc_t *alloc ; mempool_free_t *free ; wait_queue_head_t wait ; }; typedef struct mempool_s mempool_t; union __anonunion____missing_field_name_214 { struct list_head q_node ; struct kmem_cache *__rcu_icq_cache ; }; union __anonunion____missing_field_name_215 { struct hlist_node ioc_node ; struct callback_head __rcu_head ; }; struct io_cq { struct request_queue *q ; struct io_context *ioc ; union __anonunion____missing_field_name_214 __annonCompField73 ; union __anonunion____missing_field_name_215 __annonCompField74 ; unsigned int flags ; }; struct io_context { atomic_long_t refcount ; atomic_t active_ref ; atomic_t nr_tasks ; spinlock_t lock ; unsigned short ioprio ; int nr_batch_requests ; unsigned long last_waited ; struct radix_tree_root icq_tree ; struct io_cq *icq_hint ; struct hlist_head icq_list ; struct work_struct release_work ; }; struct bio_integrity_payload { struct bio *bip_bio ; struct bvec_iter bip_iter ; bio_end_io_t *bip_end_io ; unsigned short bip_slab ; unsigned short bip_vcnt ; unsigned short bip_max_vcnt ; unsigned short bip_flags ; struct work_struct bip_work ; struct bio_vec *bip_vec ; struct bio_vec bip_inline_vecs[0U] ; }; struct bio_list { struct bio *head ; struct bio *tail ; }; struct bio_set { struct kmem_cache *bio_slab ; unsigned int front_pad ; mempool_t *bio_pool ; mempool_t *bvec_pool ; mempool_t *bio_integrity_pool ; mempool_t *bvec_integrity_pool ; spinlock_t rescue_lock ; struct bio_list rescue_list ; struct work_struct rescue_work ; struct workqueue_struct *rescue_workqueue ; }; struct bsg_class_device { struct device *class_dev ; struct device *parent ; int minor ; struct request_queue *queue ; struct kref ref ; void (*release)(struct device * ) ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_long_t count ; unsigned long percpu_count_ptr ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_switch ; bool force_atomic ; struct callback_head rcu ; }; struct elevator_queue; struct blk_trace; struct bsg_job; struct blkcg_gq; struct blk_flush_queue; typedef void rq_end_io_fn(struct request * , int ); struct request_list { struct request_queue *q ; struct blkcg_gq *blkg ; int count[2U] ; int starved[2U] ; mempool_t *rq_pool ; wait_queue_head_t wait[2U] ; unsigned int flags ; }; enum rq_cmd_type_bits { REQ_TYPE_FS = 1, REQ_TYPE_BLOCK_PC = 2, REQ_TYPE_SENSE = 3, REQ_TYPE_PM_SUSPEND = 4, REQ_TYPE_PM_RESUME = 5, REQ_TYPE_PM_SHUTDOWN = 6, REQ_TYPE_SPECIAL = 7, REQ_TYPE_ATA_TASKFILE = 8, REQ_TYPE_ATA_PC = 9 } ; union __anonunion____missing_field_name_216 { struct call_single_data csd ; unsigned long fifo_time ; }; struct blk_mq_ctx; union __anonunion____missing_field_name_217 { struct hlist_node hash ; struct list_head ipi_list ; }; union __anonunion____missing_field_name_218 { struct rb_node rb_node ; void *completion_data ; }; struct __anonstruct_elv_220 { struct io_cq *icq ; void *priv[2U] ; }; struct __anonstruct_flush_221 { unsigned int seq ; struct list_head list ; rq_end_io_fn *saved_end_io ; }; union __anonunion____missing_field_name_219 { struct __anonstruct_elv_220 elv ; struct __anonstruct_flush_221 flush ; }; struct request { struct list_head queuelist ; union __anonunion____missing_field_name_216 __annonCompField75 ; struct request_queue *q ; struct blk_mq_ctx *mq_ctx ; u64 cmd_flags ; enum rq_cmd_type_bits cmd_type ; unsigned long atomic_flags ; int cpu ; unsigned int __data_len ; sector_t __sector ; struct bio *bio ; struct bio *biotail ; union __anonunion____missing_field_name_217 __annonCompField76 ; union __anonunion____missing_field_name_218 __annonCompField77 ; union __anonunion____missing_field_name_219 __annonCompField78 ; struct gendisk *rq_disk ; struct hd_struct *part ; unsigned long start_time ; struct request_list *rl ; unsigned long long start_time_ns ; unsigned long long io_start_time_ns ; unsigned short nr_phys_segments ; unsigned short nr_integrity_segments ; unsigned short ioprio ; void *special ; int tag ; int errors ; unsigned char __cmd[16U] ; unsigned char *cmd ; unsigned short cmd_len ; unsigned int extra_len ; unsigned int sense_len ; unsigned int resid_len ; void *sense ; unsigned long deadline ; struct list_head timeout_list ; unsigned int timeout ; int retries ; rq_end_io_fn *end_io ; void *end_io_data ; struct request *next_rq ; }; struct elevator_type; typedef int elevator_merge_fn(struct request_queue * , struct request ** , struct bio * ); typedef void elevator_merge_req_fn(struct request_queue * , struct request * , struct request * ); typedef void elevator_merged_fn(struct request_queue * , struct request * , int ); typedef int elevator_allow_merge_fn(struct request_queue * , struct request * , struct bio * ); typedef void elevator_bio_merged_fn(struct request_queue * , struct request * , struct bio * ); typedef int elevator_dispatch_fn(struct request_queue * , int ); typedef void elevator_add_req_fn(struct request_queue * , struct request * ); typedef struct request *elevator_request_list_fn(struct request_queue * , struct request * ); typedef void elevator_completed_req_fn(struct request_queue * , struct request * ); typedef int elevator_may_queue_fn(struct request_queue * , int ); typedef void elevator_init_icq_fn(struct io_cq * ); typedef void elevator_exit_icq_fn(struct io_cq * ); typedef int elevator_set_req_fn(struct request_queue * , struct request * , struct bio * , gfp_t ); typedef void elevator_put_req_fn(struct request * ); typedef void elevator_activate_req_fn(struct request_queue * , struct request * ); typedef void elevator_deactivate_req_fn(struct request_queue * , struct request * ); typedef int elevator_init_fn(struct request_queue * , struct elevator_type * ); typedef void elevator_exit_fn(struct elevator_queue * ); struct elevator_ops { elevator_merge_fn *elevator_merge_fn ; elevator_merged_fn *elevator_merged_fn ; elevator_merge_req_fn *elevator_merge_req_fn ; elevator_allow_merge_fn *elevator_allow_merge_fn ; elevator_bio_merged_fn *elevator_bio_merged_fn ; elevator_dispatch_fn *elevator_dispatch_fn ; elevator_add_req_fn *elevator_add_req_fn ; elevator_activate_req_fn *elevator_activate_req_fn ; elevator_deactivate_req_fn *elevator_deactivate_req_fn ; elevator_completed_req_fn *elevator_completed_req_fn ; elevator_request_list_fn *elevator_former_req_fn ; elevator_request_list_fn *elevator_latter_req_fn ; elevator_init_icq_fn *elevator_init_icq_fn ; elevator_exit_icq_fn *elevator_exit_icq_fn ; elevator_set_req_fn *elevator_set_req_fn ; elevator_put_req_fn *elevator_put_req_fn ; elevator_may_queue_fn *elevator_may_queue_fn ; elevator_init_fn *elevator_init_fn ; elevator_exit_fn *elevator_exit_fn ; }; struct elv_fs_entry { struct attribute attr ; ssize_t (*show)(struct elevator_queue * , char * ) ; ssize_t (*store)(struct elevator_queue * , char const * , size_t ) ; }; struct elevator_type { struct kmem_cache *icq_cache ; struct elevator_ops ops ; size_t icq_size ; size_t icq_align ; struct elv_fs_entry *elevator_attrs ; char elevator_name[16U] ; struct module *elevator_owner ; char icq_cache_name[21U] ; struct list_head list ; }; struct elevator_queue { struct elevator_type *type ; void *elevator_data ; struct kobject kobj ; struct mutex sysfs_lock ; unsigned char registered : 1 ; struct hlist_head hash[64U] ; }; typedef void request_fn_proc(struct request_queue * ); typedef void make_request_fn(struct request_queue * , struct bio * ); typedef int prep_rq_fn(struct request_queue * , struct request * ); typedef void unprep_rq_fn(struct request_queue * , struct request * ); struct bvec_merge_data { struct block_device *bi_bdev ; sector_t bi_sector ; unsigned int bi_size ; unsigned long bi_rw ; }; typedef int merge_bvec_fn(struct request_queue * , struct bvec_merge_data * , struct bio_vec * ); typedef void softirq_done_fn(struct request * ); typedef int dma_drain_needed_fn(struct request * ); typedef int lld_busy_fn(struct request_queue * ); typedef int bsg_job_fn(struct bsg_job * ); enum blk_eh_timer_return { BLK_EH_NOT_HANDLED = 0, BLK_EH_HANDLED = 1, BLK_EH_RESET_TIMER = 2 } ; typedef enum blk_eh_timer_return rq_timed_out_fn(struct request * ); struct blk_queue_tag { struct request **tag_index ; unsigned long *tag_map ; int busy ; int max_depth ; int real_max_depth ; atomic_t refcnt ; int alloc_policy ; int next_tag ; }; struct queue_limits { unsigned long bounce_pfn ; unsigned long seg_boundary_mask ; unsigned int max_hw_sectors ; unsigned int chunk_sectors ; unsigned int max_sectors ; unsigned int max_segment_size ; unsigned int physical_block_size ; unsigned int alignment_offset ; unsigned int io_min ; unsigned int io_opt ; unsigned int max_discard_sectors ; unsigned int max_write_same_sectors ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned short logical_block_size ; unsigned short max_segments ; unsigned short max_integrity_segments ; unsigned char misaligned ; unsigned char discard_misaligned ; unsigned char cluster ; unsigned char discard_zeroes_data ; unsigned char raid_partial_stripes_expensive ; }; struct blk_mq_ops; struct blk_mq_hw_ctx; struct throtl_data; struct blk_mq_tag_set; struct request_queue { struct list_head queue_head ; struct request *last_merge ; struct elevator_queue *elevator ; int nr_rqs[2U] ; int nr_rqs_elvpriv ; struct request_list root_rl ; request_fn_proc *request_fn ; make_request_fn *make_request_fn ; prep_rq_fn *prep_rq_fn ; unprep_rq_fn *unprep_rq_fn ; merge_bvec_fn *merge_bvec_fn ; softirq_done_fn *softirq_done_fn ; rq_timed_out_fn *rq_timed_out_fn ; dma_drain_needed_fn *dma_drain_needed ; lld_busy_fn *lld_busy_fn ; struct blk_mq_ops *mq_ops ; unsigned int *mq_map ; struct blk_mq_ctx *queue_ctx ; unsigned int nr_queues ; struct blk_mq_hw_ctx **queue_hw_ctx ; unsigned int nr_hw_queues ; sector_t end_sector ; struct request *boundary_rq ; struct delayed_work delay_work ; struct backing_dev_info backing_dev_info ; void *queuedata ; unsigned long queue_flags ; int id ; gfp_t bounce_gfp ; spinlock_t __queue_lock ; spinlock_t *queue_lock ; struct kobject kobj ; struct kobject mq_kobj ; struct device *dev ; int rpm_status ; unsigned int nr_pending ; unsigned long nr_requests ; unsigned int nr_congestion_on ; unsigned int nr_congestion_off ; unsigned int nr_batching ; unsigned int dma_drain_size ; void *dma_drain_buffer ; unsigned int dma_pad_mask ; unsigned int dma_alignment ; struct blk_queue_tag *queue_tags ; struct list_head tag_busy_list ; unsigned int nr_sorted ; unsigned int in_flight[2U] ; unsigned int request_fn_active ; unsigned int rq_timeout ; struct timer_list timeout ; struct list_head timeout_list ; struct list_head icq_list ; unsigned long blkcg_pols[1U] ; struct blkcg_gq *root_blkg ; struct list_head blkg_list ; struct queue_limits limits ; unsigned int sg_timeout ; unsigned int sg_reserved_size ; int node ; struct blk_trace *blk_trace ; unsigned int flush_flags ; unsigned char flush_not_queueable : 1 ; struct blk_flush_queue *fq ; struct list_head requeue_list ; spinlock_t requeue_lock ; struct work_struct requeue_work ; struct mutex sysfs_lock ; int bypass_depth ; int mq_freeze_depth ; bsg_job_fn *bsg_job_fn ; int bsg_job_size ; struct bsg_class_device bsg_dev ; struct throtl_data *td ; struct callback_head callback_head ; wait_queue_head_t mq_freeze_wq ; struct percpu_ref mq_usage_counter ; struct list_head all_q_node ; struct blk_mq_tag_set *tag_set ; struct list_head tag_set_list ; }; struct blk_plug { struct list_head list ; struct list_head mq_list ; struct list_head cb_list ; }; struct blk_integrity_iter { void *prot_buf ; void *data_buf ; sector_t seed ; unsigned int data_size ; unsigned short interval ; char const *disk_name ; }; typedef int integrity_processing_fn(struct blk_integrity_iter * ); struct blk_integrity { integrity_processing_fn *generate_fn ; integrity_processing_fn *verify_fn ; unsigned short flags ; unsigned short tuple_size ; unsigned short interval ; unsigned short tag_size ; char const *name ; struct kobject kobj ; }; struct block_device_operations { int (*open)(struct block_device * , fmode_t ) ; void (*release)(struct gendisk * , fmode_t ) ; int (*rw_page)(struct block_device * , sector_t , struct page * , int ) ; int (*ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; long (*direct_access)(struct block_device * , sector_t , void ** , unsigned long * , long ) ; unsigned int (*check_events)(struct gendisk * , unsigned int ) ; int (*media_changed)(struct gendisk * ) ; void (*unlock_native_capacity)(struct gendisk * ) ; int (*revalidate_disk)(struct gendisk * ) ; int (*getgeo)(struct block_device * , struct hd_geometry * ) ; void (*swap_slot_free_notify)(struct block_device * , unsigned long ) ; struct module *owner ; }; struct blk_mq_tags; struct blk_mq_cpu_notifier { struct list_head list ; void *data ; int (*notify)(void * , unsigned long , unsigned int ) ; }; struct blk_align_bitmap; struct blk_mq_ctxmap { unsigned int map_size ; unsigned int bits_per_word ; struct blk_align_bitmap *map ; }; struct __anonstruct____missing_field_name_223 { spinlock_t lock ; struct list_head dispatch ; }; struct blk_mq_hw_ctx { struct __anonstruct____missing_field_name_223 __annonCompField79 ; unsigned long state ; struct delayed_work run_work ; struct delayed_work delay_work ; cpumask_var_t cpumask ; int next_cpu ; int next_cpu_batch ; unsigned long flags ; struct request_queue *queue ; struct blk_flush_queue *fq ; void *driver_data ; struct blk_mq_ctxmap ctx_map ; unsigned int nr_ctx ; struct blk_mq_ctx **ctxs ; atomic_t wait_index ; struct blk_mq_tags *tags ; unsigned long queued ; unsigned long run ; unsigned long dispatched[10U] ; unsigned int numa_node ; unsigned int queue_num ; atomic_t nr_active ; struct blk_mq_cpu_notifier cpu_notifier ; struct kobject kobj ; }; struct blk_mq_tag_set { struct blk_mq_ops *ops ; unsigned int nr_hw_queues ; unsigned int queue_depth ; unsigned int reserved_tags ; unsigned int cmd_size ; int numa_node ; unsigned int timeout ; unsigned int flags ; void *driver_data ; struct blk_mq_tags **tags ; struct mutex tag_list_lock ; struct list_head tag_list ; }; struct blk_mq_queue_data { struct request *rq ; struct list_head *list ; bool last ; }; typedef int queue_rq_fn(struct blk_mq_hw_ctx * , struct blk_mq_queue_data const * ); typedef struct blk_mq_hw_ctx *map_queue_fn(struct request_queue * , int const ); typedef enum blk_eh_timer_return timeout_fn(struct request * , bool ); typedef int init_hctx_fn(struct blk_mq_hw_ctx * , void * , unsigned int ); typedef void exit_hctx_fn(struct blk_mq_hw_ctx * , unsigned int ); typedef int init_request_fn(void * , struct request * , unsigned int , unsigned int , unsigned int ); typedef void exit_request_fn(void * , struct request * , unsigned int , unsigned int ); struct blk_mq_ops { queue_rq_fn *queue_rq ; map_queue_fn *map_queue ; timeout_fn *timeout ; softirq_done_fn *complete ; init_hctx_fn *init_hctx ; exit_hctx_fn *exit_hctx ; init_request_fn *init_request ; exit_request_fn *exit_request ; }; struct scsi_cmnd; struct scsi_device; struct scsi_host_cmd_pool; struct scsi_target; struct Scsi_Host; struct scsi_transport_template; struct scsi_host_template { struct module *module ; char const *name ; int (*detect)(struct scsi_host_template * ) ; int (*release)(struct Scsi_Host * ) ; char const *(*info)(struct Scsi_Host * ) ; int (*ioctl)(struct scsi_device * , int , void * ) ; int (*compat_ioctl)(struct scsi_device * , int , void * ) ; int (*queuecommand)(struct Scsi_Host * , struct scsi_cmnd * ) ; int (*eh_abort_handler)(struct scsi_cmnd * ) ; int (*eh_device_reset_handler)(struct scsi_cmnd * ) ; int (*eh_target_reset_handler)(struct scsi_cmnd * ) ; int (*eh_bus_reset_handler)(struct scsi_cmnd * ) ; int (*eh_host_reset_handler)(struct scsi_cmnd * ) ; int (*slave_alloc)(struct scsi_device * ) ; int (*slave_configure)(struct scsi_device * ) ; void (*slave_destroy)(struct scsi_device * ) ; int (*target_alloc)(struct scsi_target * ) ; void (*target_destroy)(struct scsi_target * ) ; int (*scan_finished)(struct Scsi_Host * , unsigned long ) ; void (*scan_start)(struct Scsi_Host * ) ; int (*change_queue_depth)(struct scsi_device * , int ) ; int (*bios_param)(struct scsi_device * , struct block_device * , sector_t , int * ) ; void (*unlock_native_capacity)(struct scsi_device * ) ; int (*show_info)(struct seq_file * , struct Scsi_Host * ) ; int (*write_info)(struct Scsi_Host * , char * , int ) ; enum blk_eh_timer_return (*eh_timed_out)(struct scsi_cmnd * ) ; int (*host_reset)(struct Scsi_Host * , int ) ; char const *proc_name ; struct proc_dir_entry *proc_dir ; int can_queue ; int this_id ; unsigned short sg_tablesize ; unsigned short sg_prot_tablesize ; unsigned int max_sectors ; unsigned long dma_boundary ; short cmd_per_lun ; unsigned char present ; int tag_alloc_policy ; unsigned char use_blk_tags : 1 ; unsigned char track_queue_depth : 1 ; unsigned char supported_mode : 2 ; unsigned char unchecked_isa_dma : 1 ; unsigned char use_clustering : 1 ; unsigned char emulated : 1 ; unsigned char skip_settle_delay : 1 ; unsigned char no_write_same : 1 ; unsigned char no_async_abort : 1 ; unsigned int max_host_blocked ; struct device_attribute **shost_attrs ; struct device_attribute **sdev_attrs ; struct list_head legacy_hosts ; u64 vendor_id ; unsigned int cmd_size ; struct scsi_host_cmd_pool *cmd_pool ; bool disable_blk_mq ; }; enum scsi_host_state { SHOST_CREATED = 1, SHOST_RUNNING = 2, SHOST_CANCEL = 3, SHOST_DEL = 4, SHOST_RECOVERY = 5, SHOST_CANCEL_RECOVERY = 6, SHOST_DEL_RECOVERY = 7 } ; union __anonunion____missing_field_name_224 { struct blk_queue_tag *bqt ; struct blk_mq_tag_set tag_set ; }; struct Scsi_Host { struct list_head __devices ; struct list_head __targets ; struct scsi_host_cmd_pool *cmd_pool ; spinlock_t free_list_lock ; struct list_head free_list ; struct list_head starved_list ; spinlock_t default_lock ; spinlock_t *host_lock ; struct mutex scan_mutex ; struct list_head eh_cmd_q ; struct task_struct *ehandler ; struct completion *eh_action ; wait_queue_head_t host_wait ; struct scsi_host_template *hostt ; struct scsi_transport_template *transportt ; union __anonunion____missing_field_name_224 __annonCompField80 ; atomic_t host_busy ; atomic_t host_blocked ; unsigned int host_failed ; unsigned int host_eh_scheduled ; unsigned int host_no ; int eh_deadline ; unsigned long last_reset ; unsigned int max_channel ; unsigned int max_id ; u64 max_lun ; unsigned int unique_id ; unsigned short max_cmd_len ; int this_id ; int can_queue ; short cmd_per_lun ; unsigned short sg_tablesize ; unsigned short sg_prot_tablesize ; unsigned int max_sectors ; unsigned long dma_boundary ; unsigned int nr_hw_queues ; unsigned long cmd_serial_number ; unsigned char active_mode : 2 ; unsigned char unchecked_isa_dma : 1 ; unsigned char use_clustering : 1 ; unsigned char host_self_blocked : 1 ; unsigned char reverse_ordering : 1 ; unsigned char tmf_in_progress : 1 ; unsigned char async_scan : 1 ; unsigned char eh_noresume : 1 ; unsigned char no_write_same : 1 ; unsigned char use_blk_mq : 1 ; unsigned char use_cmd_list : 1 ; char work_q_name[20U] ; struct workqueue_struct *work_q ; struct workqueue_struct *tmf_work_q ; unsigned char no_scsi2_lun_in_cdb : 1 ; unsigned int max_host_blocked ; unsigned int prot_capabilities ; unsigned char prot_guard_type ; struct request_queue *uspace_req_q ; unsigned long base ; unsigned long io_port ; unsigned char n_io_port ; unsigned char dma_channel ; unsigned int irq ; enum scsi_host_state shost_state ; struct device shost_gendev ; struct device shost_dev ; struct list_head sht_legacy_list ; void *shost_data ; struct device *dma_dev ; unsigned long hostdata[0U] ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_231 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_231 __annonCompField81 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct isa_driver { int (*match)(struct device * , unsigned int ) ; int (*probe)(struct device * , unsigned int ) ; int (*remove)(struct device * , unsigned int ) ; void (*shutdown)(struct device * , unsigned int ) ; int (*suspend)(struct device * , unsigned int , pm_message_t ) ; int (*resume)(struct device * , unsigned int ) ; struct device_driver driver ; struct device *devices ; }; struct eisa_device { struct eisa_device_id id ; int slot ; int state ; unsigned long base_addr ; struct resource res[4U] ; u64 dma_mask ; struct device dev ; }; struct eisa_driver { struct eisa_device_id const *id_table ; struct device_driver driver ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; struct scsi_sense_hdr; enum scsi_device_state { SDEV_CREATED = 1, SDEV_RUNNING = 2, SDEV_CANCEL = 3, SDEV_DEL = 4, SDEV_QUIESCE = 5, SDEV_OFFLINE = 6, SDEV_TRANSPORT_OFFLINE = 7, SDEV_BLOCK = 8, SDEV_CREATED_BLOCK = 9 } ; struct scsi_dh_data; struct scsi_device { struct Scsi_Host *host ; struct request_queue *request_queue ; struct list_head siblings ; struct list_head same_target_siblings ; atomic_t device_busy ; atomic_t device_blocked ; spinlock_t list_lock ; struct list_head cmd_list ; struct list_head starved_entry ; struct scsi_cmnd *current_cmnd ; unsigned short queue_depth ; unsigned short max_queue_depth ; unsigned short last_queue_full_depth ; unsigned short last_queue_full_count ; unsigned long last_queue_full_time ; unsigned long queue_ramp_up_period ; unsigned long last_queue_ramp_up ; unsigned int id ; unsigned int channel ; u64 lun ; unsigned int manufacturer ; unsigned int sector_size ; void *hostdata ; char type ; char scsi_level ; char inq_periph_qual ; unsigned char inquiry_len ; unsigned char *inquiry ; char const *vendor ; char const *model ; char const *rev ; int vpd_pg83_len ; unsigned char *vpd_pg83 ; int vpd_pg80_len ; unsigned char *vpd_pg80 ; unsigned char current_tag ; struct scsi_target *sdev_target ; unsigned int sdev_bflags ; unsigned int eh_timeout ; unsigned char removable : 1 ; unsigned char changed : 1 ; unsigned char busy : 1 ; unsigned char lockable : 1 ; unsigned char locked : 1 ; unsigned char borken : 1 ; unsigned char disconnect : 1 ; unsigned char soft_reset : 1 ; unsigned char sdtr : 1 ; unsigned char wdtr : 1 ; unsigned char ppr : 1 ; unsigned char tagged_supported : 1 ; unsigned char simple_tags : 1 ; unsigned char was_reset : 1 ; unsigned char expecting_cc_ua : 1 ; unsigned char use_10_for_rw : 1 ; unsigned char use_10_for_ms : 1 ; unsigned char no_report_opcodes : 1 ; unsigned char no_write_same : 1 ; unsigned char use_16_for_rw : 1 ; unsigned char skip_ms_page_8 : 1 ; unsigned char skip_ms_page_3f : 1 ; unsigned char skip_vpd_pages : 1 ; unsigned char try_vpd_pages : 1 ; unsigned char use_192_bytes_for_3f : 1 ; unsigned char no_start_on_add : 1 ; unsigned char allow_restart : 1 ; unsigned char manage_start_stop : 1 ; unsigned char start_stop_pwr_cond : 1 ; unsigned char no_uld_attach : 1 ; unsigned char select_no_atn : 1 ; unsigned char fix_capacity : 1 ; unsigned char guess_capacity : 1 ; unsigned char retry_hwerror : 1 ; unsigned char last_sector_bug : 1 ; unsigned char no_read_disc_info : 1 ; unsigned char no_read_capacity_16 : 1 ; unsigned char try_rc_10_first : 1 ; unsigned char is_visible : 1 ; unsigned char wce_default_on : 1 ; unsigned char no_dif : 1 ; unsigned char broken_fua : 1 ; unsigned char lun_in_cdb : 1 ; atomic_t disk_events_disable_depth ; unsigned long supported_events[1U] ; unsigned long pending_events[1U] ; struct list_head event_list ; struct work_struct event_work ; unsigned int max_device_blocked ; atomic_t iorequest_cnt ; atomic_t iodone_cnt ; atomic_t ioerr_cnt ; struct device sdev_gendev ; struct device sdev_dev ; struct execute_work ew ; struct work_struct requeue_work ; struct scsi_dh_data *scsi_dh_data ; enum scsi_device_state sdev_state ; unsigned long sdev_data[0U] ; }; struct scsi_device_handler { struct list_head list ; struct module *module ; char const *name ; int (*check_sense)(struct scsi_device * , struct scsi_sense_hdr * ) ; struct scsi_dh_data *(*attach)(struct scsi_device * ) ; void (*detach)(struct scsi_device * ) ; int (*activate)(struct scsi_device * , void (*)(void * , int ) , void * ) ; int (*prep_fn)(struct scsi_device * , struct request * ) ; int (*set_params)(struct scsi_device * , char const * ) ; bool (*match)(struct scsi_device * ) ; }; struct scsi_dh_data { struct scsi_device_handler *scsi_dh ; struct scsi_device *sdev ; struct kref kref ; }; enum scsi_target_state { STARGET_CREATED = 1, STARGET_RUNNING = 2, STARGET_DEL = 3 } ; struct scsi_target { struct scsi_device *starget_sdev_user ; struct list_head siblings ; struct list_head devices ; struct device dev ; struct kref reap_ref ; unsigned int channel ; unsigned int id ; unsigned char create : 1 ; unsigned char single_lun : 1 ; unsigned char pdt_1f_for_no_lun : 1 ; unsigned char no_report_luns : 1 ; unsigned char expecting_lun_change : 1 ; atomic_t target_busy ; atomic_t target_blocked ; unsigned int can_queue ; unsigned int max_target_blocked ; char scsi_level ; enum scsi_target_state state ; void *hostdata ; unsigned long starget_data[0U] ; }; struct scsi_data_buffer { struct sg_table table ; unsigned int length ; int resid ; }; struct scsi_pointer { char *ptr ; int this_residual ; struct scatterlist *buffer ; int buffers_residual ; dma_addr_t dma_handle ; int volatile Status ; int volatile Message ; int volatile have_data_in ; int volatile sent_command ; int volatile phase ; }; struct scsi_cmnd { struct scsi_device *device ; struct list_head list ; struct list_head eh_entry ; struct delayed_work abort_work ; int eh_eflags ; unsigned long serial_number ; unsigned long jiffies_at_alloc ; int retries ; int allowed ; unsigned char prot_op ; unsigned char prot_type ; unsigned char prot_flags ; unsigned short cmd_len ; enum dma_data_direction sc_data_direction ; unsigned char *cmnd ; struct scsi_data_buffer sdb ; struct scsi_data_buffer *prot_sdb ; unsigned int underflow ; unsigned int transfersize ; struct request *request ; unsigned char *sense_buffer ; void (*scsi_done)(struct scsi_cmnd * ) ; struct scsi_pointer SCp ; unsigned char *host_scribble ; int result ; int flags ; unsigned char tag ; }; typedef unsigned char uchar; struct asc_scsiq_1 { uchar status ; uchar q_no ; uchar cntl ; uchar sg_queue_cnt ; uchar target_id ; uchar target_lun ; __u32 data_addr ; __u32 data_cnt ; __u32 sense_addr ; uchar sense_len ; uchar extra_bytes ; }; typedef struct asc_scsiq_1 ASC_SCSIQ_1; struct asc_scsiq_2 { __u32 srb_ptr ; uchar target_ix ; uchar flag ; uchar cdb_len ; uchar tag_code ; ushort vm_id ; }; typedef struct asc_scsiq_2 ASC_SCSIQ_2; struct asc_scsiq_3 { uchar done_stat ; uchar host_stat ; uchar scsi_stat ; uchar scsi_msg ; }; typedef struct asc_scsiq_3 ASC_SCSIQ_3; struct asc_q_done_info { ASC_SCSIQ_2 d2 ; ASC_SCSIQ_3 d3 ; uchar q_status ; uchar q_no ; uchar cntl ; uchar sense_len ; uchar extra_bytes ; uchar res ; __u32 remain_bytes ; }; typedef struct asc_q_done_info ASC_QDONE_INFO; struct asc_sg_list { __u32 addr ; __u32 bytes ; }; typedef struct asc_sg_list ASC_SG_LIST; struct asc_sg_head { ushort entry_cnt ; ushort queue_cnt ; ushort entry_to_copy ; ushort res ; ASC_SG_LIST sg_list[0U] ; }; typedef struct asc_sg_head ASC_SG_HEAD; struct asc_scsi_q { ASC_SCSIQ_1 q1 ; ASC_SCSIQ_2 q2 ; uchar *cdbptr ; ASC_SG_HEAD *sg_head ; ushort remain_sg_entry_cnt ; ushort next_sg_index ; }; typedef struct asc_scsi_q ASC_SCSI_Q; struct asc_sg_list_q { uchar seq_no ; uchar q_no ; uchar cntl ; uchar sg_head_qp ; uchar sg_list_cnt ; uchar sg_cur_list_cnt ; }; typedef struct asc_sg_list_q ASC_SG_LIST_Q; struct __anonstruct_sdtr_233 { uchar sdtr_xfer_period ; uchar sdtr_req_ack_offset ; }; struct __anonstruct_wdtr_234 { uchar wdtr_width ; }; struct __anonstruct_mdp_235 { uchar mdp_b3 ; uchar mdp_b2 ; uchar mdp_b1 ; uchar mdp_b0 ; }; union __anonunion_u_ext_msg_232 { struct __anonstruct_sdtr_233 sdtr ; struct __anonstruct_wdtr_234 wdtr ; struct __anonstruct_mdp_235 mdp ; }; struct ext_msg { uchar msg_type ; uchar msg_len ; uchar msg_req ; union __anonunion_u_ext_msg_232 u_ext_msg ; uchar res ; }; typedef struct ext_msg EXT_MSG; struct asc_dvc_cfg { uchar can_tagged_qng ; uchar cmd_qng_enabled ; uchar disc_enable ; uchar sdtr_enable ; uchar chip_scsi_id ; uchar isa_dma_speed ; uchar isa_dma_channel ; uchar chip_version ; ushort mcode_date ; ushort mcode_version ; uchar max_tag_qng[8U] ; uchar sdtr_period_offset[8U] ; uchar adapter_info[6U] ; }; typedef struct asc_dvc_cfg ASC_DVC_CFG; struct asc_dvc_var; struct asc_board; struct asc_dvc_var { unsigned int iop_base ; ushort err_code ; ushort dvc_cntl ; ushort bug_fix_cntl ; ushort bus_type ; uchar init_sdtr ; uchar sdtr_done ; uchar use_tagged_qng ; uchar unit_not_ready ; uchar queue_full_or_busy ; uchar start_motor ; uchar *overrun_buf ; dma_addr_t overrun_dma ; uchar scsi_reset_wait ; uchar chip_no ; char is_in_int ; uchar max_total_qng ; uchar cur_total_qng ; uchar in_critical_cnt ; uchar last_q_shortage ; ushort init_state ; uchar cur_dvc_qng[8U] ; uchar max_dvc_qng[8U] ; ASC_SCSI_Q *scsiq_busy_head[8U] ; ASC_SCSI_Q *scsiq_busy_tail[8U] ; uchar const *sdtr_period_tbl ; ASC_DVC_CFG *cfg ; uchar pci_fix_asyn_xfer_always ; char redo_scam ; ushort res2 ; uchar dos_int13_table[8U] ; __u32 max_dma_count ; uchar no_scam ; uchar pci_fix_asyn_xfer ; uchar min_sdtr_index ; uchar max_sdtr_index ; struct asc_board *drv_ptr ; int ptr_map_count ; void **ptr_map ; __u32 uc_break ; }; typedef struct asc_dvc_var ASC_DVC_VAR; struct asceep_config { ushort cfg_lsw ; ushort cfg_msw ; uchar init_sdtr ; uchar disc_enable ; uchar use_cmd_qng ; uchar start_motor ; uchar max_total_qng ; uchar max_tag_qng ; uchar bios_scan ; uchar power_up_wait ; uchar no_scam ; uchar id_speed ; uchar dos_int13_table[8U] ; uchar adapter_info[6U] ; ushort cntl ; ushort chksum ; }; typedef struct asceep_config ASCEEP_CONFIG; struct adveep_3550_config { ushort cfg_lsw ; ushort cfg_msw ; ushort disc_enable ; ushort wdtr_able ; ushort sdtr_able ; ushort start_motor ; ushort tagqng_able ; ushort bios_scan ; ushort scam_tolerant ; uchar adapter_scsi_id ; uchar bios_boot_delay ; uchar scsi_reset_delay ; uchar bios_id_lun ; uchar termination ; uchar reserved1 ; ushort bios_ctrl ; ushort ultra_able ; ushort reserved2 ; uchar max_host_qng ; uchar max_dvc_qng ; ushort dvc_cntl ; ushort bug_fix ; ushort serial_number_word1 ; ushort serial_number_word2 ; ushort serial_number_word3 ; ushort check_sum ; uchar oem_name[16U] ; ushort dvc_err_code ; ushort adv_err_code ; ushort adv_err_addr ; ushort saved_dvc_err_code ; ushort saved_adv_err_code ; ushort saved_adv_err_addr ; ushort num_of_err ; }; typedef struct adveep_3550_config ADVEEP_3550_CONFIG; struct adveep_38C0800_config { ushort cfg_lsw ; ushort cfg_msw ; ushort disc_enable ; ushort wdtr_able ; ushort sdtr_speed1 ; ushort start_motor ; ushort tagqng_able ; ushort bios_scan ; ushort scam_tolerant ; uchar adapter_scsi_id ; uchar bios_boot_delay ; uchar scsi_reset_delay ; uchar bios_id_lun ; uchar termination_se ; uchar termination_lvd ; ushort bios_ctrl ; ushort sdtr_speed2 ; ushort sdtr_speed3 ; uchar max_host_qng ; uchar max_dvc_qng ; ushort dvc_cntl ; ushort sdtr_speed4 ; ushort serial_number_word1 ; ushort serial_number_word2 ; ushort serial_number_word3 ; ushort check_sum ; uchar oem_name[16U] ; ushort dvc_err_code ; ushort adv_err_code ; ushort adv_err_addr ; ushort saved_dvc_err_code ; ushort saved_adv_err_code ; ushort saved_adv_err_addr ; ushort reserved36 ; ushort reserved37 ; ushort reserved38 ; ushort reserved39 ; ushort reserved40 ; ushort reserved41 ; ushort reserved42 ; ushort reserved43 ; ushort reserved44 ; ushort reserved45 ; ushort reserved46 ; ushort reserved47 ; ushort reserved48 ; ushort reserved49 ; ushort reserved50 ; ushort reserved51 ; ushort reserved52 ; ushort reserved53 ; ushort reserved54 ; ushort reserved55 ; ushort cisptr_lsw ; ushort cisprt_msw ; ushort subsysvid ; ushort subsysid ; ushort reserved60 ; ushort reserved61 ; ushort reserved62 ; ushort reserved63 ; }; typedef struct adveep_38C0800_config ADVEEP_38C0800_CONFIG; struct adveep_38C1600_config { ushort cfg_lsw ; ushort cfg_msw ; ushort disc_enable ; ushort wdtr_able ; ushort sdtr_speed1 ; ushort start_motor ; ushort tagqng_able ; ushort bios_scan ; ushort scam_tolerant ; uchar adapter_scsi_id ; uchar bios_boot_delay ; uchar scsi_reset_delay ; uchar bios_id_lun ; uchar termination_se ; uchar termination_lvd ; ushort bios_ctrl ; ushort sdtr_speed2 ; ushort sdtr_speed3 ; uchar max_host_qng ; uchar max_dvc_qng ; ushort dvc_cntl ; ushort sdtr_speed4 ; ushort serial_number_word1 ; ushort serial_number_word2 ; ushort serial_number_word3 ; ushort check_sum ; uchar oem_name[16U] ; ushort dvc_err_code ; ushort adv_err_code ; ushort adv_err_addr ; ushort saved_dvc_err_code ; ushort saved_adv_err_code ; ushort saved_adv_err_addr ; ushort reserved36 ; ushort reserved37 ; ushort reserved38 ; ushort reserved39 ; ushort reserved40 ; ushort reserved41 ; ushort reserved42 ; ushort reserved43 ; ushort reserved44 ; ushort reserved45 ; ushort reserved46 ; ushort reserved47 ; ushort reserved48 ; ushort reserved49 ; ushort reserved50 ; ushort reserved51 ; ushort reserved52 ; ushort reserved53 ; ushort reserved54 ; ushort reserved55 ; ushort cisptr_lsw ; ushort cisprt_msw ; ushort subsysvid ; ushort subsysid ; ushort reserved60 ; ushort reserved61 ; ushort reserved62 ; ushort reserved63 ; }; typedef struct adveep_38C1600_config ADVEEP_38C1600_CONFIG; struct adv_carr_t { __u32 carr_va ; __u32 carr_pa ; __u32 areq_vpa ; __u32 next_vpa ; }; typedef struct adv_carr_t ADV_CARR_T; struct adv_dvc_cfg { ushort disc_enable ; uchar chip_version ; uchar termination ; ushort control_flag ; ushort mcode_date ; ushort mcode_version ; ushort serial1 ; ushort serial2 ; ushort serial3 ; }; typedef struct adv_dvc_cfg ADV_DVC_CFG; struct adv_dvc_var; struct adv_scsi_req_q; struct __anonstruct_sg_list_236 { __u32 sg_addr ; __u32 sg_count ; }; struct asc_sg_block { uchar reserved1 ; uchar reserved2 ; uchar reserved3 ; uchar sg_cnt ; __u32 sg_ptr ; struct __anonstruct_sg_list_236 sg_list[15U] ; }; typedef struct asc_sg_block ADV_SG_BLOCK; struct adv_scsi_req_q { uchar cntl ; uchar target_cmd ; uchar target_id ; uchar target_lun ; __u32 data_addr ; __u32 data_cnt ; __u32 sense_addr ; __u32 carr_pa ; uchar mflag ; uchar sense_len ; uchar cdb_len ; uchar scsi_cntl ; uchar done_status ; uchar scsi_status ; uchar host_status ; uchar sg_working_ix ; uchar cdb[12U] ; __u32 sg_real_addr ; __u32 scsiq_rptr ; uchar cdb16[4U] ; __u32 scsiq_ptr ; __u32 carr_va ; __u32 srb_ptr ; ADV_SG_BLOCK *sg_list_ptr ; char *vdata_addr ; uchar a_flag ; uchar pad[2U] ; }; typedef struct adv_scsi_req_q ADV_SCSI_REQ_Q; struct adv_sgblk { ADV_SG_BLOCK sg_block ; uchar align[32U] ; struct adv_sgblk *next_sgblkp ; }; typedef struct adv_sgblk adv_sgblk_t; struct adv_req { ADV_SCSI_REQ_Q scsi_req_q ; uchar align[32U] ; struct scsi_cmnd *cmndp ; adv_sgblk_t *sgblkp ; struct adv_req *next_reqp ; }; typedef struct adv_req adv_req_t; struct adv_dvc_var { void *iop_base ; ushort err_code ; ushort bios_ctrl ; ushort wdtr_able ; ushort sdtr_able ; ushort ultra_able ; ushort sdtr_speed1 ; ushort sdtr_speed2 ; ushort sdtr_speed3 ; ushort sdtr_speed4 ; ushort tagqng_able ; ushort ppr_able ; uchar max_dvc_qng ; ushort start_motor ; uchar scsi_reset_wait ; uchar chip_no ; uchar max_host_qng ; ushort no_scam ; struct asc_board *drv_ptr ; uchar chip_scsi_id ; uchar chip_type ; uchar bist_err_code ; ADV_CARR_T *carrier_buf ; ADV_CARR_T *carr_freelist ; ADV_CARR_T *icq_sp ; ADV_CARR_T *irq_sp ; ushort carr_pending_cnt ; struct adv_req *orig_reqp ; ADV_DVC_CFG *cfg ; }; typedef struct adv_dvc_var ADV_DVC_VAR; struct asc_stats { __u32 queuecommand ; __u32 reset ; __u32 biosparam ; __u32 interrupt ; __u32 callback ; __u32 done ; __u32 build_error ; __u32 adv_build_noreq ; __u32 adv_build_nosg ; __u32 exe_noerror ; __u32 exe_busy ; __u32 exe_error ; __u32 exe_unknown ; __u32 xfer_cnt ; __u32 xfer_elem ; __u32 xfer_sect ; }; union __anonunion_dvc_var_237 { ASC_DVC_VAR asc_dvc_var ; ADV_DVC_VAR adv_dvc_var ; }; union __anonunion_dvc_cfg_238 { ASC_DVC_CFG asc_dvc_cfg ; ADV_DVC_CFG adv_dvc_cfg ; }; union __anonunion_eep_config_239 { ASCEEP_CONFIG asc_eep ; ADVEEP_3550_CONFIG adv_3550_eep ; ADVEEP_38C0800_CONFIG adv_38C0800_eep ; ADVEEP_38C1600_CONFIG adv_38C1600_eep ; }; struct asc_board { struct device *dev ; uint flags ; unsigned int irq ; union __anonunion_dvc_var_237 dvc_var ; union __anonunion_dvc_cfg_238 dvc_cfg ; ushort asc_n_io_port ; ushort init_tidmask ; ushort reqcnt[16U] ; ushort queue_full ; ushort queue_full_cnt[16U] ; union __anonunion_eep_config_239 eep_config ; ulong last_reset ; struct asc_stats asc_stats ; uchar sdtr_data[8U] ; void *ioremap_addr ; ushort ioport ; adv_req_t *adv_reqp ; adv_sgblk_t *adv_sgblkp ; ushort bios_signature ; ushort bios_version ; ushort bios_codeseg ; ushort bios_codelen ; }; struct eisa_scsi_data { struct Scsi_Host *host[2U] ; }; struct ldv_struct_free_irq_5 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_2 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_io_instance_0 { struct isa_driver *arg0 ; int signal_pending ; }; struct ldv_struct_pci_instance_3 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_scsi_host_template_instance_4 { struct Scsi_Host *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef struct Scsi_Host *ldv_func_ret_type___2; typedef struct Scsi_Host *ldv_func_ret_type___3; typedef struct Scsi_Host *ldv_func_ret_type___4; typedef struct Scsi_Host *ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; typedef int ldv_func_ret_type___7; typedef int ldv_func_ret_type___8; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct notifier_block; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; extern void abort(void); void assume_abort_if_not(int cond) { if(!cond) {abort();} } void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void *is_got ) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(res1); res2 = tmp___0; assume_abort_if_not((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; assume_abort_if_not(res1 == res2); } return (res1); } } void *ldv_kzalloc(size_t size , gfp_t flags ) ; int ldv_undef_int(void) ; void ldv_linux_arch_io_io_mem_unmap(void) ; static void ldv_ldv_initialize_128(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_125(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_129(void) ; static void ldv_ldv_pre_probe_131(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_130(int retval ) ; static int ldv_ldv_post_probe_132(int retval ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_126(void) ; static void ldv_ldv_check_final_state_127(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void ldv_after_alloc(void * ) ; extern struct module __this_module ; extern int printk(char const * , ...) ; extern int sprintf(char * , char const * , ...) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern size_t strlen(char const * ) ; extern int strncmp(char const * , char const * , __kernel_size_t ) ; __inline static int atomic_read(atomic_t const *v ) { int __var ; { __var = 0; return ((int )*((int const volatile *)(& v->counter))); } } extern void __ldv_linux_kernel_locking_spinlock_spin_lock(spinlock_t * ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_99(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_100(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_104(spinlock_t *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(void) ; void ldv_linux_kernel_locking_spinlock_spin_unlock_host_lock_of_Scsi_Host(void) ; void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; extern struct resource ioport_resource ; extern struct resource *__request_region(struct resource * , resource_size_t , resource_size_t , char const * , int ) ; extern void __release_region(struct resource * , resource_size_t , resource_size_t ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_lock_102(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField18.rlock); } return; } } __inline static void ldv_spin_unlock_103(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField18.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_101(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_101(spinlock_t *lock , unsigned long flags ) ; extern unsigned long volatile jiffies ; extern int seq_putc(struct seq_file * , char ) ; extern int seq_puts(struct seq_file * , char const * ) ; extern int seq_printf(struct seq_file * , char const * , ...) ; __inline static unsigned char readb(void const volatile *addr ) { unsigned char ret ; { __asm__ volatile ("movb %1,%0": "=q" (ret): "m" (*((unsigned char volatile *)addr)): "memory"); return (ret); } } __inline static unsigned short readw(void const volatile *addr ) { unsigned short ret ; { __asm__ volatile ("movw %1,%0": "=r" (ret): "m" (*((unsigned short volatile *)addr)): "memory"); return (ret); } } __inline static void writeb(unsigned char val , void volatile *addr ) { { __asm__ volatile ("movb %0,%1": : "q" (val), "m" (*((unsigned char volatile *)addr)): "memory"); return; } } __inline static void writew(unsigned short val , void volatile *addr ) { { __asm__ volatile ("movw %0,%1": : "r" (val), "m" (*((unsigned short volatile *)addr)): "memory"); return; } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } __inline static phys_addr_t virt_to_phys(void volatile *address ) { unsigned long tmp ; { { tmp = __phys_addr((unsigned long )address); } return ((phys_addr_t )tmp); } } __inline static void *phys_to_virt(phys_addr_t address ) { { return ((void *)((unsigned long )address + 0xffff880000000000UL)); } } static void ldv_iounmap_109(void volatile *ldv_func_arg1 ) ; static void ldv_iounmap_112(void volatile *ldv_func_arg1 ) ; __inline static void flush_write_buffers(void) { { return; } } __inline static void outb(unsigned char value , int port ) { { __asm__ volatile ("outb %b0, %w1": : "a" (value), "Nd" (port)); return; } } __inline static unsigned char inb(int port ) { unsigned char value ; { __asm__ volatile ("inb %w1, %b0": "=a" (value): "Nd" (port)); return (value); } } __inline static void outw(unsigned short value , int port ) { { __asm__ volatile ("outw %w0, %w1": : "a" (value), "Nd" (port)); return; } } __inline static unsigned short inw(int port ) { unsigned short value ; { __asm__ volatile ("inw %w1, %w0": "=a" (value): "Nd" (port)); return (value); } } __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_printk(char const * , struct device const * , char const * , ...) ; extern void *realloc(void * , size_t ) ; static void *ldv_krealloc_98(void const *ldv_func_arg1 , size_t ldv_func_arg2 , gfp_t flags ) ; extern void kfree(void const * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern int pci_bus_read_config_byte(struct pci_bus * , unsigned int , int , u8 * ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; extern int pci_bus_write_config_byte(struct pci_bus * , unsigned int , int , u8 ) ; __inline static int pci_read_config_byte(struct pci_dev const *dev , int where , u8 *val ) { int tmp ; { { tmp = pci_bus_read_config_byte(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_byte(struct pci_dev const *dev , int where , u8 val ) { int tmp ; { { tmp = pci_bus_write_config_byte(dev->bus, dev->devfn, where, (int )val); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_119(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_122(struct pci_driver *ldv_func_arg1 ) ; extern struct scatterlist *sg_next(struct scatterlist * ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } __inline static void dma_cache_sync(struct device *dev , void *vaddr , size_t size , enum dma_data_direction dir ) { { { flush_write_buffers(); } return; } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } extern void *pci_ioremap_bar(struct pci_dev * , int ) ; __inline static void *shost_priv(struct Scsi_Host *shost ) { { return ((void *)(& shost->hostdata)); } } extern struct Scsi_Host *scsi_host_alloc(struct scsi_host_template * , int ) ; static struct Scsi_Host *ldv_scsi_host_alloc_113(struct scsi_host_template *ldv_func_arg1 , int ldv_func_arg2 ) ; static struct Scsi_Host *ldv_scsi_host_alloc_114(struct scsi_host_template *ldv_func_arg1 , int ldv_func_arg2 ) ; static struct Scsi_Host *ldv_scsi_host_alloc_115(struct scsi_host_template *ldv_func_arg1 , int ldv_func_arg2 ) ; static struct Scsi_Host *ldv_scsi_host_alloc_116(struct scsi_host_template *ldv_func_arg1 , int ldv_func_arg2 ) ; extern int scsi_add_host_with_dma(struct Scsi_Host * , struct device * , struct device * ) ; extern void scsi_scan_host(struct Scsi_Host * ) ; extern void scsi_remove_host(struct Scsi_Host * ) ; static void ldv_scsi_remove_host_110(struct Scsi_Host *ldv_func_arg1 ) ; extern void scsi_host_put(struct Scsi_Host * ) ; extern void scsi_cmd_get_serial(struct Scsi_Host * , struct scsi_cmnd * ) ; __inline static int scsi_add_host(struct Scsi_Host *host , struct device *dev ) { int tmp ; { { tmp = scsi_add_host_with_dma(host, dev, dev); } return (tmp); } } __inline static int ldv_scsi_add_host_107(struct Scsi_Host *host , struct device *dev ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_106(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_108(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_111(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void __const_udelay(unsigned long ) ; __inline static int isa_register_driver(struct isa_driver *d , unsigned int i ) { { return (0); } } __inline static int ldv_isa_register_driver_117(struct isa_driver *d , unsigned int i ) ; __inline static int ldv_isa_register_driver_118(struct isa_driver *d , unsigned int i ) ; __inline static void isa_unregister_driver(struct isa_driver *d ) { { return; } } __inline static void ldv_isa_unregister_driver_120(struct isa_driver *d ) ; __inline static void ldv_isa_unregister_driver_120(struct isa_driver *d ) ; __inline static void ldv_isa_unregister_driver_120(struct isa_driver *d ) ; __inline static void ldv_isa_unregister_driver_120(struct isa_driver *d ) ; __inline static int eisa_driver_register(struct eisa_driver *edrv ) { { return (0); } } __inline static void eisa_driver_unregister(struct eisa_driver *edrv ) { { return; } } extern int request_firmware(struct firmware const ** , char const * , struct device * ) ; extern void release_firmware(struct firmware const * ) ; extern void scmd_printk(char const * , struct scsi_cmnd const * , char const * , ...) ; extern int scsi_change_queue_depth(struct scsi_device * , int ) ; extern int scsi_dma_map(struct scsi_cmnd * ) ; extern void scsi_dma_unmap(struct scsi_cmnd * ) ; __inline static struct scatterlist *scsi_sglist(struct scsi_cmnd *cmd ) { { return (cmd->sdb.table.sgl); } } __inline static unsigned int scsi_bufflen(struct scsi_cmnd *cmd ) { { return (cmd->sdb.length); } } __inline static void scsi_set_resid(struct scsi_cmnd *cmd , int resid ) { { cmd->sdb.resid = resid; return; } } static unsigned char const asc_syn_xfer_period[8U] = { 25U, 30U, 35U, 40U, 50U, 60U, 70U, 85U}; static unsigned char const asc_syn_ultra_xfer_period[16U] = { 12U, 19U, 25U, 32U, 38U, 44U, 50U, 57U, 63U, 69U, 75U, 82U, 88U, 94U, 100U, 107U}; static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc , void *ptr ) { int i ; void **new_ptr ; void *tmp ; { i = 0; goto ldv_38640; ldv_38639: ; if ((unsigned long )*(asc_dvc->ptr_map + (unsigned long )i) == (unsigned long )((void *)0)) { goto out; } else { } i = i + 1; ldv_38640: ; if (i < asc_dvc->ptr_map_count) { goto ldv_38639; } else { } if (asc_dvc->ptr_map_count == 0) { asc_dvc->ptr_map_count = 1; } else { asc_dvc->ptr_map_count = asc_dvc->ptr_map_count * 2; } { tmp = ldv_krealloc_98((void const *)asc_dvc->ptr_map, (unsigned long )asc_dvc->ptr_map_count * 8UL, 32U); new_ptr = (void **)tmp; } if ((unsigned long )new_ptr == (unsigned long )((void **)0)) { return (0U); } else { } asc_dvc->ptr_map = new_ptr; out: *(asc_dvc->ptr_map + (unsigned long )i) = ptr; return ((u32 )(i + 1)); } } static void *advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc , u32 srb ) { void *ptr ; { srb = srb - 1U; if (srb >= (u32 )asc_dvc->ptr_map_count) { { printk("advansys: bad SRB %u, max %u\n", srb, asc_dvc->ptr_map_count); } return ((void *)0); } else { } ptr = *(asc_dvc->ptr_map + (unsigned long )srb); *(asc_dvc->ptr_map + (unsigned long )srb) = (void *)0; return (ptr); } } static char const *advansys_info(struct Scsi_Host *shost ) { char info[128U] ; struct asc_board *boardp ; void *tmp ; ASC_DVC_VAR *asc_dvc_varp ; ADV_DVC_VAR *adv_dvc_varp ; char *busname ; char *widename ; size_t tmp___0 ; long tmp___1 ; { { tmp = shost_priv(shost); boardp = (struct asc_board *)tmp; widename = (char *)0; } if ((boardp->flags & 4U) == 0U) { asc_dvc_varp = & boardp->dvc_var.asc_dvc_var; if ((int )asc_dvc_varp->bus_type & 1) { if (((int )asc_dvc_varp->bus_type & 129) == 129) { busname = (char *)"ISA PnP"; } else { busname = (char *)"ISA"; } { sprintf((char *)(& info), "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X", (char *)"3.4", busname, shost->io_port, shost->io_port + 15UL, boardp->irq, (int )shost->dma_channel); } } else { if (((int )asc_dvc_varp->bus_type & 64) != 0) { busname = (char *)"VL"; } else if (((int )asc_dvc_varp->bus_type & 2) != 0) { busname = (char *)"EISA"; } else if (((int )asc_dvc_varp->bus_type & 4) != 0) { if (((int )asc_dvc_varp->bus_type & 260) == 260) { busname = (char *)"PCI Ultra"; } else { busname = (char *)"PCI"; } } else { { busname = (char *)"?"; dev_printk("\v", (struct device const *)(& shost->shost_gendev), "unknown bus type %d\n", (int )asc_dvc_varp->bus_type); } } { sprintf((char *)(& info), "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X", (char *)"3.4", busname, shost->io_port, shost->io_port + 15UL, boardp->irq); } } } else { adv_dvc_varp = & boardp->dvc_var.adv_dvc_var; if ((unsigned int )adv_dvc_varp->chip_type == 1U) { widename = (char *)"Ultra-Wide"; } else if ((unsigned int )adv_dvc_varp->chip_type == 2U) { widename = (char *)"Ultra2-Wide"; } else { widename = (char *)"Ultra3-Wide"; } { sprintf((char *)(& info), "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X", (char *)"3.4", widename, (unsigned long )adv_dvc_varp->iop_base, ((unsigned long )adv_dvc_varp->iop_base + (unsigned long )boardp->asc_n_io_port) - 1UL, boardp->irq); } } { tmp___0 = strlen((char const *)(& info)); tmp___1 = ldv__builtin_expect(tmp___0 > 127UL, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/scsi/advansys.c"), "i" (2855), "i" (12UL)); __builtin_unreachable(); } } else { } return ((char const *)(& info)); } } static void asc_prt_board_devices(struct seq_file *m , struct Scsi_Host *shost ) { struct asc_board *boardp ; void *tmp ; int chip_scsi_id ; int i ; { { tmp = shost_priv(shost); boardp = (struct asc_board *)tmp; seq_printf(m, "\nDevice Information for AdvanSys SCSI Host %d:\n", shost->host_no); } if ((boardp->flags & 4U) == 0U) { chip_scsi_id = (int )boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; } else { chip_scsi_id = (int )boardp->dvc_var.adv_dvc_var.chip_scsi_id; } { seq_puts(m, "Target IDs Detected:"); i = 0; } goto ldv_38664; ldv_38663: ; if (((int )boardp->init_tidmask >> (i & 15)) & 1) { { seq_printf(m, " %X,", i); } } else { } i = i + 1; ldv_38664: ; if (i <= 15) { goto ldv_38663; } else { } { seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id); } return; } } static void asc_prt_adv_bios(struct seq_file *m , struct Scsi_Host *shost ) { struct asc_board *boardp ; void *tmp ; ushort major ; ushort minor ; ushort letter ; { { tmp = shost_priv(shost); boardp = (struct asc_board *)tmp; seq_puts(m, "\nROM BIOS Version: "); } if ((unsigned int )boardp->bios_signature != 21930U) { { seq_puts(m, "Disabled or Pre-3.1\nBIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\ncan be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n"); } } else { { major = (ushort )((int )boardp->bios_version >> 12); minor = (unsigned int )((ushort )((int )boardp->bios_version >> 8)) & 15U; letter = (unsigned int )boardp->bios_version & 255U; seq_printf(m, "%d.%d%c\n", (int )major, (int )minor, (unsigned int )letter <= 25U ? (int )letter + 65 : 63); } if (((unsigned int )major <= 2U || ((unsigned int )major <= 3U && (unsigned int )minor == 0U)) || (((unsigned int )major <= 3U && (unsigned int )minor <= 1U) && (unsigned int )letter <= 7U)) { { seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\nftp://ftp.connectcom.net/pub\n"); } } else { } } return; } } static int asc_get_eeprom_string(ushort *serialnum , uchar *cp ) { ushort w ; ushort num ; uchar tmp ; uchar *tmp___0 ; uchar *tmp___1 ; uchar *tmp___2 ; uchar *tmp___3 ; uchar *tmp___4 ; uchar *tmp___5 ; uchar *tmp___6 ; uchar *tmp___7 ; uchar *tmp___8 ; uchar *tmp___9 ; uchar *tmp___10 ; uchar *tmp___11 ; { if (((int )*(serialnum + 1UL) & 65024) != 43520) { return (0); } else { w = *serialnum; tmp = (unsigned int )((uchar )((int )w >> 13)) + 65U; *cp = tmp; if ((unsigned int )tmp == 72U) { *cp = (unsigned int )*cp + 8U; } else { } cp = cp + 1; tmp___0 = cp; cp = cp + 1; *tmp___0 = (unsigned int )((uchar )(((int )w & 7168) >> 10)) + 65U; num = (unsigned int )w & 1023U; tmp___1 = cp; cp = cp + 1; *tmp___1 = (unsigned int )((uchar )((unsigned int )num / 100U)) + 48U; num = (ushort )((unsigned int )num % 100U); tmp___2 = cp; cp = cp + 1; *tmp___2 = (unsigned int )((uchar )((unsigned int )num / 10U)) + 48U; tmp___3 = cp; cp = cp + 1; *tmp___3 = (unsigned int )((uchar )((unsigned int )num % 10U)) + 65U; w = *(serialnum + 1UL); if ((int )((short )*(serialnum + 2UL)) < 0) { tmp___4 = cp; cp = cp + 1; *tmp___4 = (unsigned int )((uchar )(((int )w & 448) >> 6)) + 56U; } else { tmp___5 = cp; cp = cp + 1; *tmp___5 = (unsigned int )((uchar )(((int )w & 448) >> 6)) + 48U; } num = (unsigned int )w & 63U; tmp___6 = cp; cp = cp + 1; *tmp___6 = (unsigned int )((uchar )((unsigned int )num / 10U)) + 48U; num = (ushort )((unsigned int )num % 10U); tmp___7 = cp; cp = cp + 1; *tmp___7 = (unsigned int )((uchar )num) + 48U; w = (unsigned int )*(serialnum + 2UL) & 32767U; tmp___8 = cp; cp = cp + 1; *tmp___8 = (unsigned int )((uchar )((unsigned int )w / 1000U)) + 65U; num = (ushort )((unsigned int )w % 1000U); tmp___9 = cp; cp = cp + 1; *tmp___9 = (unsigned int )((uchar )((unsigned int )num / 100U)) + 48U; num = (ushort )((unsigned int )num % 100U); tmp___10 = cp; cp = cp + 1; *tmp___10 = (unsigned int )((uchar )((unsigned int )num / 10U)) + 48U; num = (ushort )((unsigned int )num % 10U); tmp___11 = cp; cp = cp + 1; *tmp___11 = (unsigned int )((uchar )num) + 48U; *cp = 0U; return (1); } } } static void asc_prt_asc_board_eeprom(struct seq_file *m , struct Scsi_Host *shost ) { struct asc_board *boardp ; void *tmp ; ASC_DVC_VAR *asc_dvc_varp ; ASCEEP_CONFIG *ep ; int i ; uchar serialstr[13U] ; int tmp___0 ; { { tmp = shost_priv(shost); boardp = (struct asc_board *)tmp; asc_dvc_varp = & boardp->dvc_var.asc_dvc_var; ep = & boardp->eep_config.asc_eep; seq_printf(m, "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", shost->host_no); tmp___0 = asc_get_eeprom_string((ushort *)(& ep->adapter_info), (uchar *)(& serialstr)); } if (tmp___0 == 1) { { seq_printf(m, " Serial Number: %s\n", (uchar *)(& serialstr)); } } else if ((unsigned int )ep->adapter_info[5] == 187U) { { seq_puts(m, " Default Settings Used for EEPROM-less Adapter.\n"); } } else { { seq_puts(m, " Serial Number Signature Not Present.\n"); } } { seq_printf(m, " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", (int )ep->id_speed & 15, (int )ep->max_total_qng, (int )ep->max_tag_qng); seq_printf(m, " cntl 0x%x, no_scam 0x%x\n", (int )ep->cntl, (int )ep->no_scam); seq_puts(m, " Target ID: "); i = 0; } goto ldv_38690; ldv_38689: { seq_printf(m, " %d", i); i = i + 1; } ldv_38690: ; if (i <= 7) { goto ldv_38689; } else { } { seq_puts(m, "\n Disconnects: "); i = 0; } goto ldv_38693; ldv_38692: { seq_printf(m, " %c", ((int )ep->disc_enable >> (i & 15)) & 1 ? 89 : 78); i = i + 1; } ldv_38693: ; if (i <= 7) { goto ldv_38692; } else { } { seq_puts(m, "\n Command Queuing: "); i = 0; } goto ldv_38696; ldv_38695: { seq_printf(m, " %c", ((int )ep->use_cmd_qng >> (i & 15)) & 1 ? 89 : 78); i = i + 1; } ldv_38696: ; if (i <= 7) { goto ldv_38695; } else { } { seq_puts(m, "\n Start Motor: "); i = 0; } goto ldv_38699; ldv_38698: { seq_printf(m, " %c", ((int )ep->start_motor >> (i & 15)) & 1 ? 89 : 78); i = i + 1; } ldv_38699: ; if (i <= 7) { goto ldv_38698; } else { } { seq_puts(m, "\n Synchronous Transfer:"); i = 0; } goto ldv_38702; ldv_38701: { seq_printf(m, " %c", ((int )ep->init_sdtr >> (i & 15)) & 1 ? 89 : 78); i = i + 1; } ldv_38702: ; if (i <= 7) { goto ldv_38701; } else { } { seq_putc(m, 10); } return; } } static void asc_prt_adv_board_eeprom(struct seq_file *m , struct Scsi_Host *shost ) { struct asc_board *boardp ; void *tmp ; ADV_DVC_VAR *adv_dvc_varp ; int i ; char *termstr ; uchar serialstr[13U] ; ADVEEP_3550_CONFIG *ep_3550 ; ADVEEP_38C0800_CONFIG *ep_38C0800 ; ADVEEP_38C1600_CONFIG *ep_38C1600 ; ushort word ; ushort *wordp ; ushort sdtr_speed ; int tmp___0 ; char *speed_str ; { { tmp = shost_priv(shost); boardp = (struct asc_board *)tmp; ep_3550 = (ADVEEP_3550_CONFIG *)0; ep_38C0800 = (ADVEEP_38C0800_CONFIG *)0; ep_38C1600 = (ADVEEP_38C1600_CONFIG *)0; sdtr_speed = 0U; adv_dvc_varp = & boardp->dvc_var.adv_dvc_var; } if ((unsigned int )adv_dvc_varp->chip_type == 1U) { ep_3550 = & boardp->eep_config.adv_3550_eep; } else if ((unsigned int )adv_dvc_varp->chip_type == 2U) { ep_38C0800 = & boardp->eep_config.adv_38C0800_eep; } else { ep_38C1600 = & boardp->eep_config.adv_38C1600_eep; } { seq_printf(m, "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", shost->host_no); } if ((unsigned int )adv_dvc_varp->chip_type == 1U) { wordp = & ep_3550->serial_number_word1; } else if ((unsigned int )adv_dvc_varp->chip_type == 2U) { wordp = & ep_38C0800->serial_number_word1; } else { wordp = & ep_38C1600->serial_number_word1; } { tmp___0 = asc_get_eeprom_string(wordp, (uchar *)(& serialstr)); } if (tmp___0 == 1) { { seq_printf(m, " Serial Number: %s\n", (uchar *)(& serialstr)); } } else { { seq_puts(m, " Serial Number Signature Not Present.\n"); } } if ((unsigned int )adv_dvc_varp->chip_type == 1U) { { seq_printf(m, " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", (int )ep_3550->adapter_scsi_id, (int )ep_3550->max_host_qng, (int )ep_3550->max_dvc_qng); } } else if ((unsigned int )adv_dvc_varp->chip_type == 2U) { { seq_printf(m, " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", (int )ep_38C0800->adapter_scsi_id, (int )ep_38C0800->max_host_qng, (int )ep_38C0800->max_dvc_qng); } } else { { seq_printf(m, " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", (int )ep_38C1600->adapter_scsi_id, (int )ep_38C1600->max_host_qng, (int )ep_38C1600->max_dvc_qng); } } if ((unsigned int )adv_dvc_varp->chip_type == 1U) { word = (ushort )ep_3550->termination; } else if ((unsigned int )adv_dvc_varp->chip_type == 2U) { word = (ushort )ep_38C0800->termination_lvd; } else { word = (ushort )ep_38C1600->termination_lvd; } { if ((int )word == 1) { goto case_1; } else { } if ((int )word == 2) { goto case_2; } else { } if ((int )word == 3) { goto case_3; } else { } if ((int )word == 0) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ termstr = (char *)"Low Off/High Off"; goto ldv_38720; case_2: /* CIL Label */ termstr = (char *)"Low Off/High On"; goto ldv_38720; case_3: /* CIL Label */ termstr = (char *)"Low On/High On"; goto ldv_38720; switch_default: /* CIL Label */ ; case_0: /* CIL Label */ termstr = (char *)"Automatic"; goto ldv_38720; switch_break: /* CIL Label */ ; } ldv_38720: ; if ((unsigned int )adv_dvc_varp->chip_type == 1U) { { seq_printf(m, " termination: %u (%s), bios_ctrl: 0x%x\n", (int )ep_3550->termination, termstr, (int )ep_3550->bios_ctrl); } } else if ((unsigned int )adv_dvc_varp->chip_type == 2U) { { seq_printf(m, " termination: %u (%s), bios_ctrl: 0x%x\n", (int )ep_38C0800->termination_lvd, termstr, (int )ep_38C0800->bios_ctrl); } } else { { seq_printf(m, " termination: %u (%s), bios_ctrl: 0x%x\n", (int )ep_38C1600->termination_lvd, termstr, (int )ep_38C1600->bios_ctrl); } } { seq_puts(m, " Target ID: "); i = 0; } goto ldv_38726; ldv_38725: { seq_printf(m, " %X", i); i = i + 1; } ldv_38726: ; if (i <= 15) { goto ldv_38725; } else { } { seq_putc(m, 10); } if ((unsigned int )adv_dvc_varp->chip_type == 1U) { word = ep_3550->disc_enable; } else if ((unsigned int )adv_dvc_varp->chip_type == 2U) { word = ep_38C0800->disc_enable; } else { word = ep_38C1600->disc_enable; } { seq_puts(m, " Disconnects: "); i = 0; } goto ldv_38729; ldv_38728: { seq_printf(m, " %c", ((int )word >> (i & 15)) & 1 ? 89 : 78); i = i + 1; } ldv_38729: ; if (i <= 15) { goto ldv_38728; } else { } { seq_putc(m, 10); } if ((unsigned int )adv_dvc_varp->chip_type == 1U) { word = ep_3550->tagqng_able; } else if ((unsigned int )adv_dvc_varp->chip_type == 2U) { word = ep_38C0800->tagqng_able; } else { word = ep_38C1600->tagqng_able; } { seq_puts(m, " Command Queuing: "); i = 0; } goto ldv_38732; ldv_38731: { seq_printf(m, " %c", ((int )word >> (i & 15)) & 1 ? 89 : 78); i = i + 1; } ldv_38732: ; if (i <= 15) { goto ldv_38731; } else { } { seq_putc(m, 10); } if ((unsigned int )adv_dvc_varp->chip_type == 1U) { word = ep_3550->start_motor; } else if ((unsigned int )adv_dvc_varp->chip_type == 2U) { word = ep_38C0800->start_motor; } else { word = ep_38C1600->start_motor; } { seq_puts(m, " Start Motor: "); i = 0; } goto ldv_38735; ldv_38734: { seq_printf(m, " %c", ((int )word >> (i & 15)) & 1 ? 89 : 78); i = i + 1; } ldv_38735: ; if (i <= 15) { goto ldv_38734; } else { } { seq_putc(m, 10); } if ((unsigned int )adv_dvc_varp->chip_type == 1U) { { seq_puts(m, " Synchronous Transfer:"); i = 0; } goto ldv_38738; ldv_38737: { seq_printf(m, " %c", ((int )ep_3550->sdtr_able >> (i & 15)) & 1 ? 89 : 78); i = i + 1; } ldv_38738: ; if (i <= 15) { goto ldv_38737; } else { } { seq_putc(m, 10); } } else { } if ((unsigned int )adv_dvc_varp->chip_type == 1U) { { seq_puts(m, " Ultra Transfer: "); i = 0; } goto ldv_38741; ldv_38740: { seq_printf(m, " %c", ((int )ep_3550->ultra_able >> (i & 15)) & 1 ? 89 : 78); i = i + 1; } ldv_38741: ; if (i <= 15) { goto ldv_38740; } else { } { seq_putc(m, 10); } } else { } if ((unsigned int )adv_dvc_varp->chip_type == 1U) { word = ep_3550->wdtr_able; } else if ((unsigned int )adv_dvc_varp->chip_type == 2U) { word = ep_38C0800->wdtr_able; } else { word = ep_38C1600->wdtr_able; } { seq_puts(m, " Wide Transfer: "); i = 0; } goto ldv_38744; ldv_38743: { seq_printf(m, " %c", ((int )word >> (i & 15)) & 1 ? 89 : 78); i = i + 1; } ldv_38744: ; if (i <= 15) { goto ldv_38743; } else { } { seq_putc(m, 10); } if ((unsigned int )adv_dvc_varp->chip_type - 2U <= 1U) { { seq_puts(m, " Synchronous Transfer Speed (Mhz):\n "); i = 0; } goto ldv_38756; ldv_38755: ; if (i == 0) { sdtr_speed = adv_dvc_varp->sdtr_speed1; } else if (i == 4) { sdtr_speed = adv_dvc_varp->sdtr_speed2; } else if (i == 8) { sdtr_speed = adv_dvc_varp->sdtr_speed3; } else if (i == 12) { sdtr_speed = adv_dvc_varp->sdtr_speed4; } else { } { if (((int )sdtr_speed & 15) == 0) { goto case_0___0; } else { } if (((int )sdtr_speed & 15) == 1) { goto case_1___0; } else { } if (((int )sdtr_speed & 15) == 2) { goto case_2___0; } else { } if (((int )sdtr_speed & 15) == 3) { goto case_3___0; } else { } if (((int )sdtr_speed & 15) == 4) { goto case_4; } else { } if (((int )sdtr_speed & 15) == 5) { goto case_5; } else { } goto switch_default___0; case_0___0: /* CIL Label */ speed_str = (char *)"Off"; goto ldv_38748; case_1___0: /* CIL Label */ speed_str = (char *)" 5"; goto ldv_38748; case_2___0: /* CIL Label */ speed_str = (char *)" 10"; goto ldv_38748; case_3___0: /* CIL Label */ speed_str = (char *)" 20"; goto ldv_38748; case_4: /* CIL Label */ speed_str = (char *)" 40"; goto ldv_38748; case_5: /* CIL Label */ speed_str = (char *)" 80"; goto ldv_38748; switch_default___0: /* CIL Label */ speed_str = (char *)"Unk"; goto ldv_38748; switch_break___0: /* CIL Label */ ; } ldv_38748: { seq_printf(m, "%X:%s ", i, speed_str); } if (i == 7) { { seq_puts(m, "\n "); } } else { } sdtr_speed = (ushort )((int )sdtr_speed >> 4); i = i + 1; ldv_38756: ; if (i <= 15) { goto ldv_38755; } else { } { seq_putc(m, 10); } } else { } return; } } static void asc_prt_driver_conf(struct seq_file *m , struct Scsi_Host *shost ) { struct asc_board *boardp ; void *tmp ; int chip_scsi_id ; int tmp___0 ; { { tmp = shost_priv(shost); boardp = (struct asc_board *)tmp; seq_printf(m, "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n", shost->host_no); tmp___0 = atomic_read((atomic_t const *)(& shost->host_busy)); seq_printf(m, " host_busy %u, max_id %u, max_lun %llu, max_channel %u\n", tmp___0, shost->max_id, shost->max_lun, shost->max_channel); seq_printf(m, " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n", shost->unique_id, shost->can_queue, shost->this_id, (int )shost->sg_tablesize, (int )shost->cmd_per_lun); seq_printf(m, " unchecked_isa_dma %d, use_clustering %d\n", (int )shost->unchecked_isa_dma, (int )shost->use_clustering); seq_printf(m, " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n", boardp->flags, boardp->last_reset, jiffies, (int )boardp->asc_n_io_port); seq_printf(m, " io_port 0x%lx\n", shost->io_port); } if ((boardp->flags & 4U) == 0U) { chip_scsi_id = (int )boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; } else { chip_scsi_id = (int )boardp->dvc_var.adv_dvc_var.chip_scsi_id; } return; } } static void asc_prt_asc_board_info(struct seq_file *m , struct Scsi_Host *shost ) { struct asc_board *boardp ; void *tmp ; int chip_scsi_id ; ASC_DVC_VAR *v ; ASC_DVC_CFG *c ; int i ; int renegotiate ; uchar syn_period_ix ; { { tmp = shost_priv(shost); boardp = (struct asc_board *)tmp; renegotiate = 0; v = & boardp->dvc_var.asc_dvc_var; c = & boardp->dvc_cfg.asc_dvc_cfg; chip_scsi_id = (int )c->chip_scsi_id; seq_printf(m, "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", shost->host_no); seq_printf(m, " chip_version %u, mcode_date 0x%x, mcode_version 0x%x, err_code %u\n", (int )c->chip_version, (int )c->mcode_date, (int )c->mcode_version, (int )v->err_code); seq_printf(m, " Total Command Pending: %d\n", (int )v->cur_total_qng); seq_puts(m, " Command Queuing:"); i = 0; } goto ldv_38776; ldv_38775: ; if (chip_scsi_id == i || (((int )boardp->init_tidmask >> (i & 15)) & 1) == 0) { goto ldv_38774; } else { } { seq_printf(m, " %X:%c", i, ((int )v->use_tagged_qng >> (i & 15)) & 1 ? 89 : 78); } ldv_38774: i = i + 1; ldv_38776: ; if (i <= 7) { goto ldv_38775; } else { } { seq_puts(m, "\n Command Queue Pending:"); i = 0; } goto ldv_38780; ldv_38779: ; if (chip_scsi_id == i || (((int )boardp->init_tidmask >> (i & 15)) & 1) == 0) { goto ldv_38778; } else { } { seq_printf(m, " %X:%u", i, (int )v->cur_dvc_qng[i]); } ldv_38778: i = i + 1; ldv_38780: ; if (i <= 7) { goto ldv_38779; } else { } { seq_puts(m, "\n Command Queue Limit:"); i = 0; } goto ldv_38784; ldv_38783: ; if (chip_scsi_id == i || (((int )boardp->init_tidmask >> (i & 15)) & 1) == 0) { goto ldv_38782; } else { } { seq_printf(m, " %X:%u", i, (int )v->max_dvc_qng[i]); } ldv_38782: i = i + 1; ldv_38784: ; if (i <= 7) { goto ldv_38783; } else { } { seq_puts(m, "\n Command Queue Full:"); i = 0; } goto ldv_38788; ldv_38787: ; if (chip_scsi_id == i || (((int )boardp->init_tidmask >> (i & 15)) & 1) == 0) { goto ldv_38786; } else { } if (((int )boardp->queue_full >> (i & 15)) & 1) { { seq_printf(m, " %X:Y-%d", i, (int )boardp->queue_full_cnt[i]); } } else { { seq_printf(m, " %X:N", i); } } ldv_38786: i = i + 1; ldv_38788: ; if (i <= 7) { goto ldv_38787; } else { } { seq_puts(m, "\n Synchronous Transfer:"); i = 0; } goto ldv_38792; ldv_38791: ; if (chip_scsi_id == i || (((int )boardp->init_tidmask >> (i & 15)) & 1) == 0) { goto ldv_38790; } else { } { seq_printf(m, " %X:%c", i, ((int )v->sdtr_done >> (i & 15)) & 1 ? 89 : 78); } ldv_38790: i = i + 1; ldv_38792: ; if (i <= 7) { goto ldv_38791; } else { } { seq_putc(m, 10); i = 0; } goto ldv_38797; ldv_38796: ; if ((chip_scsi_id == i || (((int )boardp->init_tidmask >> (i & 15)) & 1) == 0) || (((int )v->init_sdtr >> (i & 15)) & 1) == 0) { goto ldv_38795; } else { } { seq_printf(m, " %X:", i); } if (((int )boardp->sdtr_data[i] & 15) == 0) { { seq_puts(m, " Asynchronous"); } } else { { syn_period_ix = (uchar )((int )((signed char )((int )boardp->sdtr_data[i] >> 4)) & (int )((signed char )((unsigned int )v->max_sdtr_index + 255U))); seq_printf(m, " Transfer Period Factor: %d (%d.%d Mhz),", (int )*(v->sdtr_period_tbl + (unsigned long )syn_period_ix), 250 / (int )*(v->sdtr_period_tbl + (unsigned long )syn_period_ix), (250 / (int )*(v->sdtr_period_tbl + (unsigned long )syn_period_ix)) * 10 <= 2500 / (int )*(v->sdtr_period_tbl + (unsigned long )syn_period_ix) ? 2500 / (int )*(v->sdtr_period_tbl + (unsigned long )syn_period_ix) + (250 / (int )*(v->sdtr_period_tbl + (unsigned long )syn_period_ix)) * -10 : 0); seq_printf(m, " REQ/ACK Offset: %d", (int )boardp->sdtr_data[i] & 15); } } if ((((int )v->sdtr_done >> (i & 15)) & 1) == 0) { { seq_puts(m, "*\n"); renegotiate = 1; } } else { { seq_putc(m, 10); } } ldv_38795: i = i + 1; ldv_38797: ; if (i <= 7) { goto ldv_38796; } else { } if (renegotiate != 0) { { seq_puts(m, " * = Re-negotiation pending before next command.\n"); } } else { } return; } } static void asc_prt_adv_board_info(struct seq_file *m , struct Scsi_Host *shost ) { struct asc_board *boardp ; void *tmp ; int i ; ADV_DVC_VAR *v ; ADV_DVC_CFG *c ; void *iop_base ; ushort chip_scsi_id ; ushort lramword ; uchar lrambyte ; ushort tagqng_able ; ushort sdtr_able ; ushort wdtr_able ; ushort wdtr_done ; ushort sdtr_done ; ushort period ; int renegotiate ; unsigned short tmp___0 ; { { tmp = shost_priv(shost); boardp = (struct asc_board *)tmp; period = 0U; renegotiate = 0; v = & boardp->dvc_var.adv_dvc_var; c = & boardp->dvc_cfg.adv_dvc_cfg; iop_base = v->iop_base; chip_scsi_id = (ushort )v->chip_scsi_id; seq_printf(m, "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", shost->host_no); tmp___0 = readw((void const volatile *)iop_base + 14U); seq_printf(m, " iop_base 0x%lx, cable_detect: %X, err_code %u\n", (unsigned long )v->iop_base, (int )tmp___0 & 15, (int )v->err_code); seq_printf(m, " chip_version %u, mcode_date 0x%x, mcode_version 0x%x\n", (int )c->chip_version, (int )c->mcode_date, (int )c->mcode_version); writew(160, (void volatile *)iop_base + 4U); tagqng_able = readw((void const volatile *)iop_base + 6U); seq_puts(m, " Queuing Enabled:"); i = 0; } goto ldv_38820; ldv_38819: ; if ((int )chip_scsi_id == i || (((int )boardp->init_tidmask >> (i & 15)) & 1) == 0) { goto ldv_38818; } else { } { seq_printf(m, " %X:%c", i, ((int )tagqng_able >> (i & 15)) & 1 ? 89 : 78); } ldv_38818: i = i + 1; ldv_38820: ; if (i <= 15) { goto ldv_38819; } else { } { seq_puts(m, "\n Queue Limit:"); i = 0; } goto ldv_38824; ldv_38823: ; if ((int )chip_scsi_id == i || (((int )boardp->init_tidmask >> (i & 15)) & 1) == 0) { goto ldv_38822; } else { } { writew((int )((unsigned int )((unsigned short )i) + 208U), (void volatile *)iop_base + 4U); lrambyte = readb((void const volatile *)iop_base + 6U); seq_printf(m, " %X:%d", i, (int )lrambyte); } ldv_38822: i = i + 1; ldv_38824: ; if (i <= 15) { goto ldv_38823; } else { } { seq_puts(m, "\n Command Pending:"); i = 0; } goto ldv_38828; ldv_38827: ; if ((int )chip_scsi_id == i || (((int )boardp->init_tidmask >> (i & 15)) & 1) == 0) { goto ldv_38826; } else { } { writew((int )((unsigned int )((unsigned short )i) + 192U), (void volatile *)iop_base + 4U); lrambyte = readb((void const volatile *)iop_base + 6U); seq_printf(m, " %X:%d", i, (int )lrambyte); } ldv_38826: i = i + 1; ldv_38828: ; if (i <= 15) { goto ldv_38827; } else { } { seq_putc(m, 10); writew(156, (void volatile *)iop_base + 4U); wdtr_able = readw((void const volatile *)iop_base + 6U); seq_puts(m, " Wide Enabled:"); i = 0; } goto ldv_38832; ldv_38831: ; if ((int )chip_scsi_id == i || (((int )boardp->init_tidmask >> (i & 15)) & 1) == 0) { goto ldv_38830; } else { } { seq_printf(m, " %X:%c", i, ((int )wdtr_able >> (i & 15)) & 1 ? 89 : 78); } ldv_38830: i = i + 1; ldv_38832: ; if (i <= 15) { goto ldv_38831; } else { } { seq_putc(m, 10); writew(292, (void volatile *)iop_base + 4U); wdtr_done = readw((void const volatile *)iop_base + 6U); seq_puts(m, " Transfer Bit Width:"); i = 0; } goto ldv_38836; ldv_38835: ; if ((int )chip_scsi_id == i || (((int )boardp->init_tidmask >> (i & 15)) & 1) == 0) { goto ldv_38834; } else { } { writew((int )((unsigned int )((unsigned short )(i + 128)) * 2U), (void volatile *)iop_base + 4U); lramword = readw((void const volatile *)iop_base + 6U); seq_printf(m, " %X:%d", i, (int )((short )lramword) < 0 ? 16 : 8); } if (((int )wdtr_able >> (i & 15)) & 1 && (((int )wdtr_done >> (i & 15)) & 1) == 0) { { seq_putc(m, 42); renegotiate = 1; } } else { } ldv_38834: i = i + 1; ldv_38836: ; if (i <= 15) { goto ldv_38835; } else { } { seq_putc(m, 10); writew(158, (void volatile *)iop_base + 4U); sdtr_able = readw((void const volatile *)iop_base + 6U); seq_puts(m, " Synchronous Enabled:"); i = 0; } goto ldv_38840; ldv_38839: ; if ((int )chip_scsi_id == i || (((int )boardp->init_tidmask >> (i & 15)) & 1) == 0) { goto ldv_38838; } else { } { seq_printf(m, " %X:%c", i, ((int )sdtr_able >> (i & 15)) & 1 ? 89 : 78); } ldv_38838: i = i + 1; ldv_38840: ; if (i <= 15) { goto ldv_38839; } else { } { seq_putc(m, 10); writew(182, (void volatile *)iop_base + 4U); sdtr_done = readw((void const volatile *)iop_base + 6U); i = 0; } goto ldv_38844; ldv_38843: { writew((int )((unsigned int )((unsigned short )(i + 128)) * 2U), (void volatile *)iop_base + 4U); lramword = readw((void const volatile *)iop_base + 6U); lramword = (unsigned int )lramword & 32767U; } if (((int )chip_scsi_id == i || (((int )boardp->init_tidmask >> (i & 15)) & 1) == 0) || (((int )sdtr_able >> (i & 15)) & 1) == 0) { goto ldv_38842; } else { } { seq_printf(m, " %X:", i); } if (((int )lramword & 31) == 0) { { seq_puts(m, " Asynchronous"); } } else { { seq_puts(m, " Transfer Period Factor: "); } if (((int )lramword & 7936) == 4352) { { seq_puts(m, "9 (80.0 Mhz),"); } } else if (((int )lramword & 7936) == 4096) { { seq_puts(m, "10 (40.0 Mhz),"); } } else { period = (ushort )((((int )lramword >> 8) * 25 + 50) / 4); if ((unsigned int )period == 0U) { { seq_printf(m, "%d (? Mhz), ", (int )period); } } else { { seq_printf(m, "%d (%d.%d Mhz),", (int )period, 250 / (int )period, (250 / (int )period) * 10 <= 2500 / (int )period ? 2500 / (int )period + (250 / (int )period) * -10 : 0); } } } { seq_printf(m, " REQ/ACK Offset: %d", (int )lramword & 31); } } if ((((int )sdtr_done >> (i & 15)) & 1) == 0) { { seq_puts(m, "*\n"); renegotiate = 1; } } else { { seq_putc(m, 10); } } ldv_38842: i = i + 1; ldv_38844: ; if (i <= 15) { goto ldv_38843; } else { } if (renegotiate != 0) { { seq_puts(m, " * = Re-negotiation pending before next command.\n"); } } else { } return; } } static void asc_prt_board_stats(struct seq_file *m , struct Scsi_Host *shost ) { struct asc_board *boardp ; void *tmp ; struct asc_stats *s ; { { tmp = shost_priv(shost); boardp = (struct asc_board *)tmp; s = & boardp->asc_stats; seq_printf(m, "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n", shost->host_no); seq_printf(m, " queuecommand %u, reset %u, biosparam %u, interrupt %u\n", s->queuecommand, s->reset, s->biosparam, s->interrupt); seq_printf(m, " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n", s->callback, s->done, s->build_error, s->adv_build_noreq, s->adv_build_nosg); seq_printf(m, " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n", s->exe_noerror, s->exe_busy, s->exe_error, s->exe_unknown); } if (s->xfer_cnt != 0U) { { seq_printf(m, " xfer_cnt %u, xfer_elem %u, ", s->xfer_cnt, s->xfer_elem); seq_printf(m, "xfer_bytes %u.%01u kb\n", s->xfer_sect / 2U, (s->xfer_sect / 2U) * 10U <= (s->xfer_sect * 10U) / 2U ? (s->xfer_sect * 10U) / 2U - (s->xfer_sect / 2U) * 10U : 0U); seq_printf(m, " avg_num_elem %u.%01u, ", s->xfer_elem / s->xfer_cnt, (s->xfer_elem / s->xfer_cnt) * 10U <= (s->xfer_elem * 10U) / s->xfer_cnt ? (s->xfer_elem * 10U) / s->xfer_cnt - (s->xfer_elem / s->xfer_cnt) * 10U : 0U); seq_printf(m, "avg_elem_size %u.%01u kb, ", (s->xfer_sect / 2U) / s->xfer_elem, ((s->xfer_sect / 2U) / s->xfer_elem) * 10U <= ((s->xfer_sect / 2U) * 10U) / s->xfer_elem ? ((s->xfer_sect / 2U) * 10U) / s->xfer_elem - ((s->xfer_sect / 2U) / s->xfer_elem) * 10U : 0U); seq_printf(m, "avg_xfer_size %u.%01u kb\n", (s->xfer_sect / 2U) / s->xfer_cnt, ((s->xfer_sect / 2U) / s->xfer_cnt) * 10U <= ((s->xfer_sect / 2U) * 10U) / s->xfer_cnt ? ((s->xfer_sect / 2U) * 10U) / s->xfer_cnt - ((s->xfer_sect / 2U) / s->xfer_cnt) * 10U : 0U); } } else { } return; } } static int advansys_show_info(struct seq_file *m , struct Scsi_Host *shost ) { struct asc_board *boardp ; void *tmp ; char const *tmp___0 ; { { tmp = shost_priv(shost); boardp = (struct asc_board *)tmp; tmp___0 = advansys_info(shost); seq_printf(m, "%s\n", (char *)tmp___0); } if ((boardp->flags & 4U) != 0U) { { asc_prt_adv_bios(m, shost); } } else { } { asc_prt_board_devices(m, shost); } if ((boardp->flags & 4U) == 0U) { { asc_prt_asc_board_eeprom(m, shost); } } else { { asc_prt_adv_board_eeprom(m, shost); } } { asc_prt_driver_conf(m, shost); asc_prt_board_stats(m, shost); } if ((boardp->flags & 4U) == 0U) { { asc_prt_asc_board_info(m, shost); } } else { { asc_prt_adv_board_info(m, shost); } } return (0); } } static void asc_scsi_done(struct scsi_cmnd *scp ) { void *tmp ; { { scsi_dma_unmap(scp); tmp = shost_priv((scp->device)->host); ((struct asc_board *)tmp)->asc_stats.done = ((struct asc_board *)tmp)->asc_stats.done + 1U; (*(scp->scsi_done))(scp); } return; } } static void AscSetBank(unsigned int iop_base , uchar bank ) { uchar val ; unsigned char tmp ; { { tmp = inb((int )(iop_base + 15U)); val = (unsigned int )tmp & 42U; } if ((unsigned int )bank == 1U) { val = (uchar )((unsigned int )val | 2U); } else if ((unsigned int )bank == 2U) { val = (uchar )((unsigned int )val | 3U); } else { val = (unsigned int )val & 253U; } { outb((int )val, (int )(iop_base + 15U)); } return; } } static void AscSetChipIH(unsigned int iop_base , ushort ins_code ) { { { AscSetBank(iop_base, 1); outw((int )ins_code, (int )(iop_base + 2U)); AscSetBank(iop_base, 0); } return; } } static int AscStartChip(unsigned int iop_base ) { unsigned short tmp ; { { outb(0, (int )(iop_base + 15U)); tmp = inw((int )(iop_base + 14U)); } if (((int )tmp & 16) != 0) { return (0); } else { } return (1); } } static int AscStopChip(unsigned int iop_base ) { uchar cc_val ; unsigned char tmp ; unsigned short tmp___0 ; { { tmp = inb((int )(iop_base + 15U)); cc_val = (unsigned int )tmp & 234U; outb((int )((unsigned int )cc_val | 32U), (int )(iop_base + 15U)); AscSetChipIH(iop_base, 25216); AscSetChipIH(iop_base, 29568); tmp___0 = inw((int )(iop_base + 14U)); } if (((int )tmp___0 & 16) == 0) { return (0); } else { } return (1); } } static int AscIsChipHalted(unsigned int iop_base ) { unsigned char tmp ; unsigned short tmp___0 ; { { tmp___0 = inw((int )(iop_base + 14U)); } if (((int )tmp___0 & 16) != 0) { { tmp = inb((int )(iop_base + 15U)); } if (((int )tmp & 32) != 0) { return (1); } else { } } else { } return (0); } } static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc ) { unsigned int iop_base ; int i ; unsigned long __ms ; unsigned long tmp ; unsigned short tmp___0 ; int tmp___1 ; unsigned long __ms___0 ; unsigned long tmp___2 ; int tmp___3 ; { i = 10; iop_base = asc_dvc->iop_base; goto ldv_38889; ldv_38888: __ms = 100UL; goto ldv_38886; ldv_38885: { __const_udelay(4295000UL); } ldv_38886: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_38885; } else { } ldv_38889: { tmp___0 = inw((int )(iop_base + 14U)); } if (((int )tmp___0 & 8) != 0) { tmp___1 = i; i = i - 1; if (tmp___1 > 0) { goto ldv_38888; } else { goto ldv_38890; } } else { } ldv_38890: { AscStopChip(iop_base); outb(224, (int )(iop_base + 15U)); __const_udelay(257700UL); AscSetChipIH(iop_base, 29568); AscSetChipIH(iop_base, 25216); outb(160, (int )(iop_base + 15U)); outb(32, (int )(iop_base + 15U)); __ms___0 = 200UL; } goto ldv_38893; ldv_38892: { __const_udelay(4295000UL); } ldv_38893: tmp___2 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___2 != 0UL) { goto ldv_38892; } else { } { outw(4096, (int )(iop_base + 14U)); outw(0, (int )(iop_base + 14U)); tmp___3 = AscIsChipHalted(iop_base); } return (tmp___3); } } static int AscFindSignature(unsigned int iop_base ) { ushort sig_word ; unsigned char tmp ; { { tmp = inb((int )(iop_base + 1U)); } if ((unsigned int )tmp == 37U) { { sig_word = inw((int )iop_base); } if ((unsigned int )sig_word == 1217U || (unsigned int )sig_word == 193U) { return (1); } else { } } else { } return (0); } } static void AscEnableInterrupt(unsigned int iop_base ) { ushort cfg ; { { cfg = inw((int )(iop_base + 2U)); outw((int )((unsigned int )cfg | 32U), (int )(iop_base + 2U)); } return; } } static void AscDisableInterrupt(unsigned int iop_base ) { ushort cfg ; { { cfg = inw((int )(iop_base + 2U)); outw((int )cfg & 65503, (int )(iop_base + 2U)); } return; } } static uchar AscReadLramByte(unsigned int iop_base , ushort addr ) { unsigned char byte_data ; unsigned short word_data ; { if ((int )addr & 1) { { outw((int )((unsigned int )addr + 65535U), (int )(iop_base + 10U)); word_data = inw((int )(iop_base + 8U)); byte_data = (unsigned char )((int )word_data >> 8); } } else { { outw((int )addr, (int )(iop_base + 10U)); word_data = inw((int )(iop_base + 8U)); byte_data = (unsigned char )word_data; } } return (byte_data); } } static ushort AscReadLramWord(unsigned int iop_base , ushort addr ) { ushort word_data ; { { outw((int )addr, (int )(iop_base + 10U)); word_data = inw((int )(iop_base + 8U)); } return (word_data); } } static void AscMemWordSetLram(unsigned int iop_base , ushort s_addr , ushort set_wval , int words ) { int i ; { { outw((int )s_addr, (int )(iop_base + 10U)); i = 0; } goto ldv_38926; ldv_38925: { outw((int )set_wval, (int )(iop_base + 8U)); i = i + 1; } ldv_38926: ; if (i < words) { goto ldv_38925; } else { } return; } } static void AscWriteLramWord(unsigned int iop_base , ushort addr , ushort word_val ) { { { outw((int )addr, (int )(iop_base + 10U)); outw((int )word_val, (int )(iop_base + 8U)); } return; } } static void AscWriteLramByte(unsigned int iop_base , ushort addr , uchar byte_val ) { ushort word_data ; { if ((int )addr & 1) { { addr = (ushort )((int )addr - 1); word_data = AscReadLramWord(iop_base, (int )addr); word_data = (unsigned int )word_data & 255U; word_data = (ushort )((int )((short )word_data) | (int )((short )((int )byte_val << 8))); } } else { { word_data = AscReadLramWord(iop_base, (int )addr); word_data = (unsigned int )word_data & 65280U; word_data = (int )word_data | (int )((ushort )byte_val); } } { AscWriteLramWord(iop_base, (int )addr, (int )word_data); } return; } } static void AscMemWordCopyPtrToLram(unsigned int iop_base , ushort s_addr , uchar const *s_buffer , int words ) { int i ; { { outw((int )s_addr, (int )(iop_base + 10U)); i = 0; } goto ldv_38947; ldv_38946: { outw((int )((unsigned short )((int )((short )((int )*(s_buffer + ((unsigned long )i + 1UL)) << 8)) | (int )((short )*(s_buffer + (unsigned long )i)))), (int )(iop_base + 8U)); i = i + 2; } ldv_38947: ; if (i < words * 2) { goto ldv_38946; } else { } return; } } static void AscMemDWordCopyPtrToLram(unsigned int iop_base , ushort s_addr , uchar *s_buffer , int dwords ) { int i ; { { outw((int )s_addr, (int )(iop_base + 10U)); i = 0; } goto ldv_38957; ldv_38956: { outw((int )((unsigned short )((int )((short )((int )*(s_buffer + ((unsigned long )i + 1UL)) << 8)) | (int )((short )*(s_buffer + (unsigned long )i)))), (int )(iop_base + 8U)); outw((int )((unsigned short )((int )((short )((int )*(s_buffer + ((unsigned long )i + 3UL)) << 8)) | (int )((short )*(s_buffer + ((unsigned long )i + 2UL))))), (int )(iop_base + 8U)); i = i + 4; } ldv_38957: ; if (i < dwords * 4) { goto ldv_38956; } else { } return; } } static void AscMemWordCopyPtrFromLram(unsigned int iop_base , ushort s_addr , uchar *d_buffer , int words ) { int i ; ushort word ; { { outw((int )s_addr, (int )(iop_base + 10U)); i = 0; } goto ldv_38968; ldv_38967: { word = inw((int )(iop_base + 8U)); *(d_buffer + (unsigned long )i) = (uchar )word; *(d_buffer + ((unsigned long )i + 1UL)) = (uchar )((int )word >> 8); i = i + 2; } ldv_38968: ; if (i < words * 2) { goto ldv_38967; } else { } return; } } static __u32 AscMemSumLramWord(unsigned int iop_base , ushort s_addr , int words ) { __u32 sum ; int i ; ushort tmp ; { sum = 0U; i = 0; goto ldv_38978; ldv_38977: { tmp = AscReadLramWord(iop_base, (int )s_addr); sum = sum + (__u32 )tmp; i = i + 1; s_addr = (unsigned int )s_addr + 2U; } ldv_38978: ; if (i < words) { goto ldv_38977; } else { } return (sum); } } static ushort AscInitLram(ASC_DVC_VAR *asc_dvc ) { uchar i ; ushort s_addr ; unsigned int iop_base ; ushort warn_code ; { { iop_base = asc_dvc->iop_base; warn_code = 0U; AscMemWordSetLram(iop_base, 16384, 0, (int )((unsigned short )(((int )asc_dvc->max_total_qng + 3) * 64 >> 1))); i = 1U; s_addr = 16448U; AscWriteLramByte(iop_base, (int )s_addr, (int )((unsigned int )i + 1U)); AscWriteLramByte(iop_base, (int )((unsigned int )s_addr + 1U), (int )asc_dvc->max_total_qng); AscWriteLramByte(iop_base, (int )((unsigned int )s_addr + 3U), (int )i); i = (uchar )((int )i + 1); s_addr = (unsigned int )s_addr + 64U; } goto ldv_38988; ldv_38987: { AscWriteLramByte(iop_base, (int )s_addr, (int )((unsigned int )i + 1U)); AscWriteLramByte(iop_base, (int )((unsigned int )s_addr + 1U), (int )((unsigned int )i - 1U)); AscWriteLramByte(iop_base, (int )((unsigned int )s_addr + 3U), (int )i); i = (uchar )((int )i + 1); s_addr = (unsigned int )s_addr + 64U; } ldv_38988: ; if ((int )i < (int )asc_dvc->max_total_qng) { goto ldv_38987; } else { } { AscWriteLramByte(iop_base, (int )s_addr, 255); AscWriteLramByte(iop_base, (int )((unsigned int )s_addr + 1U), (int )((unsigned int )asc_dvc->max_total_qng - 1U)); AscWriteLramByte(iop_base, (int )((unsigned int )s_addr + 3U), (int )asc_dvc->max_total_qng); i = (uchar )((int )i + 1); s_addr = (unsigned int )s_addr + 64U; } goto ldv_38991; ldv_38990: { AscWriteLramByte(iop_base, (int )s_addr, (int )i); AscWriteLramByte(iop_base, (int )((unsigned int )s_addr + 1U), (int )i); AscWriteLramByte(iop_base, (int )((unsigned int )s_addr + 3U), (int )i); i = (uchar )((int )i + 1); s_addr = (unsigned int )s_addr + 64U; } ldv_38991: ; if ((unsigned int )i <= (unsigned int )asc_dvc->max_total_qng + 3U) { goto ldv_38990; } else { } return (warn_code); } } static __u32 AscLoadMicroCode(unsigned int iop_base , ushort s_addr , uchar const *mcode_buf , ushort mcode_size ) { __u32 chksum ; ushort mcode_word_size ; ushort mcode_chksum ; __u32 tmp ; { { mcode_word_size = (int )mcode_size >> 1; AscMemWordSetLram(iop_base, (int )s_addr, 0, (int )mcode_word_size); AscMemWordCopyPtrToLram(iop_base, (int )s_addr, mcode_buf, (int )mcode_word_size); chksum = AscMemSumLramWord(iop_base, (int )s_addr, (int )mcode_word_size); tmp = AscMemSumLramWord(iop_base, 128, (int )((unsigned short )((((int )mcode_size - (int )s_addr) + -128) / 2))); mcode_chksum = (unsigned short )tmp; AscWriteLramWord(iop_base, 50, (int )mcode_chksum); AscWriteLramWord(iop_base, 52, (int )mcode_size); } return (chksum); } } static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc ) { unsigned int iop_base ; int i ; ushort lram_addr ; { { iop_base = asc_dvc->iop_base; AscWriteLramByte(iop_base, 72, 1); AscWriteLramByte(iop_base, 73, (int )asc_dvc->max_total_qng); AscWriteLramWord(iop_base, 88, 1); AscWriteLramWord(iop_base, 90, (int )asc_dvc->max_total_qng); AscWriteLramByte(iop_base, 79, (int )((unsigned int )asc_dvc->max_total_qng + 1U)); AscWriteLramByte(iop_base, 80, (int )((unsigned int )asc_dvc->max_total_qng + 2U)); AscWriteLramByte(iop_base, 100, (int )asc_dvc->max_total_qng); AscWriteLramWord(iop_base, 48, 0); AscWriteLramWord(iop_base, 64, 0); AscWriteLramByte(iop_base, 54, 0); AscWriteLramByte(iop_base, 75, 0); AscWriteLramByte(iop_base, 104, 0); AscWriteLramByte(iop_base, 76, 0); lram_addr = 16384U; i = 0; } goto ldv_39009; ldv_39008: { AscWriteLramWord(iop_base, (int )lram_addr, 0); i = i + 1; lram_addr = (unsigned int )lram_addr + 2U; } ldv_39009: ; if (i <= 31) { goto ldv_39008; } else { } return; } } static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc ) { int i ; ushort warn_code ; unsigned int iop_base ; __u32 phy_addr ; __u32 phy_size ; struct asc_board *board ; ASC_DVC_VAR const *__mptr ; long tmp ; int tmp___0 ; unsigned short tmp___1 ; int tmp___2 ; { __mptr = (ASC_DVC_VAR const *)asc_dvc; board = (struct asc_board *)__mptr + 0xfffffffffffffff0UL; iop_base = asc_dvc->iop_base; warn_code = 0U; i = 0; goto ldv_39023; ldv_39022: { AscWriteLramByte(iop_base, (int )((unsigned int )((unsigned short )i) + 16U), (int )(asc_dvc->cfg)->sdtr_period_offset[i]); i = i + 1; } ldv_39023: ; if (i <= 7) { goto ldv_39022; } else { } { AscInitQLinkVar(asc_dvc); AscWriteLramByte(iop_base, 82, (int )(asc_dvc->cfg)->disc_enable); AscWriteLramByte(iop_base, 85, (int )((unsigned char )(1 << (int )(asc_dvc->cfg)->chip_scsi_id))); tmp = ldv__builtin_expect(((unsigned long )asc_dvc->overrun_buf & 7UL) != 0UL, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/scsi/advansys.c"), "i" (4212), "i" (12UL)); __builtin_unreachable(); } } else { } { asc_dvc->overrun_dma = dma_map_single_attrs(board->dev, (void *)asc_dvc->overrun_buf, 64UL, 2, (struct dma_attrs *)0); tmp___0 = dma_mapping_error(board->dev, asc_dvc->overrun_dma); } if (tmp___0 != 0) { warn_code = 65524U; goto err_dma_map; } else { } { phy_addr = (unsigned int )asc_dvc->overrun_dma; AscMemDWordCopyPtrToLram(iop_base, 56, (uchar *)(& phy_addr), 1); phy_size = 64U; AscMemDWordCopyPtrToLram(iop_base, 60, (uchar *)(& phy_size), 1); (asc_dvc->cfg)->mcode_date = AscReadLramWord(iop_base, 68); (asc_dvc->cfg)->mcode_version = AscReadLramWord(iop_base, 70); outw(128, (int )(iop_base + 12U)); tmp___1 = inw((int )(iop_base + 12U)); } if ((unsigned int )tmp___1 != 128U) { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 4U); warn_code = 65535U; goto err_mcode_start; } else { } { tmp___2 = AscStartChip(iop_base); } if (tmp___2 != 1) { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 8U); warn_code = 65535U; goto err_mcode_start; } else { } return (warn_code); err_mcode_start: { dma_unmap_single_attrs(board->dev, asc_dvc->overrun_dma, 64UL, 2, (struct dma_attrs *)0); } err_dma_map: asc_dvc->overrun_dma = 0ULL; return (warn_code); } } static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc ) { struct firmware const *fw ; char fwname[19U] ; int err ; unsigned long chksum ; ushort warn_code ; unsigned int iop_base ; unsigned long __ms ; unsigned long tmp ; int tmp___0 ; ushort tmp___1 ; __u32 tmp___2 ; ushort tmp___3 ; { fwname[0] = 'a'; fwname[1] = 'd'; fwname[2] = 'v'; fwname[3] = 'a'; fwname[4] = 'n'; fwname[5] = 's'; fwname[6] = 'y'; fwname[7] = 's'; fwname[8] = '/'; fwname[9] = 'm'; fwname[10] = 'c'; fwname[11] = 'o'; fwname[12] = 'd'; fwname[13] = 'e'; fwname[14] = '.'; fwname[15] = 'b'; fwname[16] = 'i'; fwname[17] = 'n'; fwname[18] = '\000'; iop_base = asc_dvc->iop_base; warn_code = 0U; if (((int )asc_dvc->dvc_cntl & 512) != 0 && ((int )asc_dvc->init_state & 256) == 0) { { AscResetChipAndScsiBus(asc_dvc); __ms = (unsigned long )((int )asc_dvc->scsi_reset_wait * 1000); } goto ldv_39038; ldv_39037: { __const_udelay(4295000UL); } ldv_39038: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_39037; } else { } } else { } asc_dvc->init_state = (ushort )((unsigned int )asc_dvc->init_state | 16U); if ((unsigned int )asc_dvc->err_code != 0U) { return (65535U); } else { } { tmp___0 = AscFindSignature(asc_dvc->iop_base); } if (tmp___0 == 0) { asc_dvc->err_code = 512U; return (warn_code); } else { } { AscDisableInterrupt(iop_base); tmp___1 = AscInitLram(asc_dvc); warn_code = (ushort )((int )warn_code | (int )tmp___1); } if ((unsigned int )asc_dvc->err_code != 0U) { return (65535U); } else { } { err = request_firmware(& fw, (char const *)(& fwname), (asc_dvc->drv_ptr)->dev); } if (err != 0) { { printk("\vFailed to load image \"%s\" err %d\n", (char const *)(& fwname), err); asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 2U); } return ((ushort )err); } else { } if ((unsigned long )fw->size <= 3UL) { { printk("\vBogus length %zu in image \"%s\"\n", fw->size, (char const *)(& fwname)); release_firmware(fw); asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 2U); } return (65514U); } else { } { chksum = (unsigned long )(((((int )*(fw->data + 3UL) << 24) | ((int )*(fw->data + 2UL) << 16)) | ((int )*(fw->data + 1UL) << 8)) | (int )*(fw->data)); tmp___2 = AscLoadMicroCode(iop_base, 0, (uchar const *)fw->data + 4U, (int )((unsigned int )((ushort )fw->size) - 4U)); } if ((unsigned long )tmp___2 != chksum) { { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 2U); release_firmware(fw); } return (warn_code); } else { } { release_firmware(fw); tmp___3 = AscInitMicroCodeVar(asc_dvc); warn_code = (ushort )((int )warn_code | (int )tmp___3); } if (asc_dvc->overrun_dma == 0ULL) { return (warn_code); } else { } { asc_dvc->init_state = (ushort )((unsigned int )asc_dvc->init_state | 32U); AscEnableInterrupt(iop_base); } return (warn_code); } } static int AdvLoadMicrocode(void *iop_base , unsigned char const *buf , int size , int memsize , int chksum ) { int i ; int j ; int end ; int len ; __u32 sum ; unsigned short word ; unsigned short word___0 ; unsigned int off ; unsigned short word___1 ; unsigned short tmp ; { { len = 0; writew(0, (void volatile *)iop_base + 4U); i = 506; } goto ldv_39060; ldv_39059: ; if ((unsigned int )((unsigned char )*(buf + (unsigned long )i)) == 255U) { word = (unsigned short )((int )((short )((int )*(buf + ((unsigned long )i + 3UL)) << 8)) | (int )((short )*(buf + ((unsigned long )i + 2UL)))); j = 0; goto ldv_39054; ldv_39053: { writew((int )word, (void volatile *)iop_base + 6U); len = len + 2; j = j + 1; } ldv_39054: ; if (j < (int )*(buf + ((unsigned long )i + 1UL))) { goto ldv_39053; } else { } i = i + 3; } else if ((unsigned int )((unsigned char )*(buf + (unsigned long )i)) == 254U) { { word___0 = (unsigned short )((int )((short )((int )*(buf + ((unsigned long )i + 2UL)) << 8)) | (int )((short )*(buf + ((unsigned long )i + 1UL)))); writew((int )word___0, (void volatile *)iop_base + 6U); i = i + 2; len = len + 2; } } else { { off = (unsigned int )((int )*(buf + (unsigned long )i) * 2); word___1 = (unsigned short )((int )((short )((int )*(buf + (unsigned long )(off + 1U)) << 8)) | (int )((short )*(buf + (unsigned long )off))); writew((int )word___1, (void volatile *)iop_base + 6U); len = len + 2; } } i = i + 1; ldv_39060: ; if (i < size) { goto ldv_39059; } else { } end = len; goto ldv_39063; ldv_39062: { writew(0, (void volatile *)iop_base + 6U); len = len + 2; } ldv_39063: ; if (len < memsize) { goto ldv_39062; } else { } { sum = 0U; writew(0, (void volatile *)iop_base + 4U); len = 0; } goto ldv_39066; ldv_39065: { tmp = readw((void const volatile *)iop_base + 6U); sum = sum + (__u32 )tmp; len = len + 2; } ldv_39066: ; if (len < end) { goto ldv_39065; } else { } if (sum != (__u32 )chksum) { return (2); } else { } return (0); } } static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc ) { ADV_CARR_T *carrp ; __s32 buf_size ; __u32 carr_paddr ; phys_addr_t tmp ; phys_addr_t tmp___0 ; phys_addr_t tmp___1 ; { carrp = (ADV_CARR_T *)(((unsigned long )asc_dvc->carrier_buf + 15UL) & 0xfffffffffffffff0UL); asc_dvc->carr_freelist = (ADV_CARR_T *)0; if ((unsigned long )carrp == (unsigned long )asc_dvc->carrier_buf) { buf_size = 4320; } else { buf_size = 4304; } ldv_39074: { tmp = virt_to_phys((void volatile *)carrp); carr_paddr = (unsigned int )tmp; buf_size = (__s32 )((unsigned int )buf_size - 16U); carrp->carr_pa = carr_paddr; tmp___0 = virt_to_phys((void volatile *)carrp); carrp->carr_va = (unsigned int )tmp___0; tmp___1 = virt_to_phys((void volatile *)asc_dvc->carr_freelist); carrp->next_vpa = (unsigned int )tmp___1; asc_dvc->carr_freelist = carrp; carrp = carrp + 1; } if (buf_size > 0) { goto ldv_39074; } else { } return; } } static int AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc , ushort idle_cmd , __u32 idle_cmd_parameter ) { int result ; __u32 i ; __u32 j ; void *iop_base ; unsigned short tmp ; { { iop_base = asc_dvc->iop_base; writew(164, (void volatile *)iop_base + 4U); writew(0, (void volatile *)iop_base + 6U); writew(168, (void volatile *)iop_base + 4U); writew((int )((unsigned short )idle_cmd_parameter), (void volatile *)iop_base + 6U); writew(170, (void volatile *)iop_base + 4U); writew((int )((unsigned short )(idle_cmd_parameter >> 16)), (void volatile *)iop_base + 6U); writew(166, (void volatile *)iop_base + 4U); writew((int )idle_cmd, (void volatile *)iop_base + 6U); writeb(2, (void volatile *)iop_base + 34U); } if ((unsigned int )asc_dvc->chip_type == 1U) { { writeb(0, (void volatile *)iop_base + 34U); } } else { } i = 0U; goto ldv_39089; ldv_39088: j = 0U; goto ldv_39086; ldv_39085: { writew(164, (void volatile *)iop_base + 4U); tmp = readw((void const volatile *)iop_base + 6U); result = (int )tmp; } if (result != 0) { return (result); } else { } { __const_udelay(4295UL); j = j + 1U; } ldv_39086: ; if (j <= 999U) { goto ldv_39085; } else { } i = i + 1U; ldv_39089: ; if (i <= 99U) { goto ldv_39088; } else { } { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/scsi/advansys.c"), "i" (4485), "i" (12UL)); __builtin_unreachable(); } return (-1); } } static int AdvResetSB(ADV_DVC_VAR *asc_dvc ) { int status ; unsigned long __ms ; unsigned long tmp ; { { status = AdvSendIdleCmd(asc_dvc, 32, 0U); } if (status != 1) { return (status); } else { } { __const_udelay(257700UL); status = AdvSendIdleCmd(asc_dvc, 64, 0U); } if (status != 1) { return (status); } else { } __ms = (unsigned long )((int )asc_dvc->scsi_reset_wait * 1000); goto ldv_39097; ldv_39096: { __const_udelay(4295000UL); } ldv_39097: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_39096; } else { } return (status); } } static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc ) { struct firmware const *fw ; char fwname[18U] ; void *iop_base ; ushort warn_code ; int begin_addr ; int end_addr ; ushort code_sum ; int word ; int i ; int err ; unsigned long chksum ; ushort scsi_cfg1 ; uchar tid ; ushort bios_mem[40U] ; ushort wdtr_able ; ushort sdtr_able ; ushort tagqng_able ; uchar max_cmd[16U] ; ushort bios_version ; ushort major ; ushort minor ; int tmp ; unsigned short tmp___0 ; unsigned short tmp___1 ; unsigned short tmp___2 ; unsigned short tmp___3 ; unsigned short tmp___4 ; ADV_CARR_T *tmp___5 ; void *tmp___6 ; ADV_CARR_T *tmp___7 ; void *tmp___8 ; unsigned short tmp___9 ; int tmp___10 ; { fwname[0] = 'a'; fwname[1] = 'd'; fwname[2] = 'v'; fwname[3] = 'a'; fwname[4] = 'n'; fwname[5] = 's'; fwname[6] = 'y'; fwname[7] = 's'; fwname[8] = '/'; fwname[9] = '3'; fwname[10] = '5'; fwname[11] = '5'; fwname[12] = '0'; fwname[13] = '.'; fwname[14] = 'b'; fwname[15] = 'i'; fwname[16] = 'n'; fwname[17] = '\000'; wdtr_able = 0U; if ((unsigned int )asc_dvc->err_code != 0U) { return (-1); } else { } if ((unsigned int )asc_dvc->chip_type != 1U) { asc_dvc->err_code = 8192U; return (-1); } else { } warn_code = 0U; iop_base = asc_dvc->iop_base; i = 0; goto ldv_39121; ldv_39120: { writew((int )((unsigned int )((unsigned short )(i + 32)) * 2U), (void volatile *)iop_base + 4U); bios_mem[i] = readw((void const volatile *)iop_base + 6U); i = i + 1; } ldv_39121: ; if (i <= 39) { goto ldv_39120; } else { } if ((unsigned int )bios_mem[12] == 21930U) { bios_version = bios_mem[13]; major = (ushort )((int )bios_version >> 12); minor = (unsigned int )((ushort )((int )bios_version >> 8)) & 15U; if ((unsigned int )major <= 2U || ((unsigned int )major == 3U && (unsigned int )minor == 1U)) { { writew(288, (void volatile *)iop_base + 4U); wdtr_able = readw((void const volatile *)iop_base + 6U); } } else { { writew(156, (void volatile *)iop_base + 4U); wdtr_able = readw((void const volatile *)iop_base + 6U); } } } else { } { writew(158, (void volatile *)iop_base + 4U); sdtr_able = readw((void const volatile *)iop_base + 6U); writew(160, (void volatile *)iop_base + 4U); tagqng_able = readw((void const volatile *)iop_base + 6U); tid = 0U; } goto ldv_39127; ldv_39126: { writew((int )((unsigned int )((unsigned short )tid) + 208U), (void volatile *)iop_base + 4U); max_cmd[(int )tid] = readb((void const volatile *)iop_base + 6U); tid = (uchar )((int )tid + 1); } ldv_39127: ; if ((unsigned int )tid <= 15U) { goto ldv_39126; } else { } { err = request_firmware(& fw, (char const *)(& fwname), (asc_dvc->drv_ptr)->dev); } if (err != 0) { { printk("\vFailed to load image \"%s\" err %d\n", (char const *)(& fwname), err); asc_dvc->err_code = 2U; } return (err); } else { } if ((unsigned long )fw->size <= 3UL) { { printk("\vBogus length %zu in image \"%s\"\n", fw->size, (char const *)(& fwname)); release_firmware(fw); asc_dvc->err_code = 2U; } return (-22); } else { } { chksum = (unsigned long )(((((int )*(fw->data + 3UL) << 24) | ((int )*(fw->data + 2UL) << 16)) | ((int )*(fw->data + 1UL) << 8)) | (int )*(fw->data)); tmp = AdvLoadMicrocode(iop_base, (unsigned char const *)fw->data + 4U, (int )((unsigned int )fw->size - 4U), 8192, (int )chksum); asc_dvc->err_code = (ushort )tmp; release_firmware(fw); } if ((unsigned int )asc_dvc->err_code != 0U) { return (-1); } else { } i = 0; goto ldv_39130; ldv_39129: { writew((int )((unsigned int )((unsigned short )(i + 32)) * 2U), (void volatile *)iop_base + 4U); writew((int )bios_mem[i], (void volatile *)iop_base + 6U); i = i + 1; } ldv_39130: ; if (i <= 39) { goto ldv_39129; } else { } { writew(40, (void volatile *)iop_base + 4U); tmp___0 = readw((void const volatile *)iop_base + 6U); begin_addr = (int )tmp___0; writew(42, (void volatile *)iop_base + 4U); tmp___1 = readw((void const volatile *)iop_base + 6U); end_addr = (int )tmp___1; code_sum = 0U; writew((int )((unsigned short )begin_addr), (void volatile *)iop_base + 4U); word = begin_addr; } goto ldv_39133; ldv_39132: { tmp___2 = readw((void const volatile *)iop_base + 6U); code_sum = (int )code_sum + (int )tmp___2; word = word + 2; } ldv_39133: ; if (word < end_addr) { goto ldv_39132; } else { } { writew(44, (void volatile *)iop_base + 4U); writew((int )code_sum, (void volatile *)iop_base + 6U); writew(56, (void volatile *)iop_base + 4U); (asc_dvc->cfg)->mcode_date = readw((void const volatile *)iop_base + 6U); writew(58, (void volatile *)iop_base + 4U); (asc_dvc->cfg)->mcode_version = readw((void const volatile *)iop_base + 6U); writew(154, (void volatile *)iop_base + 4U); writew(1, (void volatile *)iop_base + 6U); } if ((int )(asc_dvc->cfg)->control_flag & 1) { { writew(290, (void volatile *)iop_base + 4U); tmp___3 = readw((void const volatile *)iop_base + 6U); word = (int )tmp___3; word = word | 1; writew(290, (void volatile *)iop_base + 4U); writew((int )((unsigned short )word), (void volatile *)iop_base + 6U); } } else { } { writeb(15, (void volatile *)iop_base + 32U); } if (((int )asc_dvc->bios_ctrl & 512) == 0) { { writew(156, (void volatile *)iop_base + 4U); writew((int )asc_dvc->wdtr_able, (void volatile *)iop_base + 6U); writew(158, (void volatile *)iop_base + 4U); writew((int )asc_dvc->sdtr_able, (void volatile *)iop_base + 6U); } } else { } word = 0; tid = 0U; goto ldv_39136; ldv_39135: ; if (((int )asc_dvc->ultra_able >> ((int )tid & 15)) & 1) { word = word | (3 << ((int )tid & 3) * 4); } else { word = word | (2 << ((int )tid & 3) * 4); } if ((unsigned int )tid == 3U) { { writew(144, (void volatile *)iop_base + 4U); writew((int )((unsigned short )word), (void volatile *)iop_base + 6U); word = 0; } } else if ((unsigned int )tid == 7U) { { writew(146, (void volatile *)iop_base + 4U); writew((int )((unsigned short )word), (void volatile *)iop_base + 6U); word = 0; } } else if ((unsigned int )tid == 11U) { { writew(148, (void volatile *)iop_base + 4U); writew((int )((unsigned short )word), (void volatile *)iop_base + 6U); word = 0; } } else if ((unsigned int )tid == 15U) { { writew(150, (void volatile *)iop_base + 4U); writew((int )((unsigned short )word), (void volatile *)iop_base + 6U); } } else { } tid = (uchar )((int )tid + 1); ldv_39136: ; if ((unsigned int )tid <= 15U) { goto ldv_39135; } else { } { writew(162, (void volatile *)iop_base + 4U); writew((int )(asc_dvc->cfg)->disc_enable, (void volatile *)iop_base + 6U); writew(172, (void volatile *)iop_base + 4U); writew((int )((unsigned int )((unsigned short )asc_dvc->chip_scsi_id) | 9296U), (void volatile *)iop_base + 6U); scsi_cfg1 = readw((void const volatile *)iop_base + 14U); } if (((int )scsi_cfg1 & 7) == 0 || ((int )scsi_cfg1 & 11) == 0) { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 16U); return (-1); } else { } { tmp___4 = readw((void const volatile *)iop_base + 52U); } if (((int )tmp___4 & 16135) == 16135) { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 64U); return (-1); } else { } if (((unsigned int )scsi_cfg1 & 384U) == 256U) { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 32U); return (-1); } else { } if ((unsigned int )(asc_dvc->cfg)->termination == 0U) { (asc_dvc->cfg)->termination = (uchar )((unsigned int )(asc_dvc->cfg)->termination | 64U); { if (((int )scsi_cfg1 & 15) == 3) { goto case_3; } else { } if (((int )scsi_cfg1 & 15) == 7) { goto case_7; } else { } if (((int )scsi_cfg1 & 15) == 11) { goto case_11; } else { } if (((int )scsi_cfg1 & 15) == 13) { goto case_13; } else { } if (((int )scsi_cfg1 & 15) == 14) { goto case_14; } else { } if (((int )scsi_cfg1 & 15) == 15) { goto case_15; } else { } if (((int )scsi_cfg1 & 15) == 1) { goto case_1; } else { } if (((int )scsi_cfg1 & 15) == 5) { goto case_5; } else { } if (((int )scsi_cfg1 & 15) == 9) { goto case_9; } else { } if (((int )scsi_cfg1 & 15) == 10) { goto case_10; } else { } if (((int )scsi_cfg1 & 15) == 12) { goto case_12; } else { } if (((int )scsi_cfg1 & 15) == 2) { goto case_2; } else { } if (((int )scsi_cfg1 & 15) == 6) { goto case_6; } else { } goto switch_break; case_3: /* CIL Label */ ; case_7: /* CIL Label */ ; case_11: /* CIL Label */ ; case_13: /* CIL Label */ ; case_14: /* CIL Label */ ; case_15: /* CIL Label */ (asc_dvc->cfg)->termination = (uchar )((unsigned int )(asc_dvc->cfg)->termination | 48U); goto ldv_39144; case_1: /* CIL Label */ ; case_5: /* CIL Label */ ; case_9: /* CIL Label */ ; case_10: /* CIL Label */ ; case_12: /* CIL Label */ (asc_dvc->cfg)->termination = (uchar )((unsigned int )(asc_dvc->cfg)->termination | 32U); goto ldv_39144; case_2: /* CIL Label */ ; case_6: /* CIL Label */ ; goto ldv_39144; switch_break: /* CIL Label */ ; } ldv_39144: ; } else { } { scsi_cfg1 = (unsigned int )scsi_cfg1 & 65487U; scsi_cfg1 = (ushort )((int )((short )scsi_cfg1) | (((int )((short )(~ ((int )((unsigned short )(asc_dvc->cfg)->termination)))) & 48) | 64)); writew(174, (void volatile *)iop_base + 4U); writew((int )scsi_cfg1, (void volatile *)iop_base + 6U); writew(176, (void volatile *)iop_base + 4U); writew(72, (void volatile *)iop_base + 6U); writew(178, (void volatile *)iop_base + 4U); writew((int )((unsigned short )(1 << ((int )asc_dvc->chip_scsi_id & 15))), (void volatile *)iop_base + 6U); AdvBuildCarrierFreelist(asc_dvc); tmp___5 = asc_dvc->carr_freelist; asc_dvc->icq_sp = tmp___5; } if ((unsigned long )tmp___5 == (unsigned long )((ADV_CARR_T *)0)) { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 1U); return (-1); } else { } { tmp___6 = phys_to_virt((phys_addr_t )(asc_dvc->icq_sp)->next_vpa); asc_dvc->carr_freelist = (ADV_CARR_T *)tmp___6; (asc_dvc->icq_sp)->next_vpa = 0U; writew(352, (void volatile *)iop_base + 4U); writew((int )((unsigned short )(asc_dvc->icq_sp)->carr_pa), (void volatile *)iop_base + 6U); writew(354, (void volatile *)iop_base + 4U); writew((int )((unsigned short )((asc_dvc->icq_sp)->carr_pa >> 16)), (void volatile *)iop_base + 6U); tmp___7 = asc_dvc->carr_freelist; asc_dvc->irq_sp = tmp___7; } if ((unsigned long )tmp___7 == (unsigned long )((ADV_CARR_T *)0)) { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 1U); return (-1); } else { } { tmp___8 = phys_to_virt((phys_addr_t )(asc_dvc->irq_sp)->next_vpa); asc_dvc->carr_freelist = (ADV_CARR_T *)tmp___8; (asc_dvc->irq_sp)->next_vpa = 0U; writew(356, (void volatile *)iop_base + 4U); writew((int )((unsigned short )(asc_dvc->irq_sp)->carr_pa), (void volatile *)iop_base + 6U); writew(358, (void volatile *)iop_base + 4U); writew((int )((unsigned short )((asc_dvc->irq_sp)->carr_pa >> 16)), (void volatile *)iop_base + 6U); asc_dvc->carr_pending_cnt = 0U; writeb(129, (void volatile *)iop_base + 2U); writew(40, (void volatile *)iop_base + 4U); tmp___9 = readw((void const volatile *)iop_base + 6U); word = (int )tmp___9; writew((int )((unsigned short )word), (void volatile *)iop_base + 42U); writew(16384, (void volatile *)iop_base + 10U); } if (((int )asc_dvc->bios_ctrl & 512) != 0) { if ((unsigned int )bios_mem[12] == 21930U) { { writew(156, (void volatile *)iop_base + 4U); writew((int )wdtr_able, (void volatile *)iop_base + 6U); writew(158, (void volatile *)iop_base + 4U); writew((int )sdtr_able, (void volatile *)iop_base + 6U); writew(160, (void volatile *)iop_base + 4U); writew((int )tagqng_able, (void volatile *)iop_base + 6U); tid = 0U; } goto ldv_39153; ldv_39152: { writew((int )((unsigned int )((unsigned short )tid) + 208U), (void volatile *)iop_base + 4U); writeb((int )max_cmd[(int )tid], (void volatile *)iop_base + 6U); tid = (uchar )((int )tid + 1); } ldv_39153: ; if ((unsigned int )tid <= 15U) { goto ldv_39152; } else { } } else { { tmp___10 = AdvResetSB(asc_dvc); } if (tmp___10 != 1) { warn_code = 1U; } else { } } } else { } return ((int )warn_code); } } static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc ) { struct firmware const *fw ; char fwname[21U] ; void *iop_base ; ushort warn_code ; int begin_addr ; int end_addr ; ushort code_sum ; int word ; int i ; int err ; unsigned long chksum ; ushort scsi_cfg1 ; uchar byte ; uchar tid ; ushort bios_mem[40U] ; ushort wdtr_able ; ushort sdtr_able ; ushort tagqng_able ; uchar max_cmd[16U] ; unsigned long __ms ; unsigned long tmp ; unsigned long __ms___0 ; unsigned long tmp___0 ; unsigned char tmp___1 ; unsigned long __ms___1 ; unsigned long tmp___2 ; int tmp___3 ; unsigned short tmp___4 ; unsigned short tmp___5 ; unsigned short tmp___6 ; unsigned short tmp___7 ; unsigned short tmp___8 ; ADV_CARR_T *tmp___9 ; void *tmp___10 ; ADV_CARR_T *tmp___11 ; void *tmp___12 ; unsigned short tmp___13 ; int tmp___14 ; { fwname[0] = 'a'; fwname[1] = 'd'; fwname[2] = 'v'; fwname[3] = 'a'; fwname[4] = 'n'; fwname[5] = 's'; fwname[6] = 'y'; fwname[7] = 's'; fwname[8] = '/'; fwname[9] = '3'; fwname[10] = '8'; fwname[11] = 'C'; fwname[12] = '0'; fwname[13] = '8'; fwname[14] = '0'; fwname[15] = '0'; fwname[16] = '.'; fwname[17] = 'b'; fwname[18] = 'i'; fwname[19] = 'n'; fwname[20] = '\000'; if ((unsigned int )asc_dvc->err_code != 0U) { return (-1); } else { } if ((unsigned int )asc_dvc->chip_type != 2U) { asc_dvc->err_code = 8192U; return (-1); } else { } warn_code = 0U; iop_base = asc_dvc->iop_base; i = 0; goto ldv_39178; ldv_39177: { writew((int )((unsigned int )((unsigned short )(i + 32)) * 2U), (void volatile *)iop_base + 4U); bios_mem[i] = readw((void const volatile *)iop_base + 6U); i = i + 1; } ldv_39178: ; if (i <= 39) { goto ldv_39177; } else { } { writew(156, (void volatile *)iop_base + 4U); wdtr_able = readw((void const volatile *)iop_base + 6U); writew(158, (void volatile *)iop_base + 4U); sdtr_able = readw((void const volatile *)iop_base + 6U); writew(160, (void volatile *)iop_base + 4U); tagqng_able = readw((void const volatile *)iop_base + 6U); tid = 0U; } goto ldv_39181; ldv_39180: { writew((int )((unsigned int )((unsigned short )tid) + 208U), (void volatile *)iop_base + 4U); max_cmd[(int )tid] = readb((void const volatile *)iop_base + 6U); tid = (uchar )((int )tid + 1); } ldv_39181: ; if ((unsigned int )tid <= 15U) { goto ldv_39180; } else { } i = 0; goto ldv_39192; ldv_39191: { writeb(64, (void volatile *)iop_base + 56U); __ms = 10UL; } goto ldv_39185; ldv_39184: { __const_udelay(4295000UL); } ldv_39185: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_39184; } else { } { byte = readb((void const volatile *)iop_base + 56U); } if (((unsigned int )byte & 31U) != 21U) { asc_dvc->err_code = 2048U; return (-1); } else { } { writeb(0, (void volatile *)iop_base + 56U); __ms___0 = 10UL; } goto ldv_39189; ldv_39188: { __const_udelay(4295000UL); } ldv_39189: tmp___0 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___0 != 0UL) { goto ldv_39188; } else { } { tmp___1 = readb((void const volatile *)iop_base + 56U); } if ((unsigned int )tmp___1 != 0U) { asc_dvc->err_code = 2048U; return (-1); } else { } i = i + 1; ldv_39192: ; if (i <= 1) { goto ldv_39191; } else { } { writeb(128, (void volatile *)iop_base + 56U); __ms___1 = 10UL; } goto ldv_39196; ldv_39195: { __const_udelay(4295000UL); } ldv_39196: tmp___2 = __ms___1; __ms___1 = __ms___1 - 1UL; if (tmp___2 != 0UL) { goto ldv_39195; } else { } { byte = readb((void const volatile *)iop_base + 56U); } if (((unsigned int )byte & 31U) != 16U) { asc_dvc->bist_err_code = byte; asc_dvc->err_code = 4096U; return (-1); } else { } { writeb(0, (void volatile *)iop_base + 56U); err = request_firmware(& fw, (char const *)(& fwname), (asc_dvc->drv_ptr)->dev); } if (err != 0) { { printk("\vFailed to load image \"%s\" err %d\n", (char const *)(& fwname), err); asc_dvc->err_code = 2U; } return (err); } else { } if ((unsigned long )fw->size <= 3UL) { { printk("\vBogus length %zu in image \"%s\"\n", fw->size, (char const *)(& fwname)); release_firmware(fw); asc_dvc->err_code = 2U; } return (-22); } else { } { chksum = (unsigned long )(((((int )*(fw->data + 3UL) << 24) | ((int )*(fw->data + 2UL) << 16)) | ((int )*(fw->data + 1UL) << 8)) | (int )*(fw->data)); tmp___3 = AdvLoadMicrocode(iop_base, (unsigned char const *)fw->data + 4U, (int )((unsigned int )fw->size - 4U), 16384, (int )chksum); asc_dvc->err_code = (ushort )tmp___3; release_firmware(fw); } if ((unsigned int )asc_dvc->err_code != 0U) { return (-1); } else { } i = 0; goto ldv_39199; ldv_39198: { writew((int )((unsigned int )((unsigned short )(i + 32)) * 2U), (void volatile *)iop_base + 4U); writew((int )bios_mem[i], (void volatile *)iop_base + 6U); i = i + 1; } ldv_39199: ; if (i <= 39) { goto ldv_39198; } else { } { writew(40, (void volatile *)iop_base + 4U); tmp___4 = readw((void const volatile *)iop_base + 6U); begin_addr = (int )tmp___4; writew(42, (void volatile *)iop_base + 4U); tmp___5 = readw((void const volatile *)iop_base + 6U); end_addr = (int )tmp___5; code_sum = 0U; writew((int )((unsigned short )begin_addr), (void volatile *)iop_base + 4U); word = begin_addr; } goto ldv_39202; ldv_39201: { tmp___6 = readw((void const volatile *)iop_base + 6U); code_sum = (int )code_sum + (int )tmp___6; word = word + 2; } ldv_39202: ; if (word < end_addr) { goto ldv_39201; } else { } { writew(44, (void volatile *)iop_base + 4U); writew((int )code_sum, (void volatile *)iop_base + 6U); writew(56, (void volatile *)iop_base + 4U); (asc_dvc->cfg)->mcode_date = readw((void const volatile *)iop_base + 6U); writew(58, (void volatile *)iop_base + 4U); (asc_dvc->cfg)->mcode_version = readw((void const volatile *)iop_base + 6U); writew(154, (void volatile *)iop_base + 4U); writew(2, (void volatile *)iop_base + 6U); scsi_cfg1 = readw((void const volatile *)iop_base + 14U); writew((int )((unsigned int )scsi_cfg1 | 16384U), (void volatile *)iop_base + 14U); } if ((int )(asc_dvc->cfg)->control_flag & 1) { { writew(290, (void volatile *)iop_base + 4U); tmp___7 = readw((void const volatile *)iop_base + 6U); word = (int )tmp___7; word = word | 1; writew(290, (void volatile *)iop_base + 4U); writew((int )((unsigned short )word), (void volatile *)iop_base + 6U); } } else { } { writeb(211, (void volatile *)iop_base + 32U); } if (((int )asc_dvc->bios_ctrl & 512) == 0) { { writew(156, (void volatile *)iop_base + 4U); writew((int )asc_dvc->wdtr_able, (void volatile *)iop_base + 6U); writew(158, (void volatile *)iop_base + 4U); writew((int )asc_dvc->sdtr_able, (void volatile *)iop_base + 6U); } } else { } { writew(162, (void volatile *)iop_base + 4U); writew((int )(asc_dvc->cfg)->disc_enable, (void volatile *)iop_base + 6U); writew(144, (void volatile *)iop_base + 4U); writew((int )asc_dvc->sdtr_speed1, (void volatile *)iop_base + 6U); writew(146, (void volatile *)iop_base + 4U); writew((int )asc_dvc->sdtr_speed2, (void volatile *)iop_base + 6U); writew(148, (void volatile *)iop_base + 4U); writew((int )asc_dvc->sdtr_speed3, (void volatile *)iop_base + 6U); writew(150, (void volatile *)iop_base + 4U); writew((int )asc_dvc->sdtr_speed4, (void volatile *)iop_base + 6U); writew(172, (void volatile *)iop_base + 4U); writew((int )((unsigned int )((unsigned short )asc_dvc->chip_scsi_id) | 9296U), (void volatile *)iop_base + 6U); scsi_cfg1 = readw((void const volatile *)iop_base + 14U); tmp___8 = readw((void const volatile *)iop_base + 52U); } if (((int )tmp___8 & 16135) == 16135) { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 64U); return (-1); } else { } if (((int )scsi_cfg1 & 4096) != 0) { asc_dvc->err_code = 256U; return (-1); } else { } if (((int )(asc_dvc->cfg)->termination & 48) == 0) { { if (((int )scsi_cfg1 & 3) == 1) { goto case_1; } else { } if (((int )scsi_cfg1 & 3) == 2) { goto case_2; } else { } if (((int )scsi_cfg1 & 3) == 3) { goto case_3; } else { } if (((int )scsi_cfg1 & 3) == 0) { goto case_0; } else { } goto switch_break; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ (asc_dvc->cfg)->termination = (uchar )((unsigned int )(asc_dvc->cfg)->termination | 48U); goto ldv_39207; case_0: /* CIL Label */ (asc_dvc->cfg)->termination = (uchar )((unsigned int )(asc_dvc->cfg)->termination | 32U); goto ldv_39207; switch_break: /* CIL Label */ ; } ldv_39207: ; } else { } if (((int )(asc_dvc->cfg)->termination & 192) == 0) { { if (((int )scsi_cfg1 & 12) == 4) { goto case_4; } else { } if (((int )scsi_cfg1 & 12) == 8) { goto case_8; } else { } if (((int )scsi_cfg1 & 12) == 12) { goto case_12; } else { } if (((int )scsi_cfg1 & 12) == 0) { goto case_0___0; } else { } goto switch_break___0; case_4: /* CIL Label */ ; case_8: /* CIL Label */ ; case_12: /* CIL Label */ (asc_dvc->cfg)->termination = (uchar )((unsigned int )(asc_dvc->cfg)->termination | 192U); goto ldv_39212; case_0___0: /* CIL Label */ ; goto ldv_39212; switch_break___0: /* CIL Label */ ; } ldv_39212: ; } else { } { scsi_cfg1 = (unsigned int )scsi_cfg1 & 65295U; scsi_cfg1 = (ushort )((int )((short )scsi_cfg1) | ((int )((short )(~ ((int )((unsigned short )(asc_dvc->cfg)->termination)))) & 240)); scsi_cfg1 = (unsigned int )scsi_cfg1 & 1023U; writew(174, (void volatile *)iop_base + 4U); writew((int )scsi_cfg1, (void volatile *)iop_base + 6U); writew(176, (void volatile *)iop_base + 4U); writew(76, (void volatile *)iop_base + 6U); writew(178, (void volatile *)iop_base + 4U); writew((int )((unsigned short )(1 << ((int )asc_dvc->chip_scsi_id & 15))), (void volatile *)iop_base + 6U); AdvBuildCarrierFreelist(asc_dvc); tmp___9 = asc_dvc->carr_freelist; asc_dvc->icq_sp = tmp___9; } if ((unsigned long )tmp___9 == (unsigned long )((ADV_CARR_T *)0)) { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 1U); return (-1); } else { } { tmp___10 = phys_to_virt((phys_addr_t )(asc_dvc->icq_sp)->next_vpa); asc_dvc->carr_freelist = (ADV_CARR_T *)tmp___10; (asc_dvc->icq_sp)->next_vpa = 0U; writew(352, (void volatile *)iop_base + 4U); writew((int )((unsigned short )(asc_dvc->icq_sp)->carr_pa), (void volatile *)iop_base + 6U); writew(354, (void volatile *)iop_base + 4U); writew((int )((unsigned short )((asc_dvc->icq_sp)->carr_pa >> 16)), (void volatile *)iop_base + 6U); tmp___11 = asc_dvc->carr_freelist; asc_dvc->irq_sp = tmp___11; } if ((unsigned long )tmp___11 == (unsigned long )((ADV_CARR_T *)0)) { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 1U); return (-1); } else { } { tmp___12 = phys_to_virt((phys_addr_t )(asc_dvc->irq_sp)->next_vpa); asc_dvc->carr_freelist = (ADV_CARR_T *)tmp___12; (asc_dvc->irq_sp)->next_vpa = 0U; writew(356, (void volatile *)iop_base + 4U); writew((int )((unsigned short )(asc_dvc->irq_sp)->carr_pa), (void volatile *)iop_base + 6U); writew(358, (void volatile *)iop_base + 4U); writew((int )((unsigned short )((asc_dvc->irq_sp)->carr_pa >> 16)), (void volatile *)iop_base + 6U); asc_dvc->carr_pending_cnt = 0U; writeb(129, (void volatile *)iop_base + 2U); writew(40, (void volatile *)iop_base + 4U); tmp___13 = readw((void const volatile *)iop_base + 6U); word = (int )tmp___13; writew((int )((unsigned short )word), (void volatile *)iop_base + 42U); writew(16384, (void volatile *)iop_base + 10U); } if (((int )asc_dvc->bios_ctrl & 512) != 0) { if ((unsigned int )bios_mem[12] == 21930U) { { writew(156, (void volatile *)iop_base + 4U); writew((int )wdtr_able, (void volatile *)iop_base + 6U); writew(158, (void volatile *)iop_base + 4U); writew((int )sdtr_able, (void volatile *)iop_base + 6U); writew(160, (void volatile *)iop_base + 4U); writew((int )tagqng_able, (void volatile *)iop_base + 6U); tid = 0U; } goto ldv_39215; ldv_39214: { writew((int )((unsigned int )((unsigned short )tid) + 208U), (void volatile *)iop_base + 4U); writeb((int )max_cmd[(int )tid], (void volatile *)iop_base + 6U); tid = (uchar )((int )tid + 1); } ldv_39215: ; if ((unsigned int )tid <= 15U) { goto ldv_39214; } else { } } else { { tmp___14 = AdvResetSB(asc_dvc); } if (tmp___14 != 1) { warn_code = 1U; } else { } } } else { } return ((int )warn_code); } } static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc ) { struct firmware const *fw ; char fwname[21U] ; void *iop_base ; ushort warn_code ; int begin_addr ; int end_addr ; ushort code_sum ; long word ; int i ; int err ; unsigned long chksum ; ushort scsi_cfg1 ; uchar byte ; uchar tid ; ushort bios_mem[40U] ; ushort wdtr_able ; ushort sdtr_able ; ushort ppr_able ; ushort tagqng_able ; uchar max_cmd[8U] ; unsigned long __ms ; unsigned long tmp ; unsigned long __ms___0 ; unsigned long tmp___0 ; unsigned char tmp___1 ; unsigned long __ms___1 ; unsigned long tmp___2 ; int tmp___3 ; unsigned short tmp___4 ; unsigned short tmp___5 ; unsigned short tmp___6 ; unsigned short tmp___7 ; unsigned short tmp___8 ; unsigned short tmp___9 ; struct pci_dev *pdev ; struct device const *__mptr ; ADV_DVC_VAR const *__mptr___0 ; ADV_CARR_T *tmp___10 ; void *tmp___11 ; ADV_CARR_T *tmp___12 ; void *tmp___13 ; unsigned short tmp___14 ; int tmp___15 ; { fwname[0] = 'a'; fwname[1] = 'd'; fwname[2] = 'v'; fwname[3] = 'a'; fwname[4] = 'n'; fwname[5] = 's'; fwname[6] = 'y'; fwname[7] = 's'; fwname[8] = '/'; fwname[9] = '3'; fwname[10] = '8'; fwname[11] = 'C'; fwname[12] = '1'; fwname[13] = '6'; fwname[14] = '0'; fwname[15] = '0'; fwname[16] = '.'; fwname[17] = 'b'; fwname[18] = 'i'; fwname[19] = 'n'; fwname[20] = '\000'; if ((unsigned int )asc_dvc->err_code != 0U) { return (-1); } else { } if ((unsigned int )asc_dvc->chip_type != 3U) { asc_dvc->err_code = 8192U; return (-1); } else { } warn_code = 0U; iop_base = asc_dvc->iop_base; i = 0; goto ldv_39241; ldv_39240: { writew((int )((unsigned int )((unsigned short )(i + 32)) * 2U), (void volatile *)iop_base + 4U); bios_mem[i] = readw((void const volatile *)iop_base + 6U); i = i + 1; } ldv_39241: ; if (i <= 39) { goto ldv_39240; } else { } { writew(156, (void volatile *)iop_base + 4U); wdtr_able = readw((void const volatile *)iop_base + 6U); writew(158, (void volatile *)iop_base + 4U); sdtr_able = readw((void const volatile *)iop_base + 6U); writew(378, (void volatile *)iop_base + 4U); ppr_able = readw((void const volatile *)iop_base + 6U); writew(160, (void volatile *)iop_base + 4U); tagqng_able = readw((void const volatile *)iop_base + 6U); tid = 0U; } goto ldv_39244; ldv_39243: { writew((int )((unsigned int )((unsigned short )tid) + 208U), (void volatile *)iop_base + 4U); max_cmd[(int )tid] = readb((void const volatile *)iop_base + 6U); tid = (uchar )((int )tid + 1); } ldv_39244: ; if ((unsigned int )tid <= 7U) { goto ldv_39243; } else { } i = 0; goto ldv_39255; ldv_39254: { writeb(64, (void volatile *)iop_base + 56U); __ms = 10UL; } goto ldv_39248; ldv_39247: { __const_udelay(4295000UL); } ldv_39248: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_39247; } else { } { byte = readb((void const volatile *)iop_base + 56U); } if (((unsigned int )byte & 31U) != 21U) { asc_dvc->err_code = 2048U; return (-1); } else { } { writeb(0, (void volatile *)iop_base + 56U); __ms___0 = 10UL; } goto ldv_39252; ldv_39251: { __const_udelay(4295000UL); } ldv_39252: tmp___0 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___0 != 0UL) { goto ldv_39251; } else { } { tmp___1 = readb((void const volatile *)iop_base + 56U); } if ((unsigned int )tmp___1 != 0U) { asc_dvc->err_code = 2048U; return (-1); } else { } i = i + 1; ldv_39255: ; if (i <= 1) { goto ldv_39254; } else { } { writeb(128, (void volatile *)iop_base + 56U); __ms___1 = 10UL; } goto ldv_39259; ldv_39258: { __const_udelay(4295000UL); } ldv_39259: tmp___2 = __ms___1; __ms___1 = __ms___1 - 1UL; if (tmp___2 != 0UL) { goto ldv_39258; } else { } { byte = readb((void const volatile *)iop_base + 56U); } if (((unsigned int )byte & 31U) != 16U) { asc_dvc->bist_err_code = byte; asc_dvc->err_code = 4096U; return (-1); } else { } { writeb(0, (void volatile *)iop_base + 56U); err = request_firmware(& fw, (char const *)(& fwname), (asc_dvc->drv_ptr)->dev); } if (err != 0) { { printk("\vFailed to load image \"%s\" err %d\n", (char const *)(& fwname), err); asc_dvc->err_code = 2U; } return (err); } else { } if ((unsigned long )fw->size <= 3UL) { { printk("\vBogus length %zu in image \"%s\"\n", fw->size, (char const *)(& fwname)); release_firmware(fw); asc_dvc->err_code = 2U; } return (-22); } else { } { chksum = (unsigned long )(((((int )*(fw->data + 3UL) << 24) | ((int )*(fw->data + 2UL) << 16)) | ((int )*(fw->data + 1UL) << 8)) | (int )*(fw->data)); tmp___3 = AdvLoadMicrocode(iop_base, (unsigned char const *)fw->data + 4U, (int )((unsigned int )fw->size - 4U), 16384, (int )chksum); asc_dvc->err_code = (ushort )tmp___3; release_firmware(fw); } if ((unsigned int )asc_dvc->err_code != 0U) { return (-1); } else { } i = 0; goto ldv_39262; ldv_39261: { writew((int )((unsigned int )((unsigned short )(i + 32)) * 2U), (void volatile *)iop_base + 4U); writew((int )bios_mem[i], (void volatile *)iop_base + 6U); i = i + 1; } ldv_39262: ; if (i <= 39) { goto ldv_39261; } else { } { writew(40, (void volatile *)iop_base + 4U); tmp___4 = readw((void const volatile *)iop_base + 6U); begin_addr = (int )tmp___4; writew(42, (void volatile *)iop_base + 4U); tmp___5 = readw((void const volatile *)iop_base + 6U); end_addr = (int )tmp___5; code_sum = 0U; writew((int )((unsigned short )begin_addr), (void volatile *)iop_base + 4U); word = (long )begin_addr; } goto ldv_39265; ldv_39264: { tmp___6 = readw((void const volatile *)iop_base + 6U); code_sum = (int )code_sum + (int )tmp___6; word = word + 2L; } ldv_39265: ; if (word < (long )end_addr) { goto ldv_39264; } else { } { writew(44, (void volatile *)iop_base + 4U); writew((int )code_sum, (void volatile *)iop_base + 6U); writew(56, (void volatile *)iop_base + 4U); (asc_dvc->cfg)->mcode_date = readw((void const volatile *)iop_base + 6U); writew(58, (void volatile *)iop_base + 4U); (asc_dvc->cfg)->mcode_version = readw((void const volatile *)iop_base + 6U); writew(154, (void volatile *)iop_base + 4U); writew(3, (void volatile *)iop_base + 6U); scsi_cfg1 = readw((void const volatile *)iop_base + 14U); writew((int )((unsigned int )scsi_cfg1 | 16384U), (void volatile *)iop_base + 14U); } if ((int )(asc_dvc->cfg)->control_flag & 1) { { writew(290, (void volatile *)iop_base + 4U); tmp___7 = readw((void const volatile *)iop_base + 6U); word = (long )tmp___7; word = word | 1L; writew(290, (void volatile *)iop_base + 4U); writew((int )((unsigned short )word), (void volatile *)iop_base + 6U); } } else { } if (((int )asc_dvc->bios_ctrl & 8192) == 0) { { writew(290, (void volatile *)iop_base + 4U); tmp___8 = readw((void const volatile *)iop_base + 6U); word = (long )tmp___8; word = word | 2L; writew(290, (void volatile *)iop_base + 4U); writew((int )((unsigned short )word), (void volatile *)iop_base + 6U); } } else { } { writeb(83, (void volatile *)iop_base + 32U); } if (((int )asc_dvc->bios_ctrl & 512) == 0) { { writew(156, (void volatile *)iop_base + 4U); writew((int )asc_dvc->wdtr_able, (void volatile *)iop_base + 6U); writew(158, (void volatile *)iop_base + 4U); writew((int )asc_dvc->sdtr_able, (void volatile *)iop_base + 6U); } } else { } { writew(162, (void volatile *)iop_base + 4U); writew((int )(asc_dvc->cfg)->disc_enable, (void volatile *)iop_base + 6U); writew(144, (void volatile *)iop_base + 4U); writew((int )asc_dvc->sdtr_speed1, (void volatile *)iop_base + 6U); writew(146, (void volatile *)iop_base + 4U); writew((int )asc_dvc->sdtr_speed2, (void volatile *)iop_base + 6U); writew(148, (void volatile *)iop_base + 4U); writew((int )asc_dvc->sdtr_speed3, (void volatile *)iop_base + 6U); writew(150, (void volatile *)iop_base + 4U); writew((int )asc_dvc->sdtr_speed4, (void volatile *)iop_base + 6U); writew(172, (void volatile *)iop_base + 4U); writew((int )((unsigned int )((unsigned short )asc_dvc->chip_scsi_id) | 9296U), (void volatile *)iop_base + 6U); scsi_cfg1 = readw((void const volatile *)iop_base + 14U); tmp___9 = readw((void const volatile *)iop_base + 52U); } if (((int )tmp___9 & 16135) == 16135) { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 64U); return (-1); } else { } if (((int )scsi_cfg1 & 4096) != 0) { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 256U); return (-1); } else { } if (((int )(asc_dvc->cfg)->termination & 48) == 0) { __mptr___0 = (ADV_DVC_VAR const *)asc_dvc; __mptr = (struct device const *)((struct asc_board *)__mptr___0 + 0xfffffffffffffff0UL)->dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; { if (((int )scsi_cfg1 & 3) == 1) { goto case_1; } else { } if (((int )scsi_cfg1 & 3) == 2) { goto case_2; } else { } if (((int )scsi_cfg1 & 3) == 3) { goto case_3; } else { } if (((int )scsi_cfg1 & 3) == 0) { goto case_0; } else { } goto switch_break; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ (asc_dvc->cfg)->termination = (uchar )((unsigned int )(asc_dvc->cfg)->termination | 48U); goto ldv_39275; case_0: /* CIL Label */ ; if ((pdev->devfn & 7U) == 0U) { } else { (asc_dvc->cfg)->termination = (uchar )((unsigned int )(asc_dvc->cfg)->termination | 32U); } goto ldv_39275; switch_break: /* CIL Label */ ; } ldv_39275: ; } else { } { scsi_cfg1 = (unsigned int )scsi_cfg1 & 65487U; scsi_cfg1 = (ushort )((int )((short )scsi_cfg1) | ((int )((short )(~ ((int )((unsigned short )(asc_dvc->cfg)->termination)))) & 48)); scsi_cfg1 = (unsigned int )scsi_cfg1 & 8191U; writew(174, (void volatile *)iop_base + 4U); writew((int )scsi_cfg1, (void volatile *)iop_base + 6U); writew(176, (void volatile *)iop_base + 4U); writew(76, (void volatile *)iop_base + 6U); writew(178, (void volatile *)iop_base + 4U); writew((int )((unsigned short )(1 << ((int )asc_dvc->chip_scsi_id & 15))), (void volatile *)iop_base + 6U); AdvBuildCarrierFreelist(asc_dvc); tmp___10 = asc_dvc->carr_freelist; asc_dvc->icq_sp = tmp___10; } if ((unsigned long )tmp___10 == (unsigned long )((ADV_CARR_T *)0)) { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 1U); return (-1); } else { } { tmp___11 = phys_to_virt((phys_addr_t )(asc_dvc->icq_sp)->next_vpa); asc_dvc->carr_freelist = (ADV_CARR_T *)tmp___11; (asc_dvc->icq_sp)->next_vpa = 0U; writew(352, (void volatile *)iop_base + 4U); writew((int )((unsigned short )(asc_dvc->icq_sp)->carr_pa), (void volatile *)iop_base + 6U); writew(354, (void volatile *)iop_base + 4U); writew((int )((unsigned short )((asc_dvc->icq_sp)->carr_pa >> 16)), (void volatile *)iop_base + 6U); writel((asc_dvc->icq_sp)->carr_pa, (void volatile *)iop_base + 20U); tmp___12 = asc_dvc->carr_freelist; asc_dvc->irq_sp = tmp___12; } if ((unsigned long )tmp___12 == (unsigned long )((ADV_CARR_T *)0)) { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 1U); return (-1); } else { } { tmp___13 = phys_to_virt((phys_addr_t )(asc_dvc->irq_sp)->next_vpa); asc_dvc->carr_freelist = (ADV_CARR_T *)tmp___13; (asc_dvc->irq_sp)->next_vpa = 0U; writew(356, (void volatile *)iop_base + 4U); writew((int )((unsigned short )(asc_dvc->irq_sp)->carr_pa), (void volatile *)iop_base + 6U); writew(358, (void volatile *)iop_base + 4U); writew((int )((unsigned short )((asc_dvc->irq_sp)->carr_pa >> 16)), (void volatile *)iop_base + 6U); asc_dvc->carr_pending_cnt = 0U; writeb(129, (void volatile *)iop_base + 2U); writew(40, (void volatile *)iop_base + 4U); tmp___14 = readw((void const volatile *)iop_base + 6U); word = (long )tmp___14; writew((int )((unsigned short )word), (void volatile *)iop_base + 42U); writew(16384, (void volatile *)iop_base + 10U); } if (((int )asc_dvc->bios_ctrl & 512) != 0) { if ((unsigned int )bios_mem[12] == 21930U) { { writew(156, (void volatile *)iop_base + 4U); writew((int )wdtr_able, (void volatile *)iop_base + 6U); writew(158, (void volatile *)iop_base + 4U); writew((int )sdtr_able, (void volatile *)iop_base + 6U); writew(378, (void volatile *)iop_base + 4U); writew((int )ppr_able, (void volatile *)iop_base + 6U); writew(160, (void volatile *)iop_base + 4U); writew((int )tagqng_able, (void volatile *)iop_base + 6U); tid = 0U; } goto ldv_39278; ldv_39277: { writew((int )((unsigned int )((unsigned short )tid) + 208U), (void volatile *)iop_base + 4U); writeb((int )max_cmd[(int )tid], (void volatile *)iop_base + 6U); tid = (uchar )((int )tid + 1); } ldv_39278: ; if ((unsigned int )tid <= 7U) { goto ldv_39277; } else { } } else { { tmp___15 = AdvResetSB(asc_dvc); } if (tmp___15 != 1) { warn_code = 1U; } else { } } } else { } return ((int )warn_code); } } static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc ) { int status ; ushort wdtr_able ; ushort sdtr_able ; ushort tagqng_able ; ushort ppr_able ; uchar tid ; uchar max_cmd[16U] ; void *iop_base ; ushort bios_sig ; unsigned long __ms ; unsigned long tmp ; { { ppr_able = 0U; iop_base = asc_dvc->iop_base; writew(156, (void volatile *)iop_base + 4U); wdtr_able = readw((void const volatile *)iop_base + 6U); writew(158, (void volatile *)iop_base + 4U); sdtr_able = readw((void const volatile *)iop_base + 6U); } if ((unsigned int )asc_dvc->chip_type == 3U) { { writew(378, (void volatile *)iop_base + 4U); ppr_able = readw((void const volatile *)iop_base + 6U); } } else { } { writew(160, (void volatile *)iop_base + 4U); tagqng_able = readw((void const volatile *)iop_base + 6U); tid = 0U; } goto ldv_39293; ldv_39292: { writew((int )((unsigned int )((unsigned short )tid) + 208U), (void volatile *)iop_base + 4U); max_cmd[(int )tid] = readb((void const volatile *)iop_base + 6U); tid = (uchar )((int )tid + 1); } ldv_39293: ; if ((unsigned int )tid <= 15U) { goto ldv_39292; } else { } { writew(88, (void volatile *)iop_base + 4U); bios_sig = readw((void const volatile *)iop_base + 6U); writew(88, (void volatile *)iop_base + 4U); writew(0, (void volatile *)iop_base + 6U); writew(0, (void volatile *)iop_base + 10U); writew(198, (void volatile *)iop_base + 2U); __ms = 100UL; } goto ldv_39297; ldv_39296: { __const_udelay(4295000UL); } ldv_39297: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_39296; } else { } { writew(197, (void volatile *)iop_base + 2U); asc_dvc->err_code = 0U; } if ((unsigned int )asc_dvc->chip_type == 3U) { { status = AdvInitAsc38C1600Driver(asc_dvc); } } else if ((unsigned int )asc_dvc->chip_type == 2U) { { status = AdvInitAsc38C0800Driver(asc_dvc); } } else { { status = AdvInitAsc3550Driver(asc_dvc); } } if (status == 0) { status = 1; } else { status = 0; } { writew(88, (void volatile *)iop_base + 4U); writew((int )bios_sig, (void volatile *)iop_base + 6U); writew(156, (void volatile *)iop_base + 4U); writew((int )wdtr_able, (void volatile *)iop_base + 6U); writew(158, (void volatile *)iop_base + 4U); writew((int )sdtr_able, (void volatile *)iop_base + 6U); } if ((unsigned int )asc_dvc->chip_type == 3U) { { writew(378, (void volatile *)iop_base + 4U); writew((int )ppr_able, (void volatile *)iop_base + 6U); } } else { } { writew(160, (void volatile *)iop_base + 4U); writew((int )tagqng_able, (void volatile *)iop_base + 6U); tid = 0U; } goto ldv_39300; ldv_39299: { writew((int )((unsigned int )((unsigned short )tid) + 208U), (void volatile *)iop_base + 4U); writeb((int )max_cmd[(int )tid], (void volatile *)iop_base + 6U); tid = (uchar )((int )tid + 1); } ldv_39300: ; if ((unsigned int )tid <= 15U) { goto ldv_39299; } else { } return (status); } } static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp , uchar code ) { { { if ((int )code == 2) { goto case_2; } else { } if ((int )code == 1) { goto case_1; } else { } if ((int )code == 128) { goto case_128; } else { } goto switch_default; case_2: /* CIL Label */ ; goto ldv_39307; case_1: /* CIL Label */ { AdvResetChipAndSB(adv_dvc_varp); } goto ldv_39307; case_128: /* CIL Label */ ; goto ldv_39307; switch_default: /* CIL Label */ ; goto ldv_39307; switch_break: /* CIL Label */ ; } ldv_39307: ; return; } } static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp , ADV_SCSI_REQ_Q *scsiqp ) { struct asc_board *boardp ; adv_req_t *reqp ; adv_sgblk_t *sgblkp ; struct scsi_cmnd *scp ; struct Scsi_Host *shost ; __u32 resid_cnt ; void *tmp ; void *tmp___0 ; void *tmp___1 ; long tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; { { tmp = phys_to_virt((phys_addr_t )scsiqp->srb_ptr); reqp = (adv_req_t *)tmp; } if ((unsigned long )reqp == (unsigned long )((adv_req_t *)0)) { { printk("advansys: "); printk("adv_isr_callback: reqp is NULL\n"); } return; } else { } scp = reqp->cmndp; if ((unsigned long )scp == (unsigned long )((struct scsi_cmnd *)0)) { { printk("advansys: "); printk("adv_isr_callback: scp is NULL; adv_req_t dropped.\n"); } return; } else { } { shost = (scp->device)->host; tmp___0 = shost_priv(shost); ((struct asc_board *)tmp___0)->asc_stats.callback = ((struct asc_board *)tmp___0)->asc_stats.callback + 1U; tmp___1 = shost_priv(shost); boardp = (struct asc_board *)tmp___1; tmp___2 = ldv__builtin_expect((unsigned long )adv_dvc_varp != (unsigned long )(& boardp->dvc_var.adv_dvc_var), 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/scsi/advansys.c"), "i" (6182), "i" (12UL)); __builtin_unreachable(); } } else { } { if ((int )scsiqp->done_status == 1) { goto case_1; } else { } if ((int )scsiqp->done_status == 4) { goto case_4; } else { } if ((int )scsiqp->done_status == 2) { goto case_2; } else { } goto switch_default___0; case_1: /* CIL Label */ { scp->result = 0; resid_cnt = scsiqp->data_cnt; tmp___3 = scsi_bufflen(scp); } if (tmp___3 != 0U && resid_cnt != 0U) { { tmp___4 = scsi_bufflen(scp); } if (resid_cnt <= tmp___4) { { scsi_set_resid(scp, (int )resid_cnt); } } else { } } else { } goto ldv_39322; case_4: /* CIL Label */ ; { if ((int )scsiqp->host_status == 0) { goto case_0; } else { } goto switch_default; case_0: /* CIL Label */ ; if ((unsigned int )scsiqp->scsi_status == 2U) { scp->result = (int )scsiqp->scsi_status | 134217728; } else { scp->result = (int )scsiqp->scsi_status; } goto ldv_39325; switch_default: /* CIL Label */ scp->result = 262144; goto ldv_39325; switch_break___0: /* CIL Label */ ; } ldv_39325: ; goto ldv_39322; case_2: /* CIL Label */ scp->result = (int )scsiqp->scsi_status | 327680; goto ldv_39322; switch_default___0: /* CIL Label */ scp->result = (int )scsiqp->scsi_status | 458752; goto ldv_39322; switch_break: /* CIL Label */ ; } ldv_39322: ; if ((((int )boardp->init_tidmask >> ((int )(scp->device)->id & 15)) & 1) == 0 && *((unsigned int *)scsiqp + 6UL) == 1U) { boardp->init_tidmask = (ushort )((int )((short )boardp->init_tidmask) | (int )((short )(1 << ((int )(scp->device)->id & 15)))); } else { } { asc_scsi_done(scp); } goto ldv_39330; ldv_39329: reqp->sgblkp = sgblkp->next_sgblkp; sgblkp->next_sgblkp = boardp->adv_sgblkp; boardp->adv_sgblkp = sgblkp; ldv_39330: sgblkp = reqp->sgblkp; if ((unsigned long )sgblkp != (unsigned long )((adv_sgblk_t *)0)) { goto ldv_39329; } else { } reqp->next_reqp = boardp->adv_reqp; boardp->adv_reqp = reqp; return; } } static int AdvISR(ADV_DVC_VAR *asc_dvc ) { void *iop_base ; uchar int_stat ; ushort target_bit ; ADV_CARR_T *free_carrp ; __u32 irq_next_vpa ; ADV_SCSI_REQ_Q *scsiq ; uchar intrb_code ; void *tmp ; uchar tmp___0 ; void *tmp___1 ; phys_addr_t tmp___2 ; { { iop_base = asc_dvc->iop_base; int_stat = readb((void const volatile *)iop_base); } if (((int )int_stat & 7) == 0) { return (0); } else { } if (((int )int_stat & 2) != 0) { { writew(155, (void volatile *)iop_base + 4U); intrb_code = readb((void const volatile *)iop_base + 6U); } if ((unsigned int )asc_dvc->chip_type - 1U <= 1U) { if ((unsigned int )intrb_code == 3U && (unsigned int )asc_dvc->carr_pending_cnt != 0U) { { writeb(1, (void volatile *)iop_base + 34U); } if ((unsigned int )asc_dvc->chip_type == 1U) { { writeb(0, (void volatile *)iop_base + 34U); } } else { } } else { } } else { } { adv_async_callback(asc_dvc, (int )intrb_code); } } else { } goto ldv_39343; ldv_39342: { tmp = phys_to_virt((phys_addr_t )(asc_dvc->irq_sp)->areq_vpa); scsiq = (ADV_SCSI_REQ_Q *)tmp; } if ((irq_next_vpa & 2U) != 0U) { scsiq->done_status = 1U; tmp___0 = 0U; scsiq->scsi_status = tmp___0; scsiq->host_status = tmp___0; scsiq->data_cnt = 0U; } else { } { free_carrp = asc_dvc->irq_sp; tmp___1 = phys_to_virt((phys_addr_t )irq_next_vpa & 4294967280ULL); asc_dvc->irq_sp = (ADV_CARR_T *)tmp___1; tmp___2 = virt_to_phys((void volatile *)asc_dvc->carr_freelist); free_carrp->next_vpa = (unsigned int )tmp___2; asc_dvc->carr_freelist = free_carrp; asc_dvc->carr_pending_cnt = (ushort )((int )asc_dvc->carr_pending_cnt - 1); target_bit = (ushort )(1 << ((int )scsiq->target_id & 15)); scsiq->cntl = 0U; scsiq->a_flag = (uchar )((unsigned int )scsiq->a_flag | 2U); adv_isr_callback(asc_dvc, scsiq); } ldv_39343: irq_next_vpa = (asc_dvc->irq_sp)->next_vpa; if ((int )irq_next_vpa & 1) { goto ldv_39342; } else { } return (1); } } static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc , ushort err_code ) { { if ((unsigned int )asc_dvc->err_code == 0U) { { asc_dvc->err_code = err_code; AscWriteLramWord(asc_dvc->iop_base, 48, (int )err_code); } } else { } return ((int )err_code); } } static void AscAckInterrupt(unsigned int iop_base ) { uchar host_flag ; uchar risc_flag ; ushort loop ; ushort tmp ; uchar tmp___0 ; ushort tmp___1 ; unsigned short tmp___2 ; { loop = 0U; ldv_39356: { risc_flag = AscReadLramByte(iop_base, 106); tmp = loop; loop = (ushort )((int )loop + 1); } if ((int )((short )tmp) < 0) { goto ldv_39355; } else { } if ((int )risc_flag & 1) { goto ldv_39356; } else { } ldv_39355: { tmp___0 = AscReadLramByte(iop_base, 93); host_flag = (unsigned int )tmp___0 & 253U; AscWriteLramByte(iop_base, 93, (int )((unsigned int )host_flag | 2U)); outw(256, (int )(iop_base + 14U)); loop = 0U; } goto ldv_39359; ldv_39358: { outw(256, (int )(iop_base + 14U)); tmp___1 = loop; loop = (ushort )((int )loop + 1); } if ((unsigned int )tmp___1 > 3U) { goto ldv_39357; } else { } ldv_39359: { tmp___2 = inw((int )(iop_base + 14U)); } if ((int )tmp___2 & 1) { goto ldv_39358; } else { } ldv_39357: { AscWriteLramByte(iop_base, 93, (int )host_flag); } return; } } static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc , uchar syn_time ) { uchar const *period_table ; int max_index ; int min_index ; int i ; { period_table = asc_dvc->sdtr_period_tbl; max_index = (int )asc_dvc->max_sdtr_index; min_index = (int )asc_dvc->min_sdtr_index; if ((int )syn_time <= (int )((unsigned char )*(period_table + (unsigned long )max_index))) { i = min_index; goto ldv_39369; ldv_39368: ; if ((int )syn_time <= (int )((unsigned char )*(period_table + (unsigned long )i))) { return ((uchar )i); } else { } i = i + 1; ldv_39369: ; if (i < max_index + -1) { goto ldv_39368; } else { } return ((uchar )max_index); } else { return ((uchar )((unsigned int )((unsigned char )max_index) + 1U)); } } } static uchar AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc , uchar sdtr_period , uchar sdtr_offset ) { EXT_MSG sdtr_buf ; uchar sdtr_period_index ; unsigned int iop_base ; { { iop_base = asc_dvc->iop_base; sdtr_buf.msg_type = 1U; sdtr_buf.msg_len = 3U; sdtr_buf.msg_req = 1U; sdtr_buf.u_ext_msg.sdtr.sdtr_xfer_period = sdtr_period; sdtr_offset = (unsigned int )sdtr_offset & 15U; sdtr_buf.u_ext_msg.sdtr.sdtr_req_ack_offset = sdtr_offset; sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, (int )sdtr_period); } if ((int )sdtr_period_index <= (int )asc_dvc->max_sdtr_index) { { AscMemWordCopyPtrToLram(iop_base, 0, (uchar const *)(& sdtr_buf), 4); } return ((uchar )((int )((signed char )((int )sdtr_period_index << 4)) | (int )((signed char )sdtr_offset))); } else { { sdtr_buf.u_ext_msg.sdtr.sdtr_req_ack_offset = 0U; AscMemWordCopyPtrToLram(iop_base, 0, (uchar const *)(& sdtr_buf), 4); } return (0U); } } } static uchar AscCalSDTRData(ASC_DVC_VAR *asc_dvc , uchar sdtr_period , uchar syn_offset ) { uchar byte ; uchar sdtr_period_ix ; { { sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, (int )sdtr_period); } if ((int )sdtr_period_ix > (int )asc_dvc->max_sdtr_index) { return (255U); } else { } byte = (uchar )((int )((signed char )((int )sdtr_period_ix << 4)) | ((int )((signed char )syn_offset) & 15)); return (byte); } } static int AscSetChipSynRegAtID(unsigned int iop_base , uchar id , uchar sdtr_data ) { uchar org_id ; int i ; int sta ; unsigned char tmp ; unsigned char tmp___0 ; { { sta = 1; AscSetBank(iop_base, 1); org_id = inb((int )(iop_base + 5U)); i = 0; } goto ldv_39396; ldv_39395: ; if ((int )org_id == 1 << i) { goto ldv_39394; } else { } i = i + 1; ldv_39396: ; if (i <= 7) { goto ldv_39395; } else { } ldv_39394: { org_id = (unsigned char )i; outb((int )id, (int )(iop_base + 5U)); tmp___0 = inb((int )(iop_base + 5U)); } if ((int )tmp___0 == 1 << (int )id) { { AscSetBank(iop_base, 0); outb((int )sdtr_data, (int )(iop_base + 11U)); tmp = inb((int )(iop_base + 11U)); } if ((int )tmp != (int )sdtr_data) { sta = 0; } else { } } else { sta = 0; } { AscSetBank(iop_base, 1); outb((int )org_id, (int )(iop_base + 5U)); AscSetBank(iop_base, 0); } return (sta); } } static void AscSetChipSDTR(unsigned int iop_base , uchar sdtr_data , uchar tid_no ) { { { AscSetChipSynRegAtID(iop_base, (int )tid_no, (int )sdtr_data); AscWriteLramByte(iop_base, (int )((unsigned int )((unsigned short )tid_no) + 24U), (int )sdtr_data); } return; } } static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc ) { EXT_MSG ext_msg ; EXT_MSG out_msg ; ushort halt_q_addr ; int sdtr_accept ; ushort int_halt_code ; uchar scsi_busy ; uchar target_id ; unsigned int iop_base ; uchar tag_code ; uchar q_status ; uchar halt_qp ; uchar sdtr_data ; uchar target_ix ; uchar q_cntl ; uchar tid_no ; uchar cur_dvc_qng ; uchar asyn_sdtr ; uchar scsi_status ; struct asc_board *boardp ; long tmp ; { { tmp = ldv__builtin_expect((unsigned long )asc_dvc->drv_ptr == (unsigned long )((struct asc_board *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/scsi/advansys.c"), "i" (6580), "i" (12UL)); __builtin_unreachable(); } } else { } { boardp = asc_dvc->drv_ptr; iop_base = asc_dvc->iop_base; int_halt_code = AscReadLramWord(iop_base, 64); halt_qp = AscReadLramByte(iop_base, 77); halt_q_addr = (unsigned int )((int )((ushort )halt_qp) << 6U) + 16384U; target_ix = AscReadLramByte(iop_base, (int )((unsigned int )halt_q_addr + 26U)); q_cntl = AscReadLramByte(iop_base, (int )((unsigned int )halt_q_addr + 4U)); tid_no = (unsigned int )target_ix & 7U; target_id = (unsigned char )(1 << (int )tid_no); } if ((unsigned int )((int )asc_dvc->pci_fix_asyn_xfer & (int )target_id) != 0U) { asyn_sdtr = 65U; } else { asyn_sdtr = 0U; } if ((unsigned int )int_halt_code == 33536U) { if ((unsigned int )((int )asc_dvc->pci_fix_asyn_xfer & (int )target_id) != 0U) { { AscSetChipSDTR(iop_base, 0, (int )tid_no); boardp->sdtr_data[(int )tid_no] = 0U; } } else { } { AscWriteLramWord(iop_base, 64, 0); } return (0); } else if ((unsigned int )int_halt_code == 33792U) { if ((unsigned int )((int )asc_dvc->pci_fix_asyn_xfer & (int )target_id) != 0U) { { AscSetChipSDTR(iop_base, (int )asyn_sdtr, (int )tid_no); boardp->sdtr_data[(int )tid_no] = asyn_sdtr; } } else { } { AscWriteLramWord(iop_base, 64, 0); } return (0); } else if ((unsigned int )int_halt_code == 32768U) { { AscMemWordCopyPtrFromLram(iop_base, 8, (uchar *)(& ext_msg), 4); } if (((unsigned int )ext_msg.msg_type == 1U && (unsigned int )ext_msg.msg_req == 1U) && (unsigned int )ext_msg.msg_len == 3U) { sdtr_accept = 1; if ((unsigned int )ext_msg.u_ext_msg.sdtr.sdtr_req_ack_offset > 15U) { sdtr_accept = 0; ext_msg.u_ext_msg.sdtr.sdtr_req_ack_offset = 15U; } else { } if ((int )ext_msg.u_ext_msg.sdtr.sdtr_xfer_period < (int )((unsigned char )*(asc_dvc->sdtr_period_tbl + (unsigned long )asc_dvc->min_sdtr_index)) || (int )ext_msg.u_ext_msg.sdtr.sdtr_xfer_period > (int )((unsigned char )*(asc_dvc->sdtr_period_tbl + (unsigned long )asc_dvc->max_sdtr_index))) { sdtr_accept = 0; ext_msg.u_ext_msg.sdtr.sdtr_xfer_period = *(asc_dvc->sdtr_period_tbl + (unsigned long )asc_dvc->min_sdtr_index); } else { } if (sdtr_accept != 0) { { sdtr_data = AscCalSDTRData(asc_dvc, (int )ext_msg.u_ext_msg.sdtr.sdtr_xfer_period, (int )ext_msg.u_ext_msg.sdtr.sdtr_req_ack_offset); } if ((unsigned int )sdtr_data == 255U) { { q_cntl = (uchar )((unsigned int )q_cntl | 64U); asc_dvc->init_sdtr = (uchar )((int )((signed char )asc_dvc->init_sdtr) & ~ ((int )((signed char )target_id))); asc_dvc->sdtr_done = (uchar )((int )((signed char )asc_dvc->sdtr_done) & ~ ((int )((signed char )target_id))); AscSetChipSDTR(iop_base, (int )asyn_sdtr, (int )tid_no); boardp->sdtr_data[(int )tid_no] = asyn_sdtr; } } else { } } else { } if ((unsigned int )ext_msg.u_ext_msg.sdtr.sdtr_req_ack_offset == 0U) { { q_cntl = (unsigned int )q_cntl & 191U; asc_dvc->init_sdtr = (uchar )((int )((signed char )asc_dvc->init_sdtr) & ~ ((int )((signed char )target_id))); asc_dvc->sdtr_done = (uchar )((int )((signed char )asc_dvc->sdtr_done) & ~ ((int )((signed char )target_id))); AscSetChipSDTR(iop_base, (int )asyn_sdtr, (int )tid_no); } } else if (sdtr_accept != 0 && ((int )q_cntl & 64) != 0) { { q_cntl = (unsigned int )q_cntl & 191U; asc_dvc->sdtr_done = (uchar )((int )asc_dvc->sdtr_done | (int )target_id); asc_dvc->init_sdtr = (uchar )((int )asc_dvc->init_sdtr | (int )target_id); asc_dvc->pci_fix_asyn_xfer = (uchar )((int )((signed char )asc_dvc->pci_fix_asyn_xfer) & ~ ((int )((signed char )target_id))); sdtr_data = AscCalSDTRData(asc_dvc, (int )ext_msg.u_ext_msg.sdtr.sdtr_xfer_period, (int )ext_msg.u_ext_msg.sdtr.sdtr_req_ack_offset); AscSetChipSDTR(iop_base, (int )sdtr_data, (int )tid_no); boardp->sdtr_data[(int )tid_no] = sdtr_data; } } else { { q_cntl = (uchar )((unsigned int )q_cntl | 64U); AscMsgOutSDTR(asc_dvc, (int )ext_msg.u_ext_msg.sdtr.sdtr_xfer_period, (int )ext_msg.u_ext_msg.sdtr.sdtr_req_ack_offset); asc_dvc->pci_fix_asyn_xfer = (uchar )((int )((signed char )asc_dvc->pci_fix_asyn_xfer) & ~ ((int )((signed char )target_id))); sdtr_data = AscCalSDTRData(asc_dvc, (int )ext_msg.u_ext_msg.sdtr.sdtr_xfer_period, (int )ext_msg.u_ext_msg.sdtr.sdtr_req_ack_offset); AscSetChipSDTR(iop_base, (int )sdtr_data, (int )tid_no); boardp->sdtr_data[(int )tid_no] = sdtr_data; asc_dvc->sdtr_done = (uchar )((int )asc_dvc->sdtr_done | (int )target_id); asc_dvc->init_sdtr = (uchar )((int )asc_dvc->init_sdtr | (int )target_id); } } { AscWriteLramByte(iop_base, (int )((unsigned int )halt_q_addr + 4U), (int )q_cntl); AscWriteLramWord(iop_base, 64, 0); } return (0); } else if (((unsigned int )ext_msg.msg_type == 1U && (unsigned int )ext_msg.msg_req == 3U) && (unsigned int )ext_msg.msg_len == 2U) { { ext_msg.u_ext_msg.wdtr.wdtr_width = 0U; AscMemWordCopyPtrToLram(iop_base, 0, (uchar const *)(& ext_msg), 4); q_cntl = (uchar )((unsigned int )q_cntl | 64U); AscWriteLramByte(iop_base, (int )((unsigned int )halt_q_addr + 4U), (int )q_cntl); AscWriteLramWord(iop_base, 64, 0); } return (0); } else { { ext_msg.msg_type = 7U; AscMemWordCopyPtrToLram(iop_base, 0, (uchar const *)(& ext_msg), 4); q_cntl = (uchar )((unsigned int )q_cntl | 64U); AscWriteLramByte(iop_base, (int )((unsigned int )halt_q_addr + 4U), (int )q_cntl); AscWriteLramWord(iop_base, 64, 0); } return (0); } } else if ((unsigned int )int_halt_code == 33024U) { q_cntl = (uchar )((unsigned int )q_cntl | 128U); if ((unsigned int )((int )asc_dvc->init_sdtr & (int )target_id) != 0U) { { asc_dvc->sdtr_done = (uchar )((int )((signed char )asc_dvc->sdtr_done) & ~ ((int )((signed char )target_id))); sdtr_data = AscReadLramByte(iop_base, (int )((unsigned int )((unsigned short )tid_no) + 16U)); q_cntl = (uchar )((unsigned int )q_cntl | 64U); AscMsgOutSDTR(asc_dvc, (int )*(asc_dvc->sdtr_period_tbl + (unsigned long )((unsigned int )((int )sdtr_data >> 4) & ((unsigned int )asc_dvc->max_sdtr_index - 1U))), (int )sdtr_data & 15); } } else { } { AscWriteLramByte(iop_base, (int )((unsigned int )halt_q_addr + 4U), (int )q_cntl); tag_code = AscReadLramByte(iop_base, (int )((unsigned int )halt_q_addr + 29U)); tag_code = (unsigned int )tag_code & 220U; } if ((unsigned int )((int )asc_dvc->pci_fix_asyn_xfer & (int )target_id) != 0U && (unsigned int )((int )asc_dvc->pci_fix_asyn_xfer_always & (int )target_id) == 0U) { tag_code = (uchar )((unsigned int )tag_code | 12U); } else { } { AscWriteLramByte(iop_base, (int )((unsigned int )halt_q_addr + 29U), (int )tag_code); q_status = AscReadLramByte(iop_base, (int )((unsigned int )halt_q_addr + 2U)); q_status = (uchar )((unsigned int )q_status | 9U); AscWriteLramByte(iop_base, (int )((unsigned int )halt_q_addr + 2U), (int )q_status); scsi_busy = AscReadLramByte(iop_base, 75); scsi_busy = (uchar )((int )((signed char )scsi_busy) & ~ ((int )((signed char )target_id))); AscWriteLramByte(iop_base, 75, (int )scsi_busy); AscWriteLramWord(iop_base, 64, 0); } return (0); } else if ((unsigned int )int_halt_code == 16384U) { { AscMemWordCopyPtrFromLram(iop_base, 0, (uchar *)(& out_msg), 4); } if (((unsigned int )out_msg.msg_type == 1U && (unsigned int )out_msg.msg_len == 3U) && (unsigned int )out_msg.msg_req == 1U) { { asc_dvc->init_sdtr = (uchar )((int )((signed char )asc_dvc->init_sdtr) & ~ ((int )((signed char )target_id))); asc_dvc->sdtr_done = (uchar )((int )((signed char )asc_dvc->sdtr_done) & ~ ((int )((signed char )target_id))); AscSetChipSDTR(iop_base, (int )asyn_sdtr, (int )tid_no); boardp->sdtr_data[(int )tid_no] = asyn_sdtr; } } else { } { q_cntl = (unsigned int )q_cntl & 191U; AscWriteLramByte(iop_base, (int )((unsigned int )halt_q_addr + 4U), (int )q_cntl); AscWriteLramWord(iop_base, 64, 0); } return (0); } else if ((unsigned int )int_halt_code == 33280U) { { scsi_status = AscReadLramByte(iop_base, (int )((unsigned int )halt_q_addr + 34U)); cur_dvc_qng = AscReadLramByte(iop_base, (int )((unsigned int )((unsigned short )target_ix) + 16384U)); } if ((unsigned int )cur_dvc_qng != 0U && (unsigned int )asc_dvc->cur_dvc_qng[(int )tid_no] != 0U) { { scsi_busy = AscReadLramByte(iop_base, 75); scsi_busy = (uchar )((int )scsi_busy | (int )target_id); AscWriteLramByte(iop_base, 75, (int )scsi_busy); asc_dvc->queue_full_or_busy = (uchar )((int )asc_dvc->queue_full_or_busy | (int )target_id); } if ((unsigned int )scsi_status == 40U) { if ((unsigned int )cur_dvc_qng > 7U) { { cur_dvc_qng = (unsigned int )cur_dvc_qng + 255U; asc_dvc->max_dvc_qng[(int )tid_no] = cur_dvc_qng; AscWriteLramByte(iop_base, (int )((unsigned int )((unsigned short )tid_no) + 32U), (int )cur_dvc_qng); boardp->queue_full = (int )boardp->queue_full | (int )((ushort )target_id); boardp->queue_full_cnt[(int )tid_no] = (ushort )cur_dvc_qng; } } else { } } else { } } else { } { AscWriteLramWord(iop_base, 64, 0); } return (0); } else { } return (0); } } static void DvcGetQinfo(unsigned int iop_base , ushort s_addr , uchar *inbuf , int words ) { int i ; ushort word ; { { outw((int )s_addr, (int )(iop_base + 10U)); i = 0; } goto ldv_39434; ldv_39433: ; if (i == 10) { goto ldv_39432; } else { } { word = inw((int )(iop_base + 8U)); *(inbuf + (unsigned long )i) = (uchar )word; *(inbuf + ((unsigned long )i + 1UL)) = (uchar )((int )word >> 8); } ldv_39432: i = i + 2; ldv_39434: ; if (i < words * 2) { goto ldv_39433; } else { } return; } } static uchar _AscCopyLramScsiDoneQ(unsigned int iop_base , ushort q_addr , ASC_QDONE_INFO *scsiq , __u32 max_dma_count ) { ushort _val ; uchar sg_queue_cnt ; ushort tmp ; ushort tmp___0 ; { { DvcGetQinfo(iop_base, (int )((unsigned int )q_addr + 22U), (uchar *)scsiq, 8); _val = AscReadLramWord(iop_base, (int )((unsigned int )q_addr + 2U)); scsiq->q_status = (unsigned char )_val; scsiq->q_no = (unsigned char )((int )_val >> 8); _val = AscReadLramWord(iop_base, (int )((unsigned int )q_addr + 4U)); scsiq->cntl = (unsigned char )_val; sg_queue_cnt = (unsigned char )((int )_val >> 8); _val = AscReadLramWord(iop_base, (int )((unsigned int )q_addr + 20U)); scsiq->sense_len = (unsigned char )_val; scsiq->extra_bytes = (unsigned char )((int )_val >> 8); tmp = AscReadLramWord(iop_base, (int )((unsigned int )q_addr + 52U)); scsiq->remain_bytes = (unsigned int )tmp << 16; tmp___0 = AscReadLramWord(iop_base, (int )((unsigned int )q_addr + 60U)); scsiq->remain_bytes = scsiq->remain_bytes + (__u32 )tmp___0; scsiq->remain_bytes = scsiq->remain_bytes & max_dma_count; } return (sg_queue_cnt); } } static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp , ASC_QDONE_INFO *qdonep ) { struct asc_board *boardp ; struct scsi_cmnd *scp ; struct Scsi_Host *shost ; void *tmp ; void *tmp___0 ; void *tmp___1 ; long tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; { { tmp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr); scp = (struct scsi_cmnd *)tmp; } if ((unsigned long )scp == (unsigned long )((struct scsi_cmnd *)0)) { return; } else { } { shost = (scp->device)->host; tmp___0 = shost_priv(shost); ((struct asc_board *)tmp___0)->asc_stats.callback = ((struct asc_board *)tmp___0)->asc_stats.callback + 1U; tmp___1 = shost_priv(shost); boardp = (struct asc_board *)tmp___1; tmp___2 = ldv__builtin_expect((unsigned long )asc_dvc_varp != (unsigned long )(& boardp->dvc_var.asc_dvc_var), 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/scsi/advansys.c"), "i" (7114), "i" (12UL)); __builtin_unreachable(); } } else { } { dma_unmap_single_attrs(boardp->dev, scp->SCp.dma_handle, 96UL, 2, (struct dma_attrs *)0); } { if ((int )qdonep->d3.done_stat == 1) { goto case_1; } else { } if ((int )qdonep->d3.done_stat == 4) { goto case_4; } else { } if ((int )qdonep->d3.done_stat == 2) { goto case_2; } else { } goto switch_default___0; case_1: /* CIL Label */ { scp->result = 0; tmp___3 = scsi_bufflen(scp); } if (tmp___3 != 0U && qdonep->remain_bytes != 0U) { { tmp___4 = scsi_bufflen(scp); } if (qdonep->remain_bytes <= tmp___4) { { scsi_set_resid(scp, (int )qdonep->remain_bytes); } } else { } } else { } goto ldv_39452; case_4: /* CIL Label */ ; { if ((int )qdonep->d3.host_stat == 0) { goto case_0; } else { } goto switch_default; case_0: /* CIL Label */ ; if ((unsigned int )qdonep->d3.scsi_stat == 2U) { scp->result = (int )qdonep->d3.scsi_stat | 134217728; } else { scp->result = (int )qdonep->d3.scsi_stat; } goto ldv_39455; switch_default: /* CIL Label */ scp->result = 262144; goto ldv_39455; switch_break___0: /* CIL Label */ ; } ldv_39455: ; goto ldv_39452; case_2: /* CIL Label */ scp->result = (((int )qdonep->d3.scsi_msg << 8) | 327680) | (int )qdonep->d3.scsi_stat; goto ldv_39452; switch_default___0: /* CIL Label */ scp->result = (((int )qdonep->d3.scsi_msg << 8) | 458752) | (int )qdonep->d3.scsi_stat; goto ldv_39452; switch_break: /* CIL Label */ ; } ldv_39452: ; if ((((int )boardp->init_tidmask >> ((int )(scp->device)->id & 15)) & 1) == 0 && (unsigned int )*((unsigned short *)qdonep + 6UL) == 1U) { boardp->init_tidmask = (ushort )((int )((short )boardp->init_tidmask) | (int )((short )(1 << ((int )(scp->device)->id & 15)))); } else { } { asc_scsi_done(scp); } return; } } static int AscIsrQDone(ASC_DVC_VAR *asc_dvc ) { uchar next_qp ; uchar n_q_used ; uchar sg_list_qp ; uchar sg_queue_cnt ; uchar q_cnt ; uchar done_q_tail ; uchar tid_no ; uchar scsi_busy ; uchar target_id ; unsigned int iop_base ; ushort q_addr ; ushort sg_q_addr ; uchar cur_target_qng ; ASC_QDONE_INFO scsiq_buf ; ASC_QDONE_INFO *scsiq ; int false_overrun ; ushort tmp ; uchar tmp___0 ; { { iop_base = asc_dvc->iop_base; n_q_used = 1U; scsiq = & scsiq_buf; tmp = AscReadLramWord(iop_base, 90); done_q_tail = (unsigned char )tmp; q_addr = (unsigned int )((int )((ushort )done_q_tail) << 6U) + 16384U; next_qp = AscReadLramByte(iop_base, (int )q_addr); } if ((unsigned int )next_qp != 255U) { { AscWriteLramWord(iop_base, 90, (int )next_qp); q_addr = (unsigned int )((int )((ushort )next_qp) << 6U) + 16384U; sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, (int )q_addr, scsiq, asc_dvc->max_dma_count); AscWriteLramByte(iop_base, (int )((unsigned int )q_addr + 2U), (int )scsiq->q_status & 190); tid_no = (unsigned int )scsiq->d2.target_ix & 7U; target_id = (uchar )(1 << ((int )scsiq->d2.target_ix & 7)); } if (((int )scsiq->cntl & 4) != 0) { sg_q_addr = q_addr; sg_list_qp = next_qp; q_cnt = 0U; goto ldv_39480; ldv_39479: { sg_list_qp = AscReadLramByte(iop_base, (int )sg_q_addr); sg_q_addr = (unsigned int )((int )((ushort )sg_list_qp) << 6U) + 16384U; } if ((unsigned int )sg_list_qp == 255U) { { AscSetLibErrorCode(asc_dvc, 24); scsiq->d3.done_stat = 4U; scsiq->d3.host_stat = 33U; } goto FATAL_ERR_QDONE; } else { } { AscWriteLramByte(iop_base, (int )((unsigned int )sg_q_addr + 2U), 0); q_cnt = (uchar )((int )q_cnt + 1); } ldv_39480: ; if ((int )q_cnt < (int )sg_queue_cnt) { goto ldv_39479; } else { } { n_q_used = (unsigned int )sg_queue_cnt + 1U; AscWriteLramWord(iop_base, 90, (int )sg_list_qp); } } else { } if ((unsigned int )((int )asc_dvc->queue_full_or_busy & (int )target_id) != 0U) { { cur_target_qng = AscReadLramByte(iop_base, (int )((unsigned int )((unsigned short )scsiq->d2.target_ix) + 16384U)); } if ((int )cur_target_qng < (int )asc_dvc->max_dvc_qng[(int )tid_no]) { { scsi_busy = AscReadLramByte(iop_base, 75); scsi_busy = (uchar )((int )((signed char )scsi_busy) & ~ ((int )((signed char )target_id))); AscWriteLramByte(iop_base, 75, (int )scsi_busy); asc_dvc->queue_full_or_busy = (uchar )((int )((signed char )asc_dvc->queue_full_or_busy) & ~ ((int )((signed char )target_id))); } } else { } } else { } if ((int )asc_dvc->cur_total_qng >= (int )n_q_used) { asc_dvc->cur_total_qng = (int )asc_dvc->cur_total_qng - (int )n_q_used; if ((unsigned int )asc_dvc->cur_dvc_qng[(int )tid_no] != 0U) { asc_dvc->cur_dvc_qng[(int )tid_no] = (uchar )((int )asc_dvc->cur_dvc_qng[(int )tid_no] - 1); } else { } } else { { AscSetLibErrorCode(asc_dvc, 23); scsiq->d3.done_stat = 4U; } goto FATAL_ERR_QDONE; } if (scsiq->d2.srb_ptr == 0U || ((int )scsiq->q_status & 64) != 0) { return (17); } else if ((unsigned int )scsiq->q_status == 128U) { false_overrun = 0; if ((unsigned int )scsiq->extra_bytes != 0U) { scsiq->remain_bytes = scsiq->remain_bytes + (__u32 )scsiq->extra_bytes; } else { } if ((unsigned int )scsiq->d3.done_stat == 4U) { if ((unsigned int )scsiq->d3.host_stat == 18U) { if (((int )scsiq->cntl & 24) == 0) { scsiq->d3.done_stat = 1U; scsiq->d3.host_stat = 0U; } else if (false_overrun != 0) { scsiq->d3.done_stat = 1U; scsiq->d3.host_stat = 0U; } else { } } else if ((unsigned int )scsiq->d3.host_stat == 72U) { { AscStopChip(iop_base); outb(96, (int )(iop_base + 15U)); __const_udelay(257700UL); outb(32, (int )(iop_base + 15U)); outw(4096, (int )(iop_base + 14U)); outw(0, (int )(iop_base + 14U)); outb(0, (int )(iop_base + 15U)); } } else { } } else { } if (((int )scsiq->cntl & 1) == 0) { { asc_isr_callback(asc_dvc, scsiq); } } else { { tmp___0 = AscReadLramByte(iop_base, (int )((unsigned int )q_addr + 36U)); } if ((unsigned int )tmp___0 == 27U) { asc_dvc->unit_not_ready = (uchar )((int )((signed char )asc_dvc->unit_not_ready) & ~ ((int )((signed char )target_id))); if ((unsigned int )scsiq->d3.done_stat != 1U) { asc_dvc->start_motor = (uchar )((int )((signed char )asc_dvc->start_motor) & ~ ((int )((signed char )target_id))); } else { } } else { } } return (1); } else { { AscSetLibErrorCode(asc_dvc, 13); } FATAL_ERR_QDONE: ; if (((int )scsiq->cntl & 1) == 0) { { asc_isr_callback(asc_dvc, scsiq); } } else { } return (128); } } else { } return (0); } } static int AscISR(ASC_DVC_VAR *asc_dvc ) { unsigned short chipstat ; unsigned int iop_base ; ushort saved_ram_addr ; uchar ctrl_reg ; uchar saved_ctrl_reg ; int int_pending ; int status ; uchar host_flag ; unsigned short tmp ; int i ; unsigned long __ms ; unsigned long tmp___0 ; unsigned short tmp___1 ; int tmp___2 ; uchar tmp___3 ; int tmp___4 ; { { iop_base = asc_dvc->iop_base; int_pending = 0; tmp = inw((int )(iop_base + 14U)); } if (((int )tmp & 3) == 0) { return (int_pending); } else { } if (((int )asc_dvc->init_state & 32) == 0) { return (-1); } else { } if ((unsigned int )asc_dvc->in_critical_cnt != 0U) { { AscSetLibErrorCode(asc_dvc, 28); } return (-1); } else { } if ((int )((signed char )asc_dvc->is_in_int) != 0) { { AscSetLibErrorCode(asc_dvc, 26); } return (-1); } else { } { asc_dvc->is_in_int = 1; ctrl_reg = inb((int )(iop_base + 15U)); saved_ctrl_reg = (unsigned int )ctrl_reg & 42U; chipstat = inw((int )(iop_base + 14U)); } if (((int )chipstat & 2) != 0) { if (((int )asc_dvc->bus_type & 66) == 0) { i = 10; int_pending = 1; asc_dvc->sdtr_done = 0U; saved_ctrl_reg = (unsigned int )saved_ctrl_reg & 223U; goto ldv_39499; ldv_39498: __ms = 100UL; goto ldv_39496; ldv_39495: { __const_udelay(4295000UL); } ldv_39496: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_39495; } else { } ldv_39499: { tmp___1 = inw((int )(iop_base + 14U)); } if (((int )tmp___1 & 8) != 0) { tmp___2 = i; i = i - 1; if (tmp___2 > 0) { goto ldv_39498; } else { goto ldv_39500; } } else { } ldv_39500: { outb(160, (int )(iop_base + 15U)); outb(32, (int )(iop_base + 15U)); outw(4096, (int )(iop_base + 14U)); outw(0, (int )(iop_base + 14U)); chipstat = inw((int )(iop_base + 14U)); } } else { } } else { } { saved_ram_addr = inw((int )(iop_base + 10U)); tmp___3 = AscReadLramByte(iop_base, 93); host_flag = (unsigned int )tmp___3 & 254U; AscWriteLramByte(iop_base, 93, (int )((unsigned int )host_flag | 1U)); } if ((((int )chipstat & 1) | int_pending) != 0) { { AscAckInterrupt(iop_base); int_pending = 1; } if (((int )chipstat & 16) != 0 && ((int )ctrl_reg & 16) != 0) { { tmp___4 = AscIsrChipHalted(asc_dvc); } if (tmp___4 == -1) { goto ISR_REPORT_QDONE_FATAL_ERROR; } else { saved_ctrl_reg = (unsigned int )saved_ctrl_reg & 223U; } } else { ISR_REPORT_QDONE_FATAL_ERROR: ; if (((int )asc_dvc->dvc_cntl & 128) != 0) { goto ldv_39503; ldv_39502: ; ldv_39503: { status = AscIsrQDone(asc_dvc); } if (status & 1) { goto ldv_39502; } else { } } else { ldv_39506: { status = AscIsrQDone(asc_dvc); } if (status == 1) { goto ldv_39505; } else { } if (status == 17) { goto ldv_39506; } else { } ldv_39505: ; } if ((status & 128) != 0) { int_pending = -1; } else { } } } else { } { AscWriteLramByte(iop_base, 93, (int )host_flag); outw((int )saved_ram_addr, (int )(iop_base + 10U)); outb((int )saved_ctrl_reg, (int )(iop_base + 15U)); asc_dvc->is_in_int = 0; } return (int_pending); } } static int advansys_reset(struct scsi_cmnd *scp ) { struct Scsi_Host *shost ; struct asc_board *boardp ; void *tmp ; unsigned long flags ; int status ; int ret ; void *tmp___0 ; ASC_DVC_VAR *asc_dvc ; ushort tmp___1 ; ADV_DVC_VAR *adv_dvc ; int tmp___2 ; { { shost = (scp->device)->host; tmp = shost_priv(shost); boardp = (struct asc_board *)tmp; ret = 8194; tmp___0 = shost_priv(shost); ((struct asc_board *)tmp___0)->asc_stats.reset = ((struct asc_board *)tmp___0)->asc_stats.reset + 1U; scmd_printk("\016", (struct scsi_cmnd const *)scp, "SCSI bus reset started...\n"); } if ((boardp->flags & 4U) == 0U) { { asc_dvc = & boardp->dvc_var.asc_dvc_var; tmp___1 = AscInitAsc1000Driver(asc_dvc); status = (int )tmp___1; } if ((unsigned int )asc_dvc->err_code != 0U || asc_dvc->overrun_dma == 0ULL) { { scmd_printk("\016", (struct scsi_cmnd const *)scp, "SCSI bus reset error: 0x%x, status: 0x%x\n", (int )asc_dvc->err_code, status); ret = 8195; } } else if (status != 0) { { scmd_printk("\016", (struct scsi_cmnd const *)scp, "SCSI bus reset warning: 0x%x\n", status); } } else { { scmd_printk("\016", (struct scsi_cmnd const *)scp, "SCSI bus reset successful\n"); } } { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_99(shost->host_lock); } } else { { adv_dvc = & boardp->dvc_var.adv_dvc_var; tmp___2 = AdvResetChipAndSB(adv_dvc); } { if (tmp___2 == 1) { goto case_1; } else { } if (tmp___2 == 0) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ { scmd_printk("\016", (struct scsi_cmnd const *)scp, "SCSI bus reset successful\n"); } goto ldv_39518; case_0: /* CIL Label */ ; switch_default: /* CIL Label */ { scmd_printk("\016", (struct scsi_cmnd const *)scp, "SCSI bus reset error\n"); ret = 8195; } goto ldv_39518; switch_break: /* CIL Label */ ; } ldv_39518: { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_100(shost->host_lock); AdvISR(adv_dvc); } } { boardp->last_reset = jiffies; ldv_spin_unlock_irqrestore_101(shost->host_lock, flags); } return (ret); } } static int advansys_biosparam(struct scsi_device *sdev , struct block_device *bdev , sector_t capacity , int *ip ) { struct asc_board *boardp ; void *tmp ; void *tmp___0 ; { { tmp = shost_priv(sdev->host); boardp = (struct asc_board *)tmp; tmp___0 = shost_priv(sdev->host); ((struct asc_board *)tmp___0)->asc_stats.biosparam = ((struct asc_board *)tmp___0)->asc_stats.biosparam + 1U; } if ((boardp->flags & 4U) == 0U) { if (((int )boardp->dvc_var.asc_dvc_var.dvc_cntl & 2) != 0 && capacity > 2097152UL) { *ip = 255; *(ip + 1UL) = 63; } else { *ip = 64; *(ip + 1UL) = 32; } } else if (((int )boardp->dvc_var.adv_dvc_var.bios_ctrl & 2) != 0 && capacity > 2097152UL) { *ip = 255; *(ip + 1UL) = 63; } else { *ip = 64; *(ip + 1UL) = 32; } *(ip + 2UL) = (int )(capacity / (sector_t )(*ip * *(ip + 1UL))); return (0); } } static irqreturn_t advansys_interrupt(int irq , void *dev_id ) { struct Scsi_Host *shost ; struct asc_board *boardp ; void *tmp ; irqreturn_t result ; void *tmp___0 ; unsigned short tmp___1 ; void *tmp___2 ; int tmp___3 ; { { shost = (struct Scsi_Host *)dev_id; tmp = shost_priv(shost); boardp = (struct asc_board *)tmp; result = 0; ldv_spin_lock_102(shost->host_lock); } if ((boardp->flags & 4U) == 0U) { { tmp___1 = inw((int )((unsigned int )shost->io_port + 14U)); } if (((int )tmp___1 & 3) != 0) { { result = 1; tmp___0 = shost_priv(shost); ((struct asc_board *)tmp___0)->asc_stats.interrupt = ((struct asc_board *)tmp___0)->asc_stats.interrupt + 1U; AscISR(& boardp->dvc_var.asc_dvc_var); } } else { } } else { { tmp___3 = AdvISR(& boardp->dvc_var.adv_dvc_var); } if (tmp___3 != 0) { { result = 1; tmp___2 = shost_priv(shost); ((struct asc_board *)tmp___2)->asc_stats.interrupt = ((struct asc_board *)tmp___2)->asc_stats.interrupt + 1U; } } else { } } { ldv_spin_unlock_103(shost->host_lock); } return (result); } } static int AscHostReqRiscHalt(unsigned int iop_base ) { int count ; int sta ; uchar saved_stop_code ; int tmp ; int tmp___0 ; unsigned long __ms ; unsigned long tmp___1 ; int tmp___2 ; { { count = 0; sta = 0; tmp = AscIsChipHalted(iop_base); } if (tmp != 0) { return (1); } else { } { saved_stop_code = AscReadLramByte(iop_base, 54); AscWriteLramByte(iop_base, 54, 65); } ldv_39546: { tmp___0 = AscIsChipHalted(iop_base); } if (tmp___0 != 0) { sta = 1; goto ldv_39541; } else { } __ms = 100UL; goto ldv_39544; ldv_39543: { __const_udelay(4295000UL); } ldv_39544: tmp___1 = __ms; __ms = __ms - 1UL; if (tmp___1 != 0UL) { goto ldv_39543; } else { } tmp___2 = count; count = count + 1; if (tmp___2 <= 19) { goto ldv_39546; } else { } ldv_39541: { AscWriteLramByte(iop_base, 54, (int )saved_stop_code); } return (sta); } } static int AscSetRunChipSynRegAtID(unsigned int iop_base , uchar tid_no , uchar sdtr_data ) { int sta ; int tmp ; { { sta = 0; tmp = AscHostReqRiscHalt(iop_base); } if (tmp != 0) { { sta = AscSetChipSynRegAtID(iop_base, (int )tid_no, (int )sdtr_data); AscStartChip(iop_base); } } else { } return (sta); } } static void AscAsyncFix(ASC_DVC_VAR *asc_dvc , struct scsi_device *sdev ) { char type ; uchar tid_bits ; int tmp ; { type = sdev->type; tid_bits = (uchar )(1 << (int )sdev->id); if (((int )asc_dvc->bug_fix_cntl & 2) == 0) { return; } else { } if ((unsigned int )((int )asc_dvc->init_sdtr & (int )tid_bits) != 0U) { return; } else { } if ((int )((signed char )type) == 5) { { tmp = strncmp(sdev->vendor, "HP ", 3UL); } if (tmp == 0) { asc_dvc->pci_fix_asyn_xfer_always = (uchar )((int )asc_dvc->pci_fix_asyn_xfer_always | (int )tid_bits); } else { } } else { } asc_dvc->pci_fix_asyn_xfer = (uchar )((int )asc_dvc->pci_fix_asyn_xfer | (int )tid_bits); if (((int )((signed char )type) == 3 || (int )((signed char )type) == 6) || ((int )((signed char )type) == 5 || (int )((signed char )type) == 1)) { asc_dvc->pci_fix_asyn_xfer = (uchar )((int )((signed char )asc_dvc->pci_fix_asyn_xfer) & ~ ((int )((signed char )tid_bits))); } else { } if ((unsigned int )((int )asc_dvc->pci_fix_asyn_xfer & (int )tid_bits) != 0U) { { AscSetRunChipSynRegAtID(asc_dvc->iop_base, (int )((uchar )sdev->id), 65); } } else { } return; } } static void advansys_narrow_slave_configure(struct scsi_device *sdev , ASC_DVC_VAR *asc_dvc ) { uchar tid_bit ; uchar orig_use_tagged_qng ; uchar orig_init_sdtr ; { tid_bit = (uchar )(1 << (int )sdev->id); orig_use_tagged_qng = asc_dvc->use_tagged_qng; if (sdev->lun == 0ULL) { orig_init_sdtr = asc_dvc->init_sdtr; if ((unsigned int )((int )(asc_dvc->cfg)->sdtr_enable & (int )tid_bit) != 0U && (unsigned int )*((unsigned char *)sdev + 329UL) != 0U) { asc_dvc->init_sdtr = (uchar )((int )asc_dvc->init_sdtr | (int )tid_bit); } else { asc_dvc->init_sdtr = (uchar )((int )((signed char )asc_dvc->init_sdtr) & ~ ((int )((signed char )tid_bit))); } if ((int )orig_init_sdtr != (int )asc_dvc->init_sdtr) { { AscAsyncFix(asc_dvc, sdev); } } else { } } else { } if ((unsigned int )*((unsigned char *)sdev + 329UL) != 0U) { if ((unsigned int )((int )(asc_dvc->cfg)->cmd_qng_enabled & (int )tid_bit) != 0U) { if (sdev->lun == 0ULL) { (asc_dvc->cfg)->can_tagged_qng = (uchar )((int )(asc_dvc->cfg)->can_tagged_qng | (int )tid_bit); asc_dvc->use_tagged_qng = (uchar )((int )asc_dvc->use_tagged_qng | (int )tid_bit); } else { } { scsi_change_queue_depth(sdev, (int )asc_dvc->max_dvc_qng[sdev->id]); } } else { } } else if (sdev->lun == 0ULL) { (asc_dvc->cfg)->can_tagged_qng = (uchar )((int )((signed char )(asc_dvc->cfg)->can_tagged_qng) & ~ ((int )((signed char )tid_bit))); asc_dvc->use_tagged_qng = (uchar )((int )((signed char )asc_dvc->use_tagged_qng) & ~ ((int )((signed char )tid_bit))); } else { } if (sdev->lun == 0ULL && (int )orig_use_tagged_qng != (int )asc_dvc->use_tagged_qng) { { AscWriteLramByte(asc_dvc->iop_base, 82, (int )(asc_dvc->cfg)->disc_enable); AscWriteLramByte(asc_dvc->iop_base, 74, (int )asc_dvc->use_tagged_qng); AscWriteLramByte(asc_dvc->iop_base, 83, (int )(asc_dvc->cfg)->can_tagged_qng); asc_dvc->max_dvc_qng[sdev->id] = (asc_dvc->cfg)->max_tag_qng[sdev->id]; AscWriteLramByte(asc_dvc->iop_base, (int )((unsigned int )((unsigned short )sdev->id) + 32U), (int )asc_dvc->max_dvc_qng[sdev->id]); } } else { } return; } } static void advansys_wide_enable_wdtr(void *iop_base , unsigned short tidmask ) { unsigned short cfg_word ; { { writew(156, (void volatile *)iop_base + 4U); cfg_word = readw((void const volatile *)iop_base + 6U); } if ((unsigned int )((int )cfg_word & (int )tidmask) != 0U) { return; } else { } { cfg_word = (int )cfg_word | (int )tidmask; writew(156, (void volatile *)iop_base + 4U); writew((int )cfg_word, (void volatile *)iop_base + 6U); writew(182, (void volatile *)iop_base + 4U); cfg_word = readw((void const volatile *)iop_base + 6U); cfg_word = (unsigned short )((int )((short )cfg_word) & (int )((short )(~ ((int )tidmask)))); writew(182, (void volatile *)iop_base + 4U); writew((int )cfg_word, (void volatile *)iop_base + 6U); writew(292, (void volatile *)iop_base + 4U); cfg_word = readw((void const volatile *)iop_base + 6U); cfg_word = (unsigned short )((int )((short )cfg_word) & (int )((short )(~ ((int )tidmask)))); writew(292, (void volatile *)iop_base + 4U); writew((int )cfg_word, (void volatile *)iop_base + 6U); } return; } } static void advansys_wide_enable_sdtr(void *iop_base , unsigned short tidmask ) { unsigned short cfg_word ; { { writew(158, (void volatile *)iop_base + 4U); cfg_word = readw((void const volatile *)iop_base + 6U); } if ((unsigned int )((int )cfg_word & (int )tidmask) != 0U) { return; } else { } { cfg_word = (int )cfg_word | (int )tidmask; writew(158, (void volatile *)iop_base + 4U); writew((int )cfg_word, (void volatile *)iop_base + 6U); writew(182, (void volatile *)iop_base + 4U); cfg_word = readw((void const volatile *)iop_base + 6U); cfg_word = (unsigned short )((int )((short )cfg_word) & (int )((short )(~ ((int )tidmask)))); writew(182, (void volatile *)iop_base + 4U); writew((int )cfg_word, (void volatile *)iop_base + 6U); } return; } } static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc , void *iop_base , unsigned short tidmask ) { { { writew(378, (void volatile *)iop_base + 4U); adv_dvc->ppr_able = readw((void const volatile *)iop_base + 6U); adv_dvc->ppr_able = (ushort )((int )adv_dvc->ppr_able | (int )tidmask); writew(378, (void volatile *)iop_base + 4U); writew((int )adv_dvc->ppr_able, (void volatile *)iop_base + 6U); } return; } } static void advansys_wide_slave_configure(struct scsi_device *sdev , ADV_DVC_VAR *adv_dvc ) { void *iop_base ; unsigned short tidmask ; unsigned short cfg_word ; { iop_base = adv_dvc->iop_base; tidmask = (unsigned short )(1 << (int )sdev->id); if (sdev->lun == 0ULL) { if ((unsigned int )((int )adv_dvc->wdtr_able & (int )tidmask) != 0U && (unsigned int )*((unsigned char *)sdev + 329UL) != 0U) { { advansys_wide_enable_wdtr(iop_base, (int )tidmask); } } else { } if ((unsigned int )((int )adv_dvc->sdtr_able & (int )tidmask) != 0U && (unsigned int )*((unsigned char *)sdev + 329UL) != 0U) { { advansys_wide_enable_sdtr(iop_base, (int )tidmask); } } else { } if ((unsigned int )adv_dvc->chip_type == 3U && (unsigned int )*((unsigned char *)sdev + 329UL) != 0U) { { advansys_wide_enable_ppr(adv_dvc, iop_base, (int )tidmask); } } else { } if ((unsigned int )((int )adv_dvc->tagqng_able & (int )tidmask) != 0U && (unsigned int )*((unsigned char *)sdev + 329UL) != 0U) { { writew(160, (void volatile *)iop_base + 4U); cfg_word = readw((void const volatile *)iop_base + 6U); cfg_word = (int )cfg_word | (int )tidmask; writew(160, (void volatile *)iop_base + 4U); writew((int )cfg_word, (void volatile *)iop_base + 6U); writew((int )((unsigned int )((unsigned short )sdev->id) + 208U), (void volatile *)iop_base + 4U); writeb((int )adv_dvc->max_dvc_qng, (void volatile *)iop_base + 6U); } } else { } } else { } if ((unsigned int )((int )adv_dvc->tagqng_able & (int )tidmask) != 0U && (unsigned int )*((unsigned char *)sdev + 329UL) != 0U) { { scsi_change_queue_depth(sdev, (int )adv_dvc->max_dvc_qng); } } else { } return; } } static int advansys_slave_configure(struct scsi_device *sdev ) { struct asc_board *boardp ; void *tmp ; { { tmp = shost_priv(sdev->host); boardp = (struct asc_board *)tmp; } if ((boardp->flags & 4U) == 0U) { { advansys_narrow_slave_configure(sdev, & boardp->dvc_var.asc_dvc_var); } } else { { advansys_wide_slave_configure(sdev, & boardp->dvc_var.adv_dvc_var); } } return (0); } } static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp ) { struct asc_board *board ; void *tmp ; { { tmp = shost_priv((scp->device)->host); board = (struct asc_board *)tmp; scp->SCp.dma_handle = dma_map_single_attrs(board->dev, (void *)scp->sense_buffer, 96UL, 2, (struct dma_attrs *)0); dma_cache_sync(board->dev, (void *)scp->sense_buffer, 96UL, 2); } return ((__le32 )scp->SCp.dma_handle); } } static int asc_build_req(struct asc_board *boardp , struct scsi_cmnd *scp , struct asc_scsi_q *asc_scsi_q ) { struct asc_dvc_var *asc_dvc ; int use_sg ; int sgcnt ; struct scatterlist *slp ; struct asc_sg_head *asc_sg_head ; void *tmp ; uchar tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; { { asc_dvc = & boardp->dvc_var.asc_dvc_var; memset((void *)asc_scsi_q, 0, 64UL); asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, (void *)scp); } if (asc_scsi_q->q2.srb_ptr == 0U) { scp->result = 720896; return (-1); } else { } { asc_scsi_q->cdbptr = scp->cmnd; asc_scsi_q->q2.cdb_len = (uchar )scp->cmd_len; asc_scsi_q->q1.target_id = (unsigned char )(1 << (int )(scp->device)->id); asc_scsi_q->q1.target_lun = (uchar )(scp->device)->lun; asc_scsi_q->q2.target_ix = (int )((unsigned char )(scp->device)->id) + ((int )((unsigned char )(scp->device)->lun) << 3U); asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp); asc_scsi_q->q1.sense_len = 96U; } if ((unsigned int )asc_dvc->cur_dvc_qng[(scp->device)->id] != 0U && (unsigned int )boardp->reqcnt[(scp->device)->id] % 255U == 0U) { asc_scsi_q->q2.tag_code = 34U; } else { asc_scsi_q->q2.tag_code = 32U; } { use_sg = scsi_dma_map(scp); } if (use_sg != 0) { if (use_sg > (int )((scp->device)->host)->sg_tablesize) { { scmd_printk("\v", (struct scsi_cmnd const *)scp, "use_sg %d > sg_tablesize %d\n", use_sg, (int )((scp->device)->host)->sg_tablesize); scsi_dma_unmap(scp); scp->result = 458752; } return (-1); } else { } { tmp = kzalloc(((unsigned long )use_sg + 1UL) * 8UL, 32U); asc_sg_head = (struct asc_sg_head *)tmp; } if ((unsigned long )asc_sg_head == (unsigned long )((struct asc_sg_head *)0)) { { scsi_dma_unmap(scp); scp->result = 720896; } return (-1); } else { } { asc_scsi_q->q1.cntl = (uchar )((unsigned int )asc_scsi_q->q1.cntl | 4U); asc_scsi_q->sg_head = asc_sg_head; asc_scsi_q->q1.data_cnt = 0U; asc_scsi_q->q1.data_addr = 0U; tmp___0 = (uchar )use_sg; asc_scsi_q->q1.sg_queue_cnt = tmp___0; asc_sg_head->entry_cnt = (ushort )tmp___0; tmp___1 = shost_priv((scp->device)->host); ((struct asc_board *)tmp___1)->asc_stats.xfer_elem = ((struct asc_board *)tmp___1)->asc_stats.xfer_elem + (__u32 )asc_sg_head->entry_cnt; sgcnt = 0; slp = scsi_sglist(scp); } goto ldv_39607; ldv_39606: { asc_sg_head->sg_list[sgcnt].addr = (unsigned int )slp->dma_address; asc_sg_head->sg_list[sgcnt].bytes = slp->dma_length; tmp___2 = shost_priv((scp->device)->host); ((struct asc_board *)tmp___2)->asc_stats.xfer_sect = ((struct asc_board *)tmp___2)->asc_stats.xfer_sect + (slp->dma_length + 511U) / 512U; sgcnt = sgcnt + 1; slp = sg_next(slp); } ldv_39607: ; if (sgcnt < use_sg) { goto ldv_39606; } else { } } else { } { tmp___3 = shost_priv((scp->device)->host); ((struct asc_board *)tmp___3)->asc_stats.xfer_cnt = ((struct asc_board *)tmp___3)->asc_stats.xfer_cnt + 1U; } return (1); } } static int adv_get_sglist(struct asc_board *boardp , adv_req_t *reqp , struct scsi_cmnd *scp , int use_sg ) { adv_sgblk_t *sgblkp ; ADV_SCSI_REQ_Q *scsiqp ; struct scatterlist *slp ; int sg_elem_cnt ; ADV_SG_BLOCK *sg_block ; ADV_SG_BLOCK *prev_sg_block ; __u32 sg_block_paddr ; int i ; void *tmp ; phys_addr_t tmp___0 ; void *tmp___1 ; { { scsiqp = (ADV_SCSI_REQ_Q *)(((unsigned long )(& reqp->scsi_req_q) + 31UL) & 0xffffffffffffffe0UL); slp = scsi_sglist(scp); sg_elem_cnt = use_sg; prev_sg_block = (ADV_SG_BLOCK *)0; reqp->sgblkp = (adv_sgblk_t *)0; } ldv_39629: sgblkp = boardp->adv_sgblkp; if ((unsigned long )sgblkp == (unsigned long )((adv_sgblk_t *)0)) { { tmp = shost_priv((scp->device)->host); ((struct asc_board *)tmp)->asc_stats.adv_build_nosg = ((struct asc_board *)tmp)->asc_stats.adv_build_nosg + 1U; } goto ldv_39624; ldv_39623: reqp->sgblkp = sgblkp->next_sgblkp; sgblkp->next_sgblkp = boardp->adv_sgblkp; boardp->adv_sgblkp = sgblkp; ldv_39624: sgblkp = reqp->sgblkp; if ((unsigned long )sgblkp != (unsigned long )((adv_sgblk_t *)0)) { goto ldv_39623; } else { } return (0); } else { } { boardp->adv_sgblkp = sgblkp->next_sgblkp; sgblkp->next_sgblkp = (struct adv_sgblk *)0; sg_block = (ADV_SG_BLOCK *)(((unsigned long )(& sgblkp->sg_block) + 7UL) & 0xfffffffffffffff8UL); tmp___0 = virt_to_phys((void volatile *)sg_block); sg_block_paddr = (__u32 )tmp___0; } if ((unsigned long )reqp->sgblkp == (unsigned long )((adv_sgblk_t *)0)) { reqp->sgblkp = sgblkp; scsiqp->sg_list_ptr = sg_block; scsiqp->sg_real_addr = sg_block_paddr; } else { sgblkp->next_sgblkp = reqp->sgblkp; reqp->sgblkp = sgblkp; prev_sg_block->sg_ptr = sg_block_paddr; } i = 0; goto ldv_39627; ldv_39626: { sg_block->sg_list[i].sg_addr = (unsigned int )slp->dma_address; sg_block->sg_list[i].sg_count = slp->dma_length; tmp___1 = shost_priv((scp->device)->host); ((struct asc_board *)tmp___1)->asc_stats.xfer_sect = ((struct asc_board *)tmp___1)->asc_stats.xfer_sect + (slp->dma_length + 511U) / 512U; sg_elem_cnt = sg_elem_cnt - 1; } if (sg_elem_cnt == 0) { sg_block->sg_cnt = (unsigned int )((uchar )i) + 1U; sg_block->sg_ptr = 0U; return (1); } else { } slp = slp + 1; i = i + 1; ldv_39627: ; if (i <= 14) { goto ldv_39626; } else { } sg_block->sg_cnt = 15U; prev_sg_block = sg_block; goto ldv_39629; } } static int adv_build_req(struct asc_board *boardp , struct scsi_cmnd *scp , ADV_SCSI_REQ_Q **adv_scsiqpp ) { adv_req_t *reqp ; ADV_SCSI_REQ_Q *scsiqp ; int i ; int ret ; int use_sg ; void *tmp ; uchar tmp___0 ; uchar tmp___1 ; phys_addr_t tmp___2 ; phys_addr_t tmp___3 ; void *tmp___4 ; void *tmp___5 ; { if ((unsigned long )boardp->adv_reqp == (unsigned long )((adv_req_t *)0)) { { tmp = shost_priv((scp->device)->host); ((struct asc_board *)tmp)->asc_stats.adv_build_noreq = ((struct asc_board *)tmp)->asc_stats.adv_build_noreq + 1U; } return (0); } else { reqp = boardp->adv_reqp; boardp->adv_reqp = reqp->next_reqp; reqp->next_reqp = (struct adv_req *)0; } { scsiqp = (ADV_SCSI_REQ_Q *)(((unsigned long )(& reqp->scsi_req_q) + 31UL) & 0xffffffffffffffe0UL); tmp___1 = 0U; scsiqp->done_status = tmp___1; tmp___0 = tmp___1; scsiqp->scsi_cntl = tmp___0; scsiqp->cntl = tmp___0; tmp___2 = virt_to_phys((void volatile *)reqp); scsiqp->srb_ptr = (__u32 )tmp___2; reqp->cmndp = scp; scsiqp->cdb_len = (uchar )scp->cmd_len; i = 0; } goto ldv_39641; ldv_39640: scsiqp->cdb[i] = *(scp->cmnd + (unsigned long )i); i = i + 1; ldv_39641: ; if (i < (int )scp->cmd_len && i <= 11) { goto ldv_39640; } else { } goto ldv_39644; ldv_39643: scsiqp->cdb16[i + -12] = *(scp->cmnd + (unsigned long )i); i = i + 1; ldv_39644: ; if (i < (int )scp->cmd_len) { goto ldv_39643; } else { } { scsiqp->target_id = (uchar )(scp->device)->id; scsiqp->target_lun = (uchar )(scp->device)->lun; tmp___3 = virt_to_phys((void volatile *)scp->sense_buffer); scsiqp->sense_addr = (unsigned int )tmp___3; scsiqp->sense_len = 96U; use_sg = scsi_dma_map(scp); } if (use_sg == 0) { reqp->sgblkp = (adv_sgblk_t *)0; scsiqp->data_cnt = 0U; scsiqp->vdata_addr = (char *)0; scsiqp->data_addr = 0U; scsiqp->sg_list_ptr = (ADV_SG_BLOCK *)0; scsiqp->sg_real_addr = 0U; } else { if (use_sg > 255) { { scmd_printk("\v", (struct scsi_cmnd const *)scp, "use_sg %d > ADV_MAX_SG_LIST %d\n", use_sg, (int )((scp->device)->host)->sg_tablesize); scsi_dma_unmap(scp); scp->result = 458752; reqp->next_reqp = boardp->adv_reqp; boardp->adv_reqp = reqp; } return (-1); } else { } { scsiqp->data_cnt = scsi_bufflen(scp); ret = adv_get_sglist(boardp, reqp, scp, use_sg); } if (ret != 1) { reqp->next_reqp = boardp->adv_reqp; boardp->adv_reqp = reqp; return (ret); } else { } { tmp___4 = shost_priv((scp->device)->host); ((struct asc_board *)tmp___4)->asc_stats.xfer_elem = ((struct asc_board *)tmp___4)->asc_stats.xfer_elem + (__u32 )use_sg; } } { tmp___5 = shost_priv((scp->device)->host); ((struct asc_board *)tmp___5)->asc_stats.xfer_cnt = ((struct asc_board *)tmp___5)->asc_stats.xfer_cnt + 1U; *adv_scsiqpp = scsiqp; } return (1); } } static int AscSgListToQueue(int sg_list ) { int n_sg_list_qs ; { n_sg_list_qs = (sg_list + -1) / 7; if ((sg_list + -1) % 7 != 0) { n_sg_list_qs = n_sg_list_qs + 1; } else { } return (n_sg_list_qs + 1); } } static uint AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc , uchar target_ix , uchar n_qs ) { uint cur_used_qs ; uint cur_free_qs ; uchar target_id ; uchar tid_no ; { target_id = (uchar )(1 << ((int )target_ix & 7)); tid_no = (unsigned int )target_ix & 7U; if ((unsigned int )((int )asc_dvc->unit_not_ready & (int )target_id) != 0U || (unsigned int )((int )asc_dvc->queue_full_or_busy & (int )target_id) != 0U) { return (0U); } else { } if ((unsigned int )n_qs == 1U) { cur_used_qs = ((unsigned int )asc_dvc->cur_total_qng + (unsigned int )asc_dvc->last_q_shortage) + 2U; } else { cur_used_qs = (unsigned int )asc_dvc->cur_total_qng + 2U; } if (cur_used_qs + (uint )n_qs <= (uint )asc_dvc->max_total_qng) { cur_free_qs = (unsigned int )asc_dvc->max_total_qng - cur_used_qs; if ((int )asc_dvc->cur_dvc_qng[(int )tid_no] >= (int )asc_dvc->max_dvc_qng[(int )tid_no]) { return (0U); } else { } return (cur_free_qs); } else { } if ((unsigned int )n_qs > 1U) { if ((int )n_qs > (int )asc_dvc->last_q_shortage && (int )n_qs <= (int )asc_dvc->max_total_qng + -2) { asc_dvc->last_q_shortage = n_qs; } else { } } else { } return (0U); } } static uchar AscAllocFreeQueue(unsigned int iop_base , uchar free_q_head ) { ushort q_addr ; uchar next_qp ; uchar q_status ; { { q_addr = (unsigned int )((int )((ushort )free_q_head) << 6U) + 16384U; q_status = AscReadLramByte(iop_base, (int )((unsigned int )q_addr + 2U)); next_qp = AscReadLramByte(iop_base, (int )q_addr); } if (((int )q_status & 1) == 0 && (unsigned int )next_qp != 255U) { return (next_qp); } else { } return (255U); } } static uchar AscAllocMultipleFreeQueue(unsigned int iop_base , uchar free_q_head , uchar n_free_q ) { uchar i ; { i = 0U; goto ldv_39674; ldv_39673: { free_q_head = AscAllocFreeQueue(iop_base, (int )free_q_head); } if ((unsigned int )free_q_head == 255U) { goto ldv_39672; } else { } i = (uchar )((int )i + 1); ldv_39674: ; if ((int )i < (int )n_free_q) { goto ldv_39673; } else { } ldv_39672: ; return (free_q_head); } } static void DvcPutScsiQ(unsigned int iop_base , ushort s_addr , uchar *outbuf , int words ) { int i ; { { outw((int )s_addr, (int )(iop_base + 10U)); i = 0; } goto ldv_39684; ldv_39683: ; if (i == 4 || i == 20) { goto ldv_39682; } else { } { outw((int )((unsigned short )((int )((short )((int )*(outbuf + ((unsigned long )i + 1UL)) << 8)) | (int )((short )*(outbuf + (unsigned long )i)))), (int )(iop_base + 8U)); } ldv_39682: i = i + 2; ldv_39684: ; if (i < words * 2) { goto ldv_39683; } else { } return; } } static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc , ASC_SCSI_Q *scsiq , uchar q_no ) { ushort q_addr ; uchar tid_no ; uchar sdtr_data ; uchar syn_period_ix ; uchar syn_offset ; unsigned int iop_base ; { iop_base = asc_dvc->iop_base; if ((unsigned int )((int )asc_dvc->init_sdtr & (int )scsiq->q1.target_id) != 0U && (unsigned int )((int )asc_dvc->sdtr_done & (int )scsiq->q1.target_id) == 0U) { { tid_no = (unsigned int )scsiq->q2.target_ix & 7U; sdtr_data = AscReadLramByte(iop_base, (int )((unsigned int )((unsigned short )tid_no) + 16U)); syn_period_ix = (uchar )((int )((signed char )((int )sdtr_data >> 4)) & (int )((signed char )((unsigned int )asc_dvc->max_sdtr_index + 255U))); syn_offset = (unsigned int )sdtr_data & 15U; AscMsgOutSDTR(asc_dvc, (int )*(asc_dvc->sdtr_period_tbl + (unsigned long )syn_period_ix), (int )syn_offset); scsiq->q1.cntl = (uchar )((unsigned int )scsiq->q1.cntl | 64U); } } else { } q_addr = (unsigned int )((int )((ushort )q_no) << 6U) + 16384U; if ((unsigned int )((int )scsiq->q1.target_id & (int )asc_dvc->use_tagged_qng) == 0U) { scsiq->q2.tag_code = (unsigned int )scsiq->q2.tag_code & 223U; } else { } { scsiq->q1.status = 0U; AscMemWordCopyPtrToLram(iop_base, (int )((unsigned int )q_addr + 36U), (uchar const *)scsiq->cdbptr, (int )scsiq->q2.cdb_len >> 1); DvcPutScsiQ(iop_base, (int )((unsigned int )q_addr + 4U), & scsiq->q1.cntl, 17); AscWriteLramWord(iop_base, (int )((unsigned int )q_addr + 2U), (int )((unsigned short )((int )((short )((int )scsiq->q1.q_no << 8)) | 1))); } return (1); } } static int AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc , ASC_SCSI_Q *scsiq , uchar q_no ) { int sta ; int i ; ASC_SG_HEAD *sg_head ; ASC_SG_LIST_Q scsi_sg_q ; __u32 saved_data_addr ; __u32 saved_data_cnt ; unsigned int iop_base ; ushort sg_list_dwords ; ushort sg_index ; ushort sg_entry_cnt ; ushort q_addr ; uchar next_qp ; { iop_base = asc_dvc->iop_base; sg_head = scsiq->sg_head; saved_data_addr = scsiq->q1.data_addr; saved_data_cnt = scsiq->q1.data_cnt; scsiq->q1.data_addr = sg_head->sg_list[0].addr; scsiq->q1.data_cnt = sg_head->sg_list[0].bytes; sg_entry_cnt = (unsigned int )sg_head->entry_cnt + 65535U; if ((unsigned int )sg_entry_cnt != 0U) { scsiq->q1.cntl = (uchar )((unsigned int )scsiq->q1.cntl | 4U); q_addr = (unsigned int )((int )((ushort )q_no) << 6U) + 16384U; sg_index = 1U; scsiq->q1.sg_queue_cnt = (uchar )sg_head->queue_cnt; scsi_sg_q.sg_head_qp = q_no; scsi_sg_q.cntl = 2U; i = 0; goto ldv_39715; ldv_39714: scsi_sg_q.seq_no = (unsigned int )((uchar )i) + 1U; if ((unsigned int )sg_entry_cnt > 7U) { sg_list_dwords = 14U; sg_entry_cnt = (unsigned int )sg_entry_cnt + 65529U; if (i == 0) { scsi_sg_q.sg_list_cnt = 7U; scsi_sg_q.sg_cur_list_cnt = 7U; } else { scsi_sg_q.sg_list_cnt = 6U; scsi_sg_q.sg_cur_list_cnt = 6U; } } else { scsi_sg_q.cntl = (uchar )((unsigned int )scsi_sg_q.cntl | 8U); sg_list_dwords = (int )sg_entry_cnt << 1U; if (i == 0) { scsi_sg_q.sg_list_cnt = (uchar )sg_entry_cnt; scsi_sg_q.sg_cur_list_cnt = (uchar )sg_entry_cnt; } else { scsi_sg_q.sg_list_cnt = (unsigned int )((uchar )sg_entry_cnt) + 255U; scsi_sg_q.sg_cur_list_cnt = (unsigned int )((uchar )sg_entry_cnt) + 255U; } sg_entry_cnt = 0U; } { next_qp = AscReadLramByte(iop_base, (int )q_addr); scsi_sg_q.q_no = next_qp; q_addr = (unsigned int )((int )((ushort )next_qp) << 6U) + 16384U; AscMemWordCopyPtrToLram(iop_base, (int )((unsigned int )q_addr + 2U), (uchar const *)(& scsi_sg_q), 3); AscMemDWordCopyPtrToLram(iop_base, (int )((unsigned int )q_addr + 8U), (uchar *)(& sg_head->sg_list) + (unsigned long )sg_index, (int )sg_list_dwords); sg_index = (unsigned int )sg_index + 7U; scsiq->next_sg_index = sg_index; i = i + 1; } ldv_39715: ; if (i < (int )sg_head->queue_cnt) { goto ldv_39714; } else { } } else { scsiq->q1.cntl = (unsigned int )scsiq->q1.cntl & 251U; } { sta = AscPutReadyQueue(asc_dvc, scsiq, (int )q_no); scsiq->q1.data_addr = saved_data_addr; scsiq->q1.data_cnt = saved_data_cnt; } return (sta); } } static int AscSendScsiQueue(ASC_DVC_VAR *asc_dvc , ASC_SCSI_Q *scsiq , uchar n_q_required ) { unsigned int iop_base ; uchar free_q_head ; uchar next_qp ; uchar tid_no ; uchar target_ix ; int sta ; ushort tmp ; { { iop_base = asc_dvc->iop_base; target_ix = scsiq->q2.target_ix; tid_no = (unsigned int )target_ix & 7U; sta = 0; tmp = AscReadLramWord(iop_base, 88); free_q_head = (unsigned char )tmp; } if ((unsigned int )n_q_required > 1U) { { next_qp = AscAllocMultipleFreeQueue(iop_base, (int )free_q_head, (int )n_q_required); } if ((unsigned int )next_qp != 255U) { { asc_dvc->last_q_shortage = 0U; (scsiq->sg_head)->queue_cnt = (unsigned int )((ushort )n_q_required) + 65535U; scsiq->q1.q_no = free_q_head; sta = AscPutReadySgListQueue(asc_dvc, scsiq, (int )free_q_head); } } else { } } else if ((unsigned int )n_q_required == 1U) { { next_qp = AscAllocFreeQueue(iop_base, (int )free_q_head); } if ((unsigned int )next_qp != 255U) { { scsiq->q1.q_no = free_q_head; sta = AscPutReadyQueue(asc_dvc, scsiq, (int )free_q_head); } } else { } } else { } if (sta == 1) { { AscWriteLramWord(iop_base, 88, (int )next_qp); asc_dvc->cur_total_qng = (int )asc_dvc->cur_total_qng + (int )n_q_required; asc_dvc->cur_dvc_qng[(int )tid_no] = (uchar )((int )asc_dvc->cur_dvc_qng[(int )tid_no] + 1); } } else { } return (sta); } } static uchar _syn_offset_one_disable_cmd[16U] = { 18U, 3U, 37U, 67U, 21U, 26U, 85U, 90U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U}; static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc , ASC_SCSI_Q *scsiq ) { unsigned int iop_base ; int sta ; int n_q_required ; int disable_syn_offset_one_fix ; int i ; __u32 addr ; ushort sg_entry_cnt ; ushort sg_entry_cnt_minus_one ; uchar target_ix ; uchar tid_no ; uchar sdtr_data ; uchar extra_bytes ; uchar scsi_cmd ; uchar disable_cmd ; ASC_SG_HEAD *sg_head ; __u32 data_cnt ; uint tmp ; uint tmp___0 ; { sg_entry_cnt = 0U; sg_entry_cnt_minus_one = 0U; iop_base = asc_dvc->iop_base; sg_head = scsiq->sg_head; if ((unsigned int )asc_dvc->err_code != 0U) { return (-1); } else { } scsiq->q1.q_no = 0U; if (((int )scsiq->q2.tag_code & 16) == 0) { scsiq->q1.extra_bytes = 0U; } else { } sta = 0; target_ix = scsiq->q2.target_ix; tid_no = (unsigned int )target_ix & 7U; n_q_required = 1; if ((unsigned int )*(scsiq->cdbptr) == 3U) { if ((unsigned int )((int )asc_dvc->init_sdtr & (int )scsiq->q1.target_id) != 0U) { { asc_dvc->sdtr_done = (uchar )((int )((signed char )asc_dvc->sdtr_done) & ~ ((int )((signed char )scsiq->q1.target_id))); sdtr_data = AscReadLramByte(iop_base, (int )((unsigned int )((unsigned short )tid_no) + 16U)); AscMsgOutSDTR(asc_dvc, (int )*(asc_dvc->sdtr_period_tbl + (unsigned long )((unsigned int )((int )sdtr_data >> 4) & ((unsigned int )asc_dvc->max_sdtr_index - 1U))), (int )sdtr_data & 15); scsiq->q1.cntl = (uchar )((unsigned int )scsiq->q1.cntl | 96U); } } else { } } else { } if ((unsigned int )asc_dvc->in_critical_cnt != 0U) { { AscSetLibErrorCode(asc_dvc, 27); } return (-1); } else { } asc_dvc->in_critical_cnt = (uchar )((int )asc_dvc->in_critical_cnt + 1); if (((int )scsiq->q1.cntl & 4) != 0) { sg_entry_cnt = sg_head->entry_cnt; if ((unsigned int )sg_entry_cnt == 0U) { asc_dvc->in_critical_cnt = (uchar )((int )asc_dvc->in_critical_cnt - 1); return (-1); } else { } if ((unsigned int )sg_entry_cnt > 255U) { asc_dvc->in_critical_cnt = (uchar )((int )asc_dvc->in_critical_cnt - 1); return (-1); } else { } if ((unsigned int )sg_entry_cnt == 1U) { scsiq->q1.data_addr = sg_head->sg_list[0].addr; scsiq->q1.data_cnt = sg_head->sg_list[0].bytes; scsiq->q1.cntl = (unsigned int )scsiq->q1.cntl & 249U; } else { } sg_entry_cnt_minus_one = (unsigned int )sg_entry_cnt + 65535U; } else { } scsi_cmd = *(scsiq->cdbptr); disable_syn_offset_one_fix = 0; if ((unsigned int )((int )asc_dvc->pci_fix_asyn_xfer & (int )scsiq->q1.target_id) != 0U && (unsigned int )((int )asc_dvc->pci_fix_asyn_xfer_always & (int )scsiq->q1.target_id) == 0U) { if (((int )scsiq->q1.cntl & 4) != 0) { data_cnt = 0U; i = 0; goto ldv_39750; ldv_39749: data_cnt = data_cnt + sg_head->sg_list[i].bytes; i = i + 1; ldv_39750: ; if (i < (int )sg_entry_cnt) { goto ldv_39749; } else { } } else { data_cnt = scsiq->q1.data_cnt; } if (data_cnt != 0U) { if (data_cnt <= 511U) { disable_syn_offset_one_fix = 1; } else { i = 0; goto ldv_39754; ldv_39753: disable_cmd = _syn_offset_one_disable_cmd[i]; if ((unsigned int )disable_cmd == 255U) { goto ldv_39752; } else { } if ((int )scsi_cmd == (int )disable_cmd) { disable_syn_offset_one_fix = 1; goto ldv_39752; } else { } i = i + 1; ldv_39754: ; if (i <= 15) { goto ldv_39753; } else { } ldv_39752: ; } } else { } } else { } if (disable_syn_offset_one_fix != 0) { scsiq->q2.tag_code = (unsigned int )scsiq->q2.tag_code & 223U; scsiq->q2.tag_code = (uchar )((unsigned int )scsiq->q2.tag_code | 12U); } else { scsiq->q2.tag_code = (unsigned int )scsiq->q2.tag_code & 39U; } if (((int )scsiq->q1.cntl & 4) != 0) { if ((unsigned int )asc_dvc->bug_fix_cntl != 0U) { if ((int )asc_dvc->bug_fix_cntl & 1) { if ((unsigned int )scsi_cmd == 8U || (unsigned int )scsi_cmd == 40U) { addr = sg_head->sg_list[(int )sg_entry_cnt_minus_one].addr + sg_head->sg_list[(int )sg_entry_cnt_minus_one].bytes; extra_bytes = (unsigned int )((unsigned char )addr) & 3U; if ((unsigned int )extra_bytes != 0U && ((int )scsiq->q2.tag_code & 16) == 0) { scsiq->q2.tag_code = (uchar )((unsigned int )scsiq->q2.tag_code | 16U); scsiq->q1.extra_bytes = extra_bytes; data_cnt = sg_head->sg_list[(int )sg_entry_cnt_minus_one].bytes; data_cnt = data_cnt - (__u32 )extra_bytes; sg_head->sg_list[(int )sg_entry_cnt_minus_one].bytes = data_cnt; } else { } } else { } } else { } } else { } { sg_head->entry_to_copy = sg_head->entry_cnt; n_q_required = AscSgListToQueue((int )sg_entry_cnt); tmp = AscGetNumOfFreeQueue(asc_dvc, (int )target_ix, (int )((uchar )n_q_required)); } if (tmp >= (uint )n_q_required || ((int )scsiq->q1.cntl & 32) != 0) { { sta = AscSendScsiQueue(asc_dvc, scsiq, (int )((uchar )n_q_required)); } if (sta == 1) { asc_dvc->in_critical_cnt = (uchar )((int )asc_dvc->in_critical_cnt - 1); return (sta); } else { } } else { } } else { if ((unsigned int )asc_dvc->bug_fix_cntl != 0U) { if ((int )asc_dvc->bug_fix_cntl & 1) { if ((unsigned int )scsi_cmd == 8U || (unsigned int )scsi_cmd == 40U) { addr = scsiq->q1.data_addr + scsiq->q1.data_cnt; extra_bytes = (unsigned int )((unsigned char )addr) & 3U; if ((unsigned int )extra_bytes != 0U && ((int )scsiq->q2.tag_code & 16) == 0) { data_cnt = scsiq->q1.data_cnt; if (((int )((unsigned short )data_cnt) & 511) == 0) { scsiq->q2.tag_code = (uchar )((unsigned int )scsiq->q2.tag_code | 16U); data_cnt = data_cnt - (__u32 )extra_bytes; scsiq->q1.data_cnt = data_cnt; scsiq->q1.extra_bytes = extra_bytes; } else { } } else { } } else { } } else { } } else { } { n_q_required = 1; tmp___0 = AscGetNumOfFreeQueue(asc_dvc, (int )target_ix, 1); } if (tmp___0 != 0U || ((int )scsiq->q1.cntl & 32) != 0) { { sta = AscSendScsiQueue(asc_dvc, scsiq, (int )((uchar )n_q_required)); } if (sta == 1) { asc_dvc->in_critical_cnt = (uchar )((int )asc_dvc->in_critical_cnt - 1); return (sta); } else { } } else { } } asc_dvc->in_critical_cnt = (uchar )((int )asc_dvc->in_critical_cnt - 1); return (sta); } } static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc , ADV_SCSI_REQ_Q *scsiq ) { void *iop_base ; __u32 req_paddr ; ADV_CARR_T *new_carrp ; void *tmp ; phys_addr_t tmp___0 ; long tmp___1 ; phys_addr_t tmp___2 ; phys_addr_t tmp___3 ; { if ((unsigned int )scsiq->target_id > 15U) { scsiq->host_status = 69U; scsiq->done_status = 4U; return (-1); } else { } iop_base = asc_dvc->iop_base; new_carrp = asc_dvc->carr_freelist; if ((unsigned long )new_carrp == (unsigned long )((ADV_CARR_T *)0)) { return (0); } else { } { tmp = phys_to_virt((phys_addr_t )new_carrp->next_vpa); asc_dvc->carr_freelist = (ADV_CARR_T *)tmp; asc_dvc->carr_pending_cnt = (ushort )((int )asc_dvc->carr_pending_cnt + 1); new_carrp->next_vpa = 0U; scsiq->a_flag = (unsigned int )scsiq->a_flag & 253U; tmp___0 = virt_to_phys((void volatile *)scsiq); req_paddr = (__u32 )tmp___0; tmp___1 = ldv__builtin_expect((req_paddr & 31U) != 0U, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/scsi/advansys.c"), "i" (8835), "i" (12UL)); __builtin_unreachable(); } } else { } { req_paddr = req_paddr; tmp___2 = virt_to_phys((void volatile *)scsiq); scsiq->scsiq_ptr = (unsigned int )tmp___2; scsiq->scsiq_rptr = req_paddr; tmp___3 = virt_to_phys((void volatile *)asc_dvc->icq_sp); scsiq->carr_va = (unsigned int )tmp___3; scsiq->carr_pa = (asc_dvc->icq_sp)->carr_pa; (asc_dvc->icq_sp)->areq_vpa = req_paddr; (asc_dvc->icq_sp)->next_vpa = new_carrp->carr_pa; asc_dvc->icq_sp = new_carrp; } if ((unsigned int )asc_dvc->chip_type - 1U <= 1U) { { writeb(1, (void volatile *)iop_base + 34U); } if ((unsigned int )asc_dvc->chip_type == 1U) { { writeb(0, (void volatile *)iop_base + 34U); } } else { } } else if ((unsigned int )asc_dvc->chip_type == 3U) { { writel(new_carrp->carr_pa, (void volatile *)iop_base + 20U); } } else { } return (1); } } static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp ) { int ret ; int err_code ; struct asc_board *boardp ; void *tmp ; ASC_DVC_VAR *asc_dvc ; struct asc_scsi_q asc_scsi_q ; void *tmp___0 ; ADV_DVC_VAR *adv_dvc ; ADV_SCSI_REQ_Q *adv_scsiqp ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; { { tmp = shost_priv((scp->device)->host); boardp = (struct asc_board *)tmp; } if ((boardp->flags & 4U) == 0U) { { asc_dvc = & boardp->dvc_var.asc_dvc_var; ret = asc_build_req(boardp, scp, & asc_scsi_q); } if (ret == -1) { { tmp___0 = shost_priv((scp->device)->host); ((struct asc_board *)tmp___0)->asc_stats.build_error = ((struct asc_board *)tmp___0)->asc_stats.build_error + 1U; } return (-1); } else { } { ret = AscExeScsiQueue(asc_dvc, & asc_scsi_q); kfree((void const *)asc_scsi_q.sg_head); err_code = (int )asc_dvc->err_code; } } else { { adv_dvc = & boardp->dvc_var.adv_dvc_var; tmp___1 = adv_build_req(boardp, scp, & adv_scsiqp); } { if (tmp___1 == 1) { goto case_1; } else { } if (tmp___1 == 0) { goto case_0; } else { } if (tmp___1 == -1) { goto case_neg_1; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_39773; case_0: /* CIL Label */ ; return (0); case_neg_1: /* CIL Label */ ; switch_default: /* CIL Label */ { tmp___2 = shost_priv((scp->device)->host); ((struct asc_board *)tmp___2)->asc_stats.build_error = ((struct asc_board *)tmp___2)->asc_stats.build_error + 1U; } return (-1); switch_break: /* CIL Label */ ; } ldv_39773: { ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp); err_code = (int )adv_dvc->err_code; } } { if (ret == 1) { goto case_1___0; } else { } if (ret == 0) { goto case_0___0; } else { } if (ret == -1) { goto case_neg_1___0; } else { } goto switch_default___0; case_1___0: /* CIL Label */ { tmp___3 = shost_priv((scp->device)->host); ((struct asc_board *)tmp___3)->asc_stats.exe_noerror = ((struct asc_board *)tmp___3)->asc_stats.exe_noerror + 1U; boardp->reqcnt[(scp->device)->id] = (ushort )((int )boardp->reqcnt[(scp->device)->id] + 1); } goto ldv_39778; case_0___0: /* CIL Label */ { tmp___4 = shost_priv((scp->device)->host); ((struct asc_board *)tmp___4)->asc_stats.exe_busy = ((struct asc_board *)tmp___4)->asc_stats.exe_busy + 1U; } goto ldv_39778; case_neg_1___0: /* CIL Label */ { scmd_printk("\v", (struct scsi_cmnd const *)scp, "ExeScsiQueue() ASC_ERROR, err_code 0x%x\n", err_code); tmp___5 = shost_priv((scp->device)->host); ((struct asc_board *)tmp___5)->asc_stats.exe_error = ((struct asc_board *)tmp___5)->asc_stats.exe_error + 1U; scp->result = 458752; } goto ldv_39778; switch_default___0: /* CIL Label */ { scmd_printk("\v", (struct scsi_cmnd const *)scp, "ExeScsiQueue() unknown, err_code 0x%x\n", err_code); tmp___6 = shost_priv((scp->device)->host); ((struct asc_board *)tmp___6)->asc_stats.exe_unknown = ((struct asc_board *)tmp___6)->asc_stats.exe_unknown + 1U; scp->result = 458752; } goto ldv_39778; switch_break___0: /* CIL Label */ ; } ldv_39778: ; return (ret); } } static int advansys_queuecommand_lck(struct scsi_cmnd *scp , void (*done)(struct scsi_cmnd * ) ) { struct Scsi_Host *shost ; int asc_res ; int result ; void *tmp ; { { shost = (scp->device)->host; result = 0; tmp = shost_priv(shost); ((struct asc_board *)tmp)->asc_stats.queuecommand = ((struct asc_board *)tmp)->asc_stats.queuecommand + 1U; scp->scsi_done = done; asc_res = asc_execute_scsi_cmnd(scp); } { if (asc_res == 1) { goto case_1; } else { } if (asc_res == 0) { goto case_0; } else { } if (asc_res == -1) { goto case_neg_1; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_39791; case_0: /* CIL Label */ result = 4181; goto ldv_39791; case_neg_1: /* CIL Label */ ; switch_default: /* CIL Label */ { asc_scsi_done(scp); } goto ldv_39791; switch_break: /* CIL Label */ ; } ldv_39791: ; return (result); } } static int advansys_queuecommand(struct Scsi_Host *shost , struct scsi_cmnd *cmd ) { unsigned long irq_flags ; int rc ; { { ldv___ldv_linux_kernel_locking_spinlock_spin_lock_104(shost->host_lock); scsi_cmd_get_serial(shost, cmd); rc = advansys_queuecommand_lck(cmd, cmd->scsi_done); ldv_spin_unlock_irqrestore_101(shost->host_lock, irq_flags); } return (rc); } } static ushort AscGetEisaChipCfg(unsigned int iop_base ) { unsigned int eisa_cfg_iop ; unsigned short tmp ; { { eisa_cfg_iop = (iop_base & 61440U) | 3206U; tmp = inw((int )eisa_cfg_iop); } return (tmp); } } static unsigned short AscGetChipBiosAddress(unsigned int iop_base , unsigned short bus_type ) { unsigned short cfg_lsw ; unsigned short bios_addr ; { if (((int )bus_type & 4) != 0) { return (0U); } else { } if (((int )bus_type & 2) != 0) { { cfg_lsw = AscGetEisaChipCfg(iop_base); cfg_lsw = (unsigned int )cfg_lsw & 15U; bios_addr = (unsigned int )((unsigned short )((int )cfg_lsw + 48)) * 1024U; } return (bios_addr); } else { } { cfg_lsw = inw((int )(iop_base + 2U)); } if ((unsigned int )bus_type == 129U) { cfg_lsw = (unsigned int )cfg_lsw & 32767U; } else { } bios_addr = (unsigned int )((unsigned short )(((int )cfg_lsw >> 12) + 48)) * 1024U; return (bios_addr); } } static uchar AscSetChipScsiID(unsigned int iop_base , uchar new_host_id ) { ushort cfg_lsw ; unsigned short tmp ; unsigned short tmp___0 ; { { tmp = inw((int )(iop_base + 2U)); } if ((((int )tmp >> 8) & 7) == (int )new_host_id) { return (new_host_id); } else { } { cfg_lsw = inw((int )(iop_base + 2U)); cfg_lsw = (unsigned int )cfg_lsw & 63743U; cfg_lsw = (ushort )((unsigned int )cfg_lsw | (((unsigned int )((unsigned short )new_host_id) & 7U) << 8U)); outw((int )cfg_lsw, (int )(iop_base + 2U)); tmp___0 = inw((int )(iop_base + 2U)); } return ((unsigned int )((uchar )((int )tmp___0 >> 8)) & 7U); } } static unsigned char AscGetChipScsiCtrl(unsigned int iop_base ) { unsigned char sc ; { { AscSetBank(iop_base, 1); sc = inb((int )(iop_base + 9U)); AscSetBank(iop_base, 0); } return (sc); } } static unsigned char AscGetChipVersion(unsigned int iop_base , unsigned short bus_type ) { unsigned int eisa_iop ; unsigned char revision ; unsigned char tmp ; { if (((int )bus_type & 2) != 0) { { eisa_iop = (iop_base & 61440U) | 3203U; revision = inb((int )eisa_iop); } return ((unsigned int )revision + 64U); } else { } { tmp = inb((int )(iop_base + 3U)); } return (tmp); } } static int AscStopQueueExe(unsigned int iop_base ) { int count ; uchar tmp ; unsigned long __ms ; unsigned long tmp___0 ; int tmp___1 ; uchar tmp___2 ; { { count = 0; tmp___2 = AscReadLramByte(iop_base, 54); } if ((unsigned int )tmp___2 == 0U) { { AscWriteLramByte(iop_base, 54, 1); } ldv_39834: { tmp = AscReadLramByte(iop_base, 54); } if (((int )tmp & 3) != 0) { return (1); } else { } __ms = 100UL; goto ldv_39832; ldv_39831: { __const_udelay(4295000UL); } ldv_39832: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_39831; } else { } tmp___1 = count; count = count + 1; if (tmp___1 <= 19) { goto ldv_39834; } else { } } else { } return (0); } } static __u32 AscGetMaxDmaCount(ushort bus_type ) { { if ((int )bus_type & 1) { return (16777215U); } else if (((int )bus_type & 66) != 0) { return (134217727U); } else { } return (4294967295U); } } static ushort AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc ) { int i ; unsigned int iop_base ; ushort warn_code ; uchar chip_version ; { iop_base = asc_dvc->iop_base; warn_code = 0U; asc_dvc->err_code = 0U; if (((int )asc_dvc->bus_type & 71) == 0) { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 1024U); } else { } { outb(32, (int )(iop_base + 15U)); outw(0, (int )(iop_base + 14U)); asc_dvc->bug_fix_cntl = 0U; asc_dvc->pci_fix_asyn_xfer = 0U; asc_dvc->pci_fix_asyn_xfer_always = 0U; asc_dvc->sdtr_done = 0U; asc_dvc->cur_total_qng = 0U; asc_dvc->is_in_int = 0; asc_dvc->in_critical_cnt = 0U; asc_dvc->last_q_shortage = 0U; asc_dvc->use_tagged_qng = 0U; asc_dvc->no_scam = 0U; asc_dvc->unit_not_ready = 0U; asc_dvc->queue_full_or_busy = 0U; asc_dvc->redo_scam = 0; asc_dvc->res2 = 0U; asc_dvc->min_sdtr_index = 0U; (asc_dvc->cfg)->can_tagged_qng = 0U; (asc_dvc->cfg)->cmd_qng_enabled = 0U; asc_dvc->dvc_cntl = 65535U; asc_dvc->init_sdtr = 0U; asc_dvc->max_total_qng = 240U; asc_dvc->scsi_reset_wait = 3U; asc_dvc->start_motor = 255U; asc_dvc->max_dma_count = AscGetMaxDmaCount((int )asc_dvc->bus_type); (asc_dvc->cfg)->sdtr_enable = 255U; (asc_dvc->cfg)->disc_enable = 255U; (asc_dvc->cfg)->chip_scsi_id = 7U; chip_version = AscGetChipVersion(iop_base, (int )asc_dvc->bus_type); (asc_dvc->cfg)->chip_version = chip_version; asc_dvc->sdtr_period_tbl = (uchar const *)(& asc_syn_xfer_period); asc_dvc->max_sdtr_index = 7U; } if (((int )asc_dvc->bus_type & 4) != 0 && (unsigned int )chip_version > 9U) { asc_dvc->bus_type = 260U; asc_dvc->sdtr_period_tbl = (uchar const *)(& asc_syn_ultra_xfer_period); asc_dvc->max_sdtr_index = 15U; if ((unsigned int )chip_version == 10U) { { outb(96, (int )(iop_base + 13U)); } } else if ((unsigned int )chip_version > 10U) { { outb(80, (int )(iop_base + 13U)); } } else { } } else { } if ((unsigned int )asc_dvc->bus_type == 4U) { { outb(96, (int )(iop_base + 13U)); } } else { } (asc_dvc->cfg)->isa_dma_speed = 4U; i = 0; goto ldv_39847; ldv_39846: asc_dvc->cur_dvc_qng[i] = 0U; asc_dvc->max_dvc_qng[i] = 4U; asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0; asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0; (asc_dvc->cfg)->max_tag_qng[i] = 16U; i = i + 1; ldv_39847: ; if (i <= 7) { goto ldv_39846; } else { } return (warn_code); } } static int AscWriteEEPCmdReg(unsigned int iop_base , uchar cmd_reg ) { int retry ; unsigned char read_back ; unsigned long __ms ; unsigned long tmp ; { retry = 0; goto ldv_39860; ldv_39859: { outb((int )cmd_reg, (int )(iop_base + 7U)); } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_39857; ldv_39856: { __const_udelay(4295000UL); } ldv_39857: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_39856; } else { } } { read_back = inb((int )(iop_base + 7U)); } if ((int )read_back == (int )cmd_reg) { return (1); } else { } retry = retry + 1; ldv_39860: ; if (retry <= 19) { goto ldv_39859; } else { } return (0); } } static void AscWaitEEPRead(void) { unsigned long __ms ; unsigned long tmp ; { if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_39867; ldv_39866: { __const_udelay(4295000UL); } ldv_39867: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_39866; } else { } } return; } } static ushort AscReadEEPWord(unsigned int iop_base , uchar addr ) { ushort read_wval ; uchar cmd_reg ; { { AscWriteEEPCmdReg(iop_base, 0); AscWaitEEPRead(); cmd_reg = (uchar )((unsigned int )addr | 128U); AscWriteEEPCmdReg(iop_base, (int )cmd_reg); AscWaitEEPRead(); read_wval = inw((int )(iop_base + 6U)); AscWaitEEPRead(); } return (read_wval); } } static ushort AscGetEEPConfig(unsigned int iop_base , ASCEEP_CONFIG *cfg_buf , ushort bus_type ) { ushort wval ; ushort sum ; ushort *wbuf ; int cfg_beg ; int cfg_end ; int uchar_end_in_config ; int s_addr ; { uchar_end_in_config = 43; wbuf = (ushort *)cfg_buf; sum = 0U; s_addr = 0; goto ldv_39888; ldv_39887: { *wbuf = AscReadEEPWord(iop_base, (int )((unsigned char )s_addr)); sum = (int )sum + (int )*wbuf; s_addr = s_addr + 1; wbuf = wbuf + 1; } ldv_39888: ; if (s_addr <= 1) { goto ldv_39887; } else { } if (((int )bus_type & 64) != 0) { cfg_beg = 2; cfg_end = 15; } else { cfg_beg = 32; cfg_end = 45; } s_addr = cfg_beg; goto ldv_39891; ldv_39890: { wval = AscReadEEPWord(iop_base, (int )((unsigned char )s_addr)); } if (s_addr <= uchar_end_in_config) { *wbuf = wval; } else { *wbuf = wval; } sum = (int )sum + (int )wval; s_addr = s_addr + 1; wbuf = wbuf + 1; ldv_39891: ; if (s_addr <= cfg_end + -1) { goto ldv_39890; } else { } { *wbuf = AscReadEEPWord(iop_base, (int )((unsigned char )s_addr)); } return (sum); } } static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc ) { unsigned int iop_base ; ushort q_addr ; ushort saved_word ; int sta ; unsigned long __ms ; unsigned long tmp ; unsigned short tmp___0 ; { { iop_base = asc_dvc->iop_base; sta = 0; q_addr = 31808U; saved_word = AscReadLramWord(iop_base, (int )q_addr); outw((int )q_addr, (int )(iop_base + 10U)); outw(21930, (int )(iop_base + 8U)); __ms = 10UL; } goto ldv_39902; ldv_39901: { __const_udelay(4295000UL); } ldv_39902: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_39901; } else { } { outw((int )q_addr, (int )(iop_base + 10U)); tmp___0 = inw((int )(iop_base + 8U)); } if ((unsigned int )tmp___0 == 21930U) { { sta = 1; AscWriteLramWord(iop_base, (int )q_addr, (int )saved_word); } } else { } return (sta); } } static void AscWaitEEPWrite(void) { unsigned long __ms ; unsigned long tmp ; { __ms = 20UL; goto ldv_39909; ldv_39908: { __const_udelay(4295000UL); } ldv_39909: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_39908; } else { } return; } } static int AscWriteEEPDataReg(unsigned int iop_base , ushort data_reg ) { ushort read_back ; int retry ; unsigned long __ms ; unsigned long tmp ; int tmp___0 ; { retry = 0; ldv_39921: { outw((int )data_reg, (int )(iop_base + 6U)); } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_39919; ldv_39918: { __const_udelay(4295000UL); } ldv_39919: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_39918; } else { } } { read_back = inw((int )(iop_base + 6U)); } if ((int )read_back == (int )data_reg) { return (1); } else { } tmp___0 = retry; retry = retry + 1; if (tmp___0 > 20) { return (0); } else { } goto ldv_39921; } } static ushort AscWriteEEPWord(unsigned int iop_base , uchar addr , ushort word_val ) { ushort read_wval ; ushort tmp ; { { read_wval = AscReadEEPWord(iop_base, (int )addr); } if ((int )read_wval != (int )word_val) { { AscWriteEEPCmdReg(iop_base, 48); AscWaitEEPRead(); AscWriteEEPDataReg(iop_base, (int )word_val); AscWaitEEPRead(); AscWriteEEPCmdReg(iop_base, (int )((unsigned int )addr | 64U)); AscWaitEEPWrite(); AscWriteEEPCmdReg(iop_base, 0); AscWaitEEPRead(); tmp = AscReadEEPWord(iop_base, (int )addr); } return (tmp); } else { } return (read_wval); } } static int AscSetEEPConfigOnce(unsigned int iop_base , ASCEEP_CONFIG *cfg_buf , ushort bus_type ) { int n_error ; ushort *wbuf ; ushort word ; ushort sum ; int s_addr ; int cfg_beg ; int cfg_end ; int uchar_end_in_config ; ushort tmp ; ushort tmp___0 ; ushort tmp___1 ; ushort tmp___2 ; ushort tmp___3 ; ushort tmp___4 ; { uchar_end_in_config = 43; wbuf = (ushort *)cfg_buf; n_error = 0; sum = 0U; s_addr = 0; goto ldv_39942; ldv_39941: { sum = (int )sum + (int )*wbuf; tmp = AscWriteEEPWord(iop_base, (int )((unsigned char )s_addr), (int )*wbuf); } if ((int )*wbuf != (int )tmp) { n_error = n_error + 1; } else { } s_addr = s_addr + 1; wbuf = wbuf + 1; ldv_39942: ; if (s_addr <= 1) { goto ldv_39941; } else { } if (((int )bus_type & 64) != 0) { cfg_beg = 2; cfg_end = 15; } else { cfg_beg = 32; cfg_end = 45; } s_addr = cfg_beg; goto ldv_39945; ldv_39944: ; if (s_addr <= uchar_end_in_config) { { word = *wbuf; tmp___0 = AscWriteEEPWord(iop_base, (int )((unsigned char )s_addr), (int )word); } if ((int )word != (int )tmp___0) { n_error = n_error + 1; } else { } } else { { tmp___1 = AscWriteEEPWord(iop_base, (int )((unsigned char )s_addr), (int )*wbuf); } if ((int )*wbuf != (int )tmp___1) { n_error = n_error + 1; } else { } } sum = (int )sum + (int )*wbuf; s_addr = s_addr + 1; wbuf = wbuf + 1; ldv_39945: ; if (s_addr <= cfg_end + -1) { goto ldv_39944; } else { } { *wbuf = sum; tmp___2 = AscWriteEEPWord(iop_base, (int )((unsigned char )s_addr), (int )sum); } if ((int )sum != (int )tmp___2) { n_error = n_error + 1; } else { } wbuf = (ushort *)cfg_buf; s_addr = 0; goto ldv_39948; ldv_39947: { tmp___3 = AscReadEEPWord(iop_base, (int )((unsigned char )s_addr)); } if ((int )*wbuf != (int )tmp___3) { n_error = n_error + 1; } else { } s_addr = s_addr + 1; wbuf = wbuf + 1; ldv_39948: ; if (s_addr <= 1) { goto ldv_39947; } else { } if (((int )bus_type & 64) != 0) { cfg_beg = 2; cfg_end = 15; } else { cfg_beg = 32; cfg_end = 45; } s_addr = cfg_beg; goto ldv_39951; ldv_39950: ; if (s_addr <= uchar_end_in_config) { { word = AscReadEEPWord(iop_base, (int )((unsigned char )s_addr)); } } else { { word = AscReadEEPWord(iop_base, (int )((unsigned char )s_addr)); } } if ((int )*wbuf != (int )word) { n_error = n_error + 1; } else { } s_addr = s_addr + 1; wbuf = wbuf + 1; ldv_39951: ; if (s_addr <= cfg_end + -1) { goto ldv_39950; } else { } { tmp___4 = AscReadEEPWord(iop_base, (int )((unsigned char )s_addr)); } if ((int )tmp___4 != (int )sum) { n_error = n_error + 1; } else { } return (n_error); } } static int AscSetEEPConfig(unsigned int iop_base , ASCEEP_CONFIG *cfg_buf , ushort bus_type ) { int retry ; int n_error ; { retry = 0; ldv_39961: { n_error = AscSetEEPConfigOnce(iop_base, cfg_buf, (int )bus_type); } if (n_error == 0) { goto ldv_39960; } else { } retry = retry + 1; if (retry > 20) { goto ldv_39960; } else { } goto ldv_39961; ldv_39960: ; return (n_error); } } static ushort AscInitFromEEP(ASC_DVC_VAR *asc_dvc ) { ASCEEP_CONFIG eep_config_buf ; ASCEEP_CONFIG *eep_config ; unsigned int iop_base ; ushort chksum ; ushort warn_code ; ushort cfg_msw ; ushort cfg_lsw ; int i ; int write_eep ; unsigned long __ms ; unsigned long tmp ; int tmp___0 ; unsigned char tmp___1 ; int tmp___2 ; unsigned short tmp___3 ; unsigned short tmp___4 ; unsigned char tmp___5 ; int tmp___6 ; { { write_eep = 0; iop_base = asc_dvc->iop_base; warn_code = 0U; AscWriteLramWord(iop_base, 64, 254); AscStopQueueExe(iop_base); tmp___0 = AscStopChip(iop_base); } if (tmp___0 == 0) { goto _L; } else { { tmp___1 = AscGetChipScsiCtrl(iop_base); } if ((unsigned int )tmp___1 != 0U) { _L: /* CIL Label */ { asc_dvc->init_state = (ushort )((unsigned int )asc_dvc->init_state | 256U); AscResetChipAndScsiBus(asc_dvc); __ms = (unsigned long )((int )asc_dvc->scsi_reset_wait * 1000); } goto ldv_39976; ldv_39975: { __const_udelay(4295000UL); } ldv_39976: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_39975; } else { } } else { } } { tmp___2 = AscIsChipHalted(iop_base); } if (tmp___2 == 0) { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 8U); return (warn_code); } else { } { outw(128, (int )(iop_base + 12U)); tmp___3 = inw((int )(iop_base + 12U)); } if ((unsigned int )tmp___3 != 128U) { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 4U); return (warn_code); } else { } { eep_config = & eep_config_buf; cfg_msw = inw((int )(iop_base + 4U)); cfg_lsw = inw((int )(iop_base + 2U)); } if (((int )cfg_msw & 12416) != 0) { { cfg_msw = (unsigned int )cfg_msw & 53119U; warn_code = (ushort )((unsigned int )warn_code | 64U); outw((int )cfg_msw, (int )(iop_base + 4U)); } } else { } { chksum = AscGetEEPConfig(iop_base, eep_config, (int )asc_dvc->bus_type); } if ((unsigned int )chksum == 0U) { chksum = 43605U; } else { } { tmp___4 = inw((int )(iop_base + 14U)); } if (((int )tmp___4 & 16384) != 0) { warn_code = (ushort )((unsigned int )warn_code | 8U); if ((unsigned int )(asc_dvc->cfg)->chip_version == 3U) { if ((int )eep_config->cfg_lsw != (int )cfg_lsw) { { warn_code = (ushort )((unsigned int )warn_code | 32U); eep_config->cfg_lsw = inw((int )(iop_base + 2U)); } } else { } if ((int )eep_config->cfg_msw != (int )cfg_msw) { { warn_code = (ushort )((unsigned int )warn_code | 32U); eep_config->cfg_msw = inw((int )(iop_base + 4U)); } } else { } } else { } } else { } eep_config->cfg_msw = (unsigned int )eep_config->cfg_msw & 53119U; eep_config->cfg_lsw = (ushort )((unsigned int )eep_config->cfg_lsw | 32U); if ((int )chksum != (int )eep_config->chksum) { { tmp___5 = AscGetChipVersion(iop_base, (int )asc_dvc->bus_type); } if ((unsigned int )tmp___5 == 11U) { eep_config->init_sdtr = 255U; eep_config->disc_enable = 255U; eep_config->start_motor = 255U; eep_config->use_cmd_qng = 0U; eep_config->max_total_qng = 240U; eep_config->max_tag_qng = 32U; eep_config->cntl = 49151U; eep_config->id_speed = (uchar )(((int )((signed char )eep_config->id_speed) & -16) | 7); eep_config->no_scam = 0U; eep_config->adapter_info[0] = 0U; eep_config->adapter_info[1] = 0U; eep_config->adapter_info[2] = 0U; eep_config->adapter_info[3] = 0U; eep_config->adapter_info[4] = 0U; eep_config->adapter_info[5] = 187U; } else { { printk("advansys: "); printk("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n"); write_eep = 1; warn_code = (ushort )((unsigned int )warn_code | 2U); } } } else { } { (asc_dvc->cfg)->sdtr_enable = eep_config->init_sdtr; (asc_dvc->cfg)->disc_enable = eep_config->disc_enable; (asc_dvc->cfg)->cmd_qng_enabled = eep_config->use_cmd_qng; (asc_dvc->cfg)->isa_dma_speed = (int )eep_config->id_speed >> 4; asc_dvc->start_motor = eep_config->start_motor; asc_dvc->dvc_cntl = eep_config->cntl; asc_dvc->no_scam = eep_config->no_scam; (asc_dvc->cfg)->adapter_info[0] = eep_config->adapter_info[0]; (asc_dvc->cfg)->adapter_info[1] = eep_config->adapter_info[1]; (asc_dvc->cfg)->adapter_info[2] = eep_config->adapter_info[2]; (asc_dvc->cfg)->adapter_info[3] = eep_config->adapter_info[3]; (asc_dvc->cfg)->adapter_info[4] = eep_config->adapter_info[4]; (asc_dvc->cfg)->adapter_info[5] = eep_config->adapter_info[5]; tmp___6 = AscTestExternalLram(asc_dvc); } if (tmp___6 == 0) { if (((int )asc_dvc->bus_type & 260) == 260) { eep_config->max_total_qng = 16U; eep_config->max_tag_qng = 8U; } else { { eep_config->cfg_msw = (ushort )((unsigned int )eep_config->cfg_msw | 2048U); cfg_msw = (ushort )((unsigned int )cfg_msw | 2048U); outw((int )cfg_msw, (int )(iop_base + 4U)); eep_config->max_total_qng = 20U; eep_config->max_tag_qng = 16U; } } } else { } if ((unsigned int )eep_config->max_total_qng <= 8U) { eep_config->max_total_qng = 9U; } else { } if ((unsigned int )eep_config->max_total_qng > 240U) { eep_config->max_total_qng = 240U; } else { } if ((int )eep_config->max_tag_qng > (int )eep_config->max_total_qng) { eep_config->max_tag_qng = eep_config->max_total_qng; } else { } if ((unsigned int )eep_config->max_tag_qng <= 3U) { eep_config->max_tag_qng = 4U; } else { } asc_dvc->max_total_qng = eep_config->max_total_qng; if (((int )eep_config->use_cmd_qng & (int )eep_config->disc_enable) != (int )eep_config->use_cmd_qng) { eep_config->disc_enable = eep_config->use_cmd_qng; warn_code = (ushort )((unsigned int )warn_code | 16U); } else { } eep_config->id_speed = (unsigned int )eep_config->id_speed & 247U; (asc_dvc->cfg)->chip_scsi_id = (unsigned int )eep_config->id_speed & 15U; if (((int )asc_dvc->bus_type & 260) == 260 && ((int )asc_dvc->dvc_cntl & 16384) == 0) { asc_dvc->min_sdtr_index = 2U; } else { } i = 0; goto ldv_39979; ldv_39978: asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i]; (asc_dvc->cfg)->max_tag_qng[i] = eep_config->max_tag_qng; (asc_dvc->cfg)->sdtr_period_offset[i] = (unsigned char )((int )((signed char )((int )asc_dvc->min_sdtr_index << 4)) | 15); i = i + 1; ldv_39979: ; if (i <= 7) { goto ldv_39978; } else { } { eep_config->cfg_msw = inw((int )(iop_base + 4U)); } if (write_eep != 0) { { i = AscSetEEPConfig(iop_base, eep_config, (int )asc_dvc->bus_type); } if (i != 0) { { printk("advansys: "); printk("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n", i); } } else { { printk("advansys: "); printk("AscInitFromEEP: Successfully re-wrote EEPROM.\n"); } } } else { } return (warn_code); } } static int AscInitGetConfig(struct Scsi_Host *shost ) { struct asc_board *board ; void *tmp ; ASC_DVC_VAR *asc_dvc ; unsigned short warn_code ; ushort tmp___0 ; ushort tmp___1 ; int tmp___2 ; { { tmp = shost_priv(shost); board = (struct asc_board *)tmp; asc_dvc = & board->dvc_var.asc_dvc_var; warn_code = 0U; asc_dvc->init_state = 1U; } if ((unsigned int )asc_dvc->err_code != 0U) { return ((int )asc_dvc->err_code); } else { } { tmp___2 = AscFindSignature(asc_dvc->iop_base); } if (tmp___2 != 0) { { tmp___0 = AscInitAscDvcVar(asc_dvc); warn_code = (int )warn_code | (int )tmp___0; tmp___1 = AscInitFromEEP(asc_dvc); warn_code = (int )warn_code | (int )tmp___1; asc_dvc->init_state = (ushort )((unsigned int )asc_dvc->init_state | 2U); } if ((unsigned int )asc_dvc->scsi_reset_wait > 30U) { asc_dvc->scsi_reset_wait = 30U; } else { } } else { asc_dvc->err_code = 512U; } { if ((int )warn_code == 0) { goto case_0; } else { } if ((int )warn_code == 1) { goto case_1; } else { } if ((int )warn_code == 8) { goto case_8; } else { } if ((int )warn_code == 2) { goto case_2; } else { } if ((int )warn_code == 4) { goto case_4; } else { } if ((int )warn_code == 16) { goto case_16; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_39988; case_1: /* CIL Label */ { dev_printk("\f", (struct device const *)(& shost->shost_gendev), "I/O port address modified\n"); } goto ldv_39988; case_8: /* CIL Label */ { dev_printk("\f", (struct device const *)(& shost->shost_gendev), "I/O port increment switch enabled\n"); } goto ldv_39988; case_2: /* CIL Label */ { dev_printk("\f", (struct device const *)(& shost->shost_gendev), "EEPROM checksum error\n"); } goto ldv_39988; case_4: /* CIL Label */ { dev_printk("\f", (struct device const *)(& shost->shost_gendev), "IRQ modified\n"); } goto ldv_39988; case_16: /* CIL Label */ { dev_printk("\f", (struct device const *)(& shost->shost_gendev), "tag queuing enabled w/o disconnects\n"); } goto ldv_39988; switch_default: /* CIL Label */ { dev_printk("\f", (struct device const *)(& shost->shost_gendev), "unknown warning: 0x%x\n", (int )warn_code); } goto ldv_39988; switch_break: /* CIL Label */ ; } ldv_39988: ; if ((unsigned int )asc_dvc->err_code != 0U) { { dev_printk("\v", (struct device const *)(& shost->shost_gendev), "error 0x%x at init_state 0x%x\n", (int )asc_dvc->err_code, (int )asc_dvc->init_state); } } else { } return ((int )asc_dvc->err_code); } } static int AscInitSetConfig(struct pci_dev *pdev , struct Scsi_Host *shost ) { struct asc_board *board ; void *tmp ; ASC_DVC_VAR *asc_dvc ; unsigned int iop_base ; unsigned short cfg_msw ; unsigned short warn_code ; int tmp___0 ; unsigned short tmp___1 ; unsigned char tmp___2 ; uchar tmp___3 ; { { tmp = shost_priv(shost); board = (struct asc_board *)tmp; asc_dvc = & board->dvc_var.asc_dvc_var; iop_base = asc_dvc->iop_base; warn_code = 0U; asc_dvc->init_state = (ushort )((unsigned int )asc_dvc->init_state | 4U); } if ((unsigned int )asc_dvc->err_code != 0U) { return ((int )asc_dvc->err_code); } else { } { tmp___0 = AscFindSignature(asc_dvc->iop_base); } if (tmp___0 == 0) { asc_dvc->err_code = 512U; return ((int )asc_dvc->err_code); } else { } { cfg_msw = inw((int )(iop_base + 4U)); } if (((int )cfg_msw & 12416) != 0) { { cfg_msw = (unsigned int )cfg_msw & 53119U; warn_code = (unsigned int )warn_code | 64U; outw((int )cfg_msw, (int )(iop_base + 4U)); } } else { } if (((int )(asc_dvc->cfg)->cmd_qng_enabled & (int )(asc_dvc->cfg)->disc_enable) != (int )(asc_dvc->cfg)->cmd_qng_enabled) { (asc_dvc->cfg)->disc_enable = (asc_dvc->cfg)->cmd_qng_enabled; warn_code = (unsigned int )warn_code | 16U; } else { } { tmp___1 = inw((int )(iop_base + 14U)); } if (((int )tmp___1 & 16384) != 0) { warn_code = (unsigned int )warn_code | 8U; } else { } if (((int )asc_dvc->bus_type & 4) != 0) { { cfg_msw = (unsigned int )cfg_msw & 65472U; outw((int )cfg_msw, (int )(iop_base + 4U)); } if (((int )asc_dvc->bus_type & 260) == 260) { } else if ((unsigned int )pdev->device == 4352U || (unsigned int )pdev->device == 4608U) { asc_dvc->bug_fix_cntl = (ushort )((unsigned int )asc_dvc->bug_fix_cntl | 1U); asc_dvc->bug_fix_cntl = (ushort )((unsigned int )asc_dvc->bug_fix_cntl | 2U); } else { } } else if ((unsigned int )asc_dvc->bus_type == 129U) { { tmp___2 = AscGetChipVersion(iop_base, (int )asc_dvc->bus_type); } if ((unsigned int )tmp___2 == 33U) { asc_dvc->bug_fix_cntl = (ushort )((unsigned int )asc_dvc->bug_fix_cntl | 2U); } else { } } else { } { tmp___3 = AscSetChipScsiID(iop_base, (int )(asc_dvc->cfg)->chip_scsi_id); } if ((int )tmp___3 != (int )(asc_dvc->cfg)->chip_scsi_id) { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 128U); } else { } asc_dvc->init_state = (ushort )((unsigned int )asc_dvc->init_state | 8U); { if ((int )warn_code == 0) { goto case_0; } else { } if ((int )warn_code == 1) { goto case_1; } else { } if ((int )warn_code == 8) { goto case_8; } else { } if ((int )warn_code == 2) { goto case_2; } else { } if ((int )warn_code == 4) { goto case_4; } else { } if ((int )warn_code == 16) { goto case_16; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_40005; case_1: /* CIL Label */ { dev_printk("\f", (struct device const *)(& shost->shost_gendev), "I/O port address modified\n"); } goto ldv_40005; case_8: /* CIL Label */ { dev_printk("\f", (struct device const *)(& shost->shost_gendev), "I/O port increment switch enabled\n"); } goto ldv_40005; case_2: /* CIL Label */ { dev_printk("\f", (struct device const *)(& shost->shost_gendev), "EEPROM checksum error\n"); } goto ldv_40005; case_4: /* CIL Label */ { dev_printk("\f", (struct device const *)(& shost->shost_gendev), "IRQ modified\n"); } goto ldv_40005; case_16: /* CIL Label */ { dev_printk("\f", (struct device const *)(& shost->shost_gendev), "tag queuing w/o disconnects\n"); } goto ldv_40005; switch_default: /* CIL Label */ { dev_printk("\f", (struct device const *)(& shost->shost_gendev), "unknown warning: 0x%x\n", (int )warn_code); } goto ldv_40005; switch_break: /* CIL Label */ ; } ldv_40005: ; if ((unsigned int )asc_dvc->err_code != 0U) { { dev_printk("\v", (struct device const *)(& shost->shost_gendev), "error 0x%x at init_state 0x%x\n", (int )asc_dvc->err_code, (int )asc_dvc->init_state); } } else { } return ((int )asc_dvc->err_code); } } static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {16384U, 0U, 65535U, 65535U, 65535U, 65535U, 65535U, 65535U, 0U, 7U, 0U, 3U, 0U, 0U, 0U, 65511U, 65535U, 0U, 253U, 63U, 0U, 0U, 0U, 0U, 0U, 0U, {0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, 0U, 0U, 0U, 0U, 0U, 0U, 0U}; static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U, 1U, 1U, 1U, 1U, 1U, 0U, 0U, 0U, 1U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, {1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U}, 0U, 0U, 0U, 0U, 0U, 0U, 0U}; static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {16384U, 0U, 65535U, 65535U, 17476U, 65535U, 65535U, 65535U, 0U, 7U, 0U, 3U, 0U, 0U, 0U, 65511U, 17476U, 17476U, 253U, 63U, 0U, 17476U, 0U, 0U, 0U, 0U, {0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 4301U, 9472U, 0U, 0U, 0U, 0U}; static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U, 1U, 1U, 1U, 1U, 1U, 0U, 0U, 0U, 1U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, {1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U}, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}; static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {16384U, 0U, 65535U, 65535U, 21845U, 65535U, 65535U, 65535U, 0U, 7U, 0U, 3U, 0U, 0U, 0U, 65511U, 21845U, 21845U, 253U, 63U, 0U, 21845U, 0U, 0U, 0U, 0U, {0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 4301U, 9984U, 0U, 0U, 0U, 0U}; static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U, 1U, 1U, 1U, 1U, 1U, 0U, 0U, 0U, 1U, 1U, 0U, 0U, 0U, 0U, 0U, 0U, {1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U}, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}; static void AdvWaitEEPCmd(void *iop_base ) { int eep_delay_ms ; unsigned short tmp ; unsigned long __ms ; unsigned long tmp___0 ; unsigned short tmp___1 ; { eep_delay_ms = 0; goto ldv_40028; ldv_40027: { tmp = readw((void const volatile *)iop_base + 26U); } if (((int )tmp & 512) != 0) { goto ldv_40022; } else { } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_40025; ldv_40024: { __const_udelay(4295000UL); } ldv_40025: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_40024; } else { } } eep_delay_ms = eep_delay_ms + 1; ldv_40028: ; if (eep_delay_ms <= 99) { goto ldv_40027; } else { } ldv_40022: { tmp___1 = readw((void const volatile *)iop_base + 26U); } if (((int )tmp___1 & 512) == 0) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/scsi/advansys.c"), "i" (10222), "i" (12UL)); __builtin_unreachable(); } } else { } return; } } static ushort AdvReadEEPWord(void *iop_base , int eep_word_addr ) { unsigned short tmp ; { { writew((int )((unsigned short )((int )((short )eep_word_addr) | 128)), (void volatile *)iop_base + 26U); AdvWaitEEPCmd(iop_base); tmp = readw((void const volatile *)iop_base + 28U); } return (tmp); } } static void AdvSet3550EEPConfig(void *iop_base , ADVEEP_3550_CONFIG *cfg_buf ) { ushort *wbuf ; ushort addr ; ushort chksum ; ushort *charfields ; ushort word ; ushort *tmp ; unsigned long __ms ; unsigned long tmp___0 ; ushort word___0 ; ushort *tmp___1 ; { { wbuf = (ushort *)cfg_buf; charfields = (ushort *)(& ADVEEP_3550_Config_Field_IsChar); chksum = 0U; writew(48, (void volatile *)iop_base + 26U); AdvWaitEEPCmd(iop_base); addr = 0U; } goto ldv_40047; ldv_40046: tmp = charfields; charfields = charfields + 1; if ((unsigned int )*tmp != 0U) { word = *wbuf; } else { word = *wbuf; } { chksum = (int )chksum + (int )*wbuf; writew((int )word, (void volatile *)iop_base + 28U); writew((int )((unsigned int )addr | 64U), (void volatile *)iop_base + 26U); AdvWaitEEPCmd(iop_base); __ms = 100UL; } goto ldv_40044; ldv_40043: { __const_udelay(4295000UL); } ldv_40044: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_40043; } else { } addr = (ushort )((int )addr + 1); wbuf = wbuf + 1; ldv_40047: ; if ((unsigned int )addr <= 20U) { goto ldv_40046; } else { } { writew((int )chksum, (void volatile *)iop_base + 28U); writew((int )((unsigned int )addr | 64U), (void volatile *)iop_base + 26U); AdvWaitEEPCmd(iop_base); wbuf = wbuf + 1; charfields = charfields + 1; addr = 22U; } goto ldv_40051; ldv_40050: tmp___1 = charfields; charfields = charfields + 1; if ((unsigned int )*tmp___1 != 0U) { word___0 = *wbuf; } else { word___0 = *wbuf; } { writew((int )word___0, (void volatile *)iop_base + 28U); writew((int )((unsigned int )addr | 64U), (void volatile *)iop_base + 26U); AdvWaitEEPCmd(iop_base); addr = (ushort )((int )addr + 1); wbuf = wbuf + 1; } ldv_40051: ; if ((unsigned int )addr <= 29U) { goto ldv_40050; } else { } { writew(0, (void volatile *)iop_base + 26U); AdvWaitEEPCmd(iop_base); } return; } } static void AdvSet38C0800EEPConfig(void *iop_base , ADVEEP_38C0800_CONFIG *cfg_buf ) { ushort *wbuf ; ushort *charfields ; ushort addr ; ushort chksum ; ushort word ; ushort *tmp ; unsigned long __ms ; unsigned long tmp___0 ; ushort word___0 ; ushort *tmp___1 ; { { wbuf = (ushort *)cfg_buf; charfields = (ushort *)(& ADVEEP_38C0800_Config_Field_IsChar); chksum = 0U; writew(48, (void volatile *)iop_base + 26U); AdvWaitEEPCmd(iop_base); addr = 0U; } goto ldv_40067; ldv_40066: tmp = charfields; charfields = charfields + 1; if ((unsigned int )*tmp != 0U) { word = *wbuf; } else { word = *wbuf; } { chksum = (int )chksum + (int )*wbuf; writew((int )word, (void volatile *)iop_base + 28U); writew((int )((unsigned int )addr | 64U), (void volatile *)iop_base + 26U); AdvWaitEEPCmd(iop_base); __ms = 100UL; } goto ldv_40064; ldv_40063: { __const_udelay(4295000UL); } ldv_40064: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_40063; } else { } addr = (ushort )((int )addr + 1); wbuf = wbuf + 1; ldv_40067: ; if ((unsigned int )addr <= 20U) { goto ldv_40066; } else { } { writew((int )chksum, (void volatile *)iop_base + 28U); writew((int )((unsigned int )addr | 64U), (void volatile *)iop_base + 26U); AdvWaitEEPCmd(iop_base); wbuf = wbuf + 1; charfields = charfields + 1; addr = 22U; } goto ldv_40071; ldv_40070: tmp___1 = charfields; charfields = charfields + 1; if ((unsigned int )*tmp___1 != 0U) { word___0 = *wbuf; } else { word___0 = *wbuf; } { writew((int )word___0, (void volatile *)iop_base + 28U); writew((int )((unsigned int )addr | 64U), (void volatile *)iop_base + 26U); AdvWaitEEPCmd(iop_base); addr = (ushort )((int )addr + 1); wbuf = wbuf + 1; } ldv_40071: ; if ((unsigned int )addr <= 29U) { goto ldv_40070; } else { } { writew(0, (void volatile *)iop_base + 26U); AdvWaitEEPCmd(iop_base); } return; } } static void AdvSet38C1600EEPConfig(void *iop_base , ADVEEP_38C1600_CONFIG *cfg_buf ) { ushort *wbuf ; ushort *charfields ; ushort addr ; ushort chksum ; ushort word ; ushort *tmp ; unsigned long __ms ; unsigned long tmp___0 ; ushort word___0 ; ushort *tmp___1 ; { { wbuf = (ushort *)cfg_buf; charfields = (ushort *)(& ADVEEP_38C1600_Config_Field_IsChar); chksum = 0U; writew(48, (void volatile *)iop_base + 26U); AdvWaitEEPCmd(iop_base); addr = 0U; } goto ldv_40087; ldv_40086: tmp = charfields; charfields = charfields + 1; if ((unsigned int )*tmp != 0U) { word = *wbuf; } else { word = *wbuf; } { chksum = (int )chksum + (int )*wbuf; writew((int )word, (void volatile *)iop_base + 28U); writew((int )((unsigned int )addr | 64U), (void volatile *)iop_base + 26U); AdvWaitEEPCmd(iop_base); __ms = 100UL; } goto ldv_40084; ldv_40083: { __const_udelay(4295000UL); } ldv_40084: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_40083; } else { } addr = (ushort )((int )addr + 1); wbuf = wbuf + 1; ldv_40087: ; if ((unsigned int )addr <= 20U) { goto ldv_40086; } else { } { writew((int )chksum, (void volatile *)iop_base + 28U); writew((int )((unsigned int )addr | 64U), (void volatile *)iop_base + 26U); AdvWaitEEPCmd(iop_base); wbuf = wbuf + 1; charfields = charfields + 1; addr = 22U; } goto ldv_40091; ldv_40090: tmp___1 = charfields; charfields = charfields + 1; if ((unsigned int )*tmp___1 != 0U) { word___0 = *wbuf; } else { word___0 = *wbuf; } { writew((int )word___0, (void volatile *)iop_base + 28U); writew((int )((unsigned int )addr | 64U), (void volatile *)iop_base + 26U); AdvWaitEEPCmd(iop_base); addr = (ushort )((int )addr + 1); wbuf = wbuf + 1; } ldv_40091: ; if ((unsigned int )addr <= 29U) { goto ldv_40090; } else { } { writew(0, (void volatile *)iop_base + 26U); AdvWaitEEPCmd(iop_base); } return; } } static ushort AdvGet3550EEPConfig(void *iop_base , ADVEEP_3550_CONFIG *cfg_buf ) { ushort wval ; ushort chksum ; ushort *wbuf ; int eep_addr ; ushort *charfields ; ushort *tmp ; ushort *tmp___0 ; { charfields = (ushort *)(& ADVEEP_3550_Config_Field_IsChar); wbuf = (ushort *)cfg_buf; chksum = 0U; eep_addr = 0; goto ldv_40103; ldv_40102: { wval = AdvReadEEPWord(iop_base, eep_addr); chksum = (int )chksum + (int )wval; tmp = charfields; charfields = charfields + 1; } if ((unsigned int )*tmp != 0U) { *wbuf = wval; } else { *wbuf = wval; } eep_addr = eep_addr + 1; wbuf = wbuf + 1; ldv_40103: ; if (eep_addr <= 20) { goto ldv_40102; } else { } { *wbuf = AdvReadEEPWord(iop_base, eep_addr); wbuf = wbuf + 1; charfields = charfields + 1; eep_addr = 22; } goto ldv_40106; ldv_40105: { *wbuf = AdvReadEEPWord(iop_base, eep_addr); tmp___0 = charfields; charfields = charfields + 1; } if ((unsigned int )*tmp___0 != 0U) { *wbuf = *wbuf; } else { } eep_addr = eep_addr + 1; wbuf = wbuf + 1; ldv_40106: ; if (eep_addr <= 29) { goto ldv_40105; } else { } return (chksum); } } static ushort AdvGet38C0800EEPConfig(void *iop_base , ADVEEP_38C0800_CONFIG *cfg_buf ) { ushort wval ; ushort chksum ; ushort *wbuf ; int eep_addr ; ushort *charfields ; ushort *tmp ; ushort *tmp___0 ; { charfields = (ushort *)(& ADVEEP_38C0800_Config_Field_IsChar); wbuf = (ushort *)cfg_buf; chksum = 0U; eep_addr = 0; goto ldv_40118; ldv_40117: { wval = AdvReadEEPWord(iop_base, eep_addr); chksum = (int )chksum + (int )wval; tmp = charfields; charfields = charfields + 1; } if ((unsigned int )*tmp != 0U) { *wbuf = wval; } else { *wbuf = wval; } eep_addr = eep_addr + 1; wbuf = wbuf + 1; ldv_40118: ; if (eep_addr <= 20) { goto ldv_40117; } else { } { *wbuf = AdvReadEEPWord(iop_base, eep_addr); wbuf = wbuf + 1; charfields = charfields + 1; eep_addr = 22; } goto ldv_40121; ldv_40120: { *wbuf = AdvReadEEPWord(iop_base, eep_addr); tmp___0 = charfields; charfields = charfields + 1; } if ((unsigned int )*tmp___0 != 0U) { *wbuf = *wbuf; } else { } eep_addr = eep_addr + 1; wbuf = wbuf + 1; ldv_40121: ; if (eep_addr <= 29) { goto ldv_40120; } else { } return (chksum); } } static ushort AdvGet38C1600EEPConfig(void *iop_base , ADVEEP_38C1600_CONFIG *cfg_buf ) { ushort wval ; ushort chksum ; ushort *wbuf ; int eep_addr ; ushort *charfields ; ushort *tmp ; ushort *tmp___0 ; { charfields = (ushort *)(& ADVEEP_38C1600_Config_Field_IsChar); wbuf = (ushort *)cfg_buf; chksum = 0U; eep_addr = 0; goto ldv_40133; ldv_40132: { wval = AdvReadEEPWord(iop_base, eep_addr); chksum = (int )chksum + (int )wval; tmp = charfields; charfields = charfields + 1; } if ((unsigned int )*tmp != 0U) { *wbuf = wval; } else { *wbuf = wval; } eep_addr = eep_addr + 1; wbuf = wbuf + 1; ldv_40133: ; if (eep_addr <= 20) { goto ldv_40132; } else { } { *wbuf = AdvReadEEPWord(iop_base, eep_addr); wbuf = wbuf + 1; charfields = charfields + 1; eep_addr = 22; } goto ldv_40136; ldv_40135: { *wbuf = AdvReadEEPWord(iop_base, eep_addr); tmp___0 = charfields; charfields = charfields + 1; } if ((unsigned int )*tmp___0 != 0U) { *wbuf = *wbuf; } else { } eep_addr = eep_addr + 1; wbuf = wbuf + 1; ldv_40136: ; if (eep_addr <= 29) { goto ldv_40135; } else { } return (chksum); } } static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc ) { void *iop_base ; ushort warn_code ; ADVEEP_3550_CONFIG eep_config ; ushort tmp ; { { iop_base = asc_dvc->iop_base; warn_code = 0U; tmp = AdvGet3550EEPConfig(iop_base, & eep_config); } if ((int )tmp != (int )eep_config.check_sum) { { warn_code = (ushort )((unsigned int )warn_code | 2U); memcpy((void *)(& eep_config), (void const *)(& Default_3550_EEPROM_Config), 74UL); eep_config.serial_number_word3 = AdvReadEEPWord(iop_base, 20); eep_config.serial_number_word2 = AdvReadEEPWord(iop_base, 19); eep_config.serial_number_word1 = AdvReadEEPWord(iop_base, 18); AdvSet3550EEPConfig(iop_base, & eep_config); } } else { } asc_dvc->wdtr_able = eep_config.wdtr_able; asc_dvc->sdtr_able = eep_config.sdtr_able; asc_dvc->ultra_able = eep_config.ultra_able; asc_dvc->tagqng_able = eep_config.tagqng_able; (asc_dvc->cfg)->disc_enable = eep_config.disc_enable; asc_dvc->max_host_qng = eep_config.max_host_qng; asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; asc_dvc->chip_scsi_id = (unsigned int )eep_config.adapter_scsi_id & 15U; asc_dvc->start_motor = eep_config.start_motor; asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; asc_dvc->bios_ctrl = eep_config.bios_ctrl; asc_dvc->no_scam = eep_config.scam_tolerant; (asc_dvc->cfg)->serial1 = eep_config.serial_number_word1; (asc_dvc->cfg)->serial2 = eep_config.serial_number_word2; (asc_dvc->cfg)->serial3 = eep_config.serial_number_word3; if ((unsigned int )eep_config.max_host_qng > 253U) { eep_config.max_host_qng = 253U; } else if ((unsigned int )eep_config.max_host_qng <= 15U) { if ((unsigned int )eep_config.max_host_qng == 0U) { eep_config.max_host_qng = 253U; } else { eep_config.max_host_qng = 16U; } } else { } if ((unsigned int )eep_config.max_dvc_qng > 63U) { eep_config.max_dvc_qng = 63U; } else if ((unsigned int )eep_config.max_dvc_qng <= 3U) { if ((unsigned int )eep_config.max_dvc_qng == 0U) { eep_config.max_dvc_qng = 63U; } else { eep_config.max_dvc_qng = 4U; } } else { } if ((int )eep_config.max_dvc_qng > (int )eep_config.max_host_qng) { eep_config.max_dvc_qng = eep_config.max_host_qng; } else { } asc_dvc->max_host_qng = eep_config.max_host_qng; asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; if ((unsigned int )eep_config.termination == 0U) { (asc_dvc->cfg)->termination = 0U; } else if ((unsigned int )eep_config.termination == 1U) { (asc_dvc->cfg)->termination = 64U; } else if ((unsigned int )eep_config.termination == 2U) { (asc_dvc->cfg)->termination = 96U; } else if ((unsigned int )eep_config.termination == 3U) { (asc_dvc->cfg)->termination = 112U; } else { (asc_dvc->cfg)->termination = 0U; warn_code = (ushort )((unsigned int )warn_code | 4U); } return ((int )warn_code); } } static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc ) { void *iop_base ; ushort warn_code ; ADVEEP_38C0800_CONFIG eep_config ; uchar tid ; uchar termination ; ushort sdtr_speed ; ushort tmp ; { { sdtr_speed = 0U; iop_base = asc_dvc->iop_base; warn_code = 0U; tmp = AdvGet38C0800EEPConfig(iop_base, & eep_config); } if ((int )tmp != (int )eep_config.check_sum) { { warn_code = (ushort )((unsigned int )warn_code | 2U); memcpy((void *)(& eep_config), (void const *)(& Default_38C0800_EEPROM_Config), 128UL); eep_config.serial_number_word3 = AdvReadEEPWord(iop_base, 20); eep_config.serial_number_word2 = AdvReadEEPWord(iop_base, 19); eep_config.serial_number_word1 = AdvReadEEPWord(iop_base, 18); AdvSet38C0800EEPConfig(iop_base, & eep_config); } } else { } asc_dvc->wdtr_able = eep_config.wdtr_able; asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; asc_dvc->tagqng_able = eep_config.tagqng_able; (asc_dvc->cfg)->disc_enable = eep_config.disc_enable; asc_dvc->max_host_qng = eep_config.max_host_qng; asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; asc_dvc->chip_scsi_id = (unsigned int )eep_config.adapter_scsi_id & 15U; asc_dvc->start_motor = eep_config.start_motor; asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; asc_dvc->bios_ctrl = eep_config.bios_ctrl; asc_dvc->no_scam = eep_config.scam_tolerant; (asc_dvc->cfg)->serial1 = eep_config.serial_number_word1; (asc_dvc->cfg)->serial2 = eep_config.serial_number_word2; (asc_dvc->cfg)->serial3 = eep_config.serial_number_word3; asc_dvc->sdtr_able = 0U; tid = 0U; goto ldv_40154; ldv_40153: ; if ((unsigned int )tid == 0U) { sdtr_speed = asc_dvc->sdtr_speed1; } else if ((unsigned int )tid == 4U) { sdtr_speed = asc_dvc->sdtr_speed2; } else if ((unsigned int )tid == 8U) { sdtr_speed = asc_dvc->sdtr_speed3; } else if ((unsigned int )tid == 12U) { sdtr_speed = asc_dvc->sdtr_speed4; } else { } if (((int )sdtr_speed & 15) != 0) { asc_dvc->sdtr_able = (ushort )((int )((short )asc_dvc->sdtr_able) | (int )((short )(1 << (int )tid))); } else { } sdtr_speed = (ushort )((int )sdtr_speed >> 4); tid = (uchar )((int )tid + 1); ldv_40154: ; if ((unsigned int )tid <= 15U) { goto ldv_40153; } else { } if ((unsigned int )eep_config.max_host_qng > 253U) { eep_config.max_host_qng = 253U; } else if ((unsigned int )eep_config.max_host_qng <= 15U) { if ((unsigned int )eep_config.max_host_qng == 0U) { eep_config.max_host_qng = 253U; } else { eep_config.max_host_qng = 16U; } } else { } if ((unsigned int )eep_config.max_dvc_qng > 63U) { eep_config.max_dvc_qng = 63U; } else if ((unsigned int )eep_config.max_dvc_qng <= 3U) { if ((unsigned int )eep_config.max_dvc_qng == 0U) { eep_config.max_dvc_qng = 63U; } else { eep_config.max_dvc_qng = 4U; } } else { } if ((int )eep_config.max_dvc_qng > (int )eep_config.max_host_qng) { eep_config.max_dvc_qng = eep_config.max_host_qng; } else { } asc_dvc->max_host_qng = eep_config.max_host_qng; asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; if ((unsigned int )eep_config.termination_se == 0U) { termination = 0U; } else if ((unsigned int )eep_config.termination_se == 1U) { termination = 0U; } else if ((unsigned int )eep_config.termination_se == 2U) { termination = 32U; } else if ((unsigned int )eep_config.termination_se == 3U) { termination = 48U; } else { termination = 0U; warn_code = (ushort )((unsigned int )warn_code | 4U); } if ((unsigned int )eep_config.termination_lvd == 0U) { (asc_dvc->cfg)->termination = termination; } else if ((unsigned int )eep_config.termination_lvd == 1U) { (asc_dvc->cfg)->termination = termination; } else if ((unsigned int )eep_config.termination_lvd == 2U) { (asc_dvc->cfg)->termination = (uchar )((unsigned int )termination | 128U); } else if ((unsigned int )eep_config.termination_lvd == 3U) { (asc_dvc->cfg)->termination = (uchar )((unsigned int )termination | 192U); } else { (asc_dvc->cfg)->termination = termination; warn_code = (ushort )((unsigned int )warn_code | 4U); } return ((int )warn_code); } } static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc ) { void *iop_base ; ushort warn_code ; ADVEEP_38C1600_CONFIG eep_config ; uchar tid ; uchar termination ; ushort sdtr_speed ; struct pci_dev *pdev ; struct device const *__mptr ; ADV_DVC_VAR const *__mptr___0 ; u8 ints ; ushort tmp ; { { sdtr_speed = 0U; iop_base = asc_dvc->iop_base; warn_code = 0U; tmp = AdvGet38C1600EEPConfig(iop_base, & eep_config); } if ((int )tmp != (int )eep_config.check_sum) { { __mptr___0 = (ADV_DVC_VAR const *)asc_dvc; __mptr = (struct device const *)((struct asc_board *)__mptr___0 + 0xfffffffffffffff0UL)->dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; warn_code = (ushort )((unsigned int )warn_code | 2U); memcpy((void *)(& eep_config), (void const *)(& Default_38C1600_EEPROM_Config), 128UL); } if ((pdev->devfn & 7U) != 0U) { { eep_config.cfg_lsw = (unsigned int )eep_config.cfg_lsw & 49151U; writeb(0, (void volatile *)iop_base + 22U); ints = readb((void const volatile *)iop_base + 18U); } if (((int )ints & 1) == 0) { eep_config.cfg_lsw = (unsigned int )eep_config.cfg_lsw & 63487U; } else { } } else { } { eep_config.serial_number_word3 = AdvReadEEPWord(iop_base, 20); eep_config.serial_number_word2 = AdvReadEEPWord(iop_base, 19); eep_config.serial_number_word1 = AdvReadEEPWord(iop_base, 18); AdvSet38C1600EEPConfig(iop_base, & eep_config); } } else { } asc_dvc->wdtr_able = eep_config.wdtr_able; asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; asc_dvc->ppr_able = 0U; asc_dvc->tagqng_able = eep_config.tagqng_able; (asc_dvc->cfg)->disc_enable = eep_config.disc_enable; asc_dvc->max_host_qng = eep_config.max_host_qng; asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; asc_dvc->chip_scsi_id = (unsigned int )eep_config.adapter_scsi_id & 7U; asc_dvc->start_motor = eep_config.start_motor; asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; asc_dvc->bios_ctrl = eep_config.bios_ctrl; asc_dvc->no_scam = eep_config.scam_tolerant; asc_dvc->sdtr_able = 0U; tid = 0U; goto ldv_40172; ldv_40171: ; if ((unsigned int )tid == 0U) { sdtr_speed = asc_dvc->sdtr_speed1; } else if ((unsigned int )tid == 4U) { sdtr_speed = asc_dvc->sdtr_speed2; } else if ((unsigned int )tid == 8U) { sdtr_speed = asc_dvc->sdtr_speed3; } else if ((unsigned int )tid == 12U) { sdtr_speed = asc_dvc->sdtr_speed4; } else { } if (((int )sdtr_speed & 7) != 0) { asc_dvc->sdtr_able = (ushort )((int )((short )asc_dvc->sdtr_able) | (int )((short )(1 << (int )tid))); } else { } sdtr_speed = (ushort )((int )sdtr_speed >> 4); tid = (uchar )((int )tid + 1); ldv_40172: ; if ((unsigned int )tid <= 7U) { goto ldv_40171; } else { } if ((unsigned int )eep_config.max_host_qng > 253U) { eep_config.max_host_qng = 253U; } else if ((unsigned int )eep_config.max_host_qng <= 15U) { if ((unsigned int )eep_config.max_host_qng == 0U) { eep_config.max_host_qng = 253U; } else { eep_config.max_host_qng = 16U; } } else { } if ((unsigned int )eep_config.max_dvc_qng > 63U) { eep_config.max_dvc_qng = 63U; } else if ((unsigned int )eep_config.max_dvc_qng <= 3U) { if ((unsigned int )eep_config.max_dvc_qng == 0U) { eep_config.max_dvc_qng = 63U; } else { eep_config.max_dvc_qng = 4U; } } else { } if ((int )eep_config.max_dvc_qng > (int )eep_config.max_host_qng) { eep_config.max_dvc_qng = eep_config.max_host_qng; } else { } asc_dvc->max_host_qng = eep_config.max_host_qng; asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; if ((unsigned int )eep_config.termination_se == 0U) { termination = 0U; } else if ((unsigned int )eep_config.termination_se == 1U) { termination = 0U; } else if ((unsigned int )eep_config.termination_se == 2U) { termination = 32U; } else if ((unsigned int )eep_config.termination_se == 3U) { termination = 48U; } else { termination = 0U; warn_code = (ushort )((unsigned int )warn_code | 4U); } if ((unsigned int )eep_config.termination_lvd == 0U) { (asc_dvc->cfg)->termination = termination; } else if ((unsigned int )eep_config.termination_lvd == 1U) { (asc_dvc->cfg)->termination = termination; } else if ((unsigned int )eep_config.termination_lvd == 2U) { (asc_dvc->cfg)->termination = (uchar )((unsigned int )termination | 128U); } else if ((unsigned int )eep_config.termination_lvd == 3U) { (asc_dvc->cfg)->termination = (uchar )((unsigned int )termination | 192U); } else { (asc_dvc->cfg)->termination = termination; warn_code = (ushort )((unsigned int )warn_code | 4U); } return ((int )warn_code); } } static int AdvInitGetConfig(struct pci_dev *pdev , struct Scsi_Host *shost ) { struct asc_board *board ; void *tmp ; ADV_DVC_VAR *asc_dvc ; unsigned short warn_code ; void *iop_base ; u16 cmd ; int status ; unsigned long __ms ; unsigned long tmp___0 ; unsigned char tmp___1 ; unsigned short tmp___2 ; int tmp___3 ; { { tmp = shost_priv(shost); board = (struct asc_board *)tmp; asc_dvc = & board->dvc_var.adv_dvc_var; warn_code = 0U; iop_base = asc_dvc->iop_base; asc_dvc->err_code = 0U; (asc_dvc->cfg)->control_flag = 0U; pci_read_config_word((struct pci_dev const *)pdev, 4, & cmd); } if (((int )cmd & 64) == 0) { (asc_dvc->cfg)->control_flag = (ushort )((unsigned int )(asc_dvc->cfg)->control_flag | 1U); } else { } { (asc_dvc->cfg)->chip_version = readb((void const volatile *)iop_base + 3U); tmp___1 = readb((void const volatile *)iop_base + 1U); } if ((unsigned int )tmp___1 == 37U) { { tmp___2 = readw((void const volatile *)iop_base); } if ((unsigned int )tmp___2 == 1217U) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } if (tmp___3 == 0) { asc_dvc->err_code = 512U; return (-1); } else { if ((unsigned int )asc_dvc->chip_type - 1U > 2U) { asc_dvc->err_code = (ushort )((unsigned int )asc_dvc->err_code | 8192U); return (-1); } else { } { writew(198, (void volatile *)iop_base + 2U); __ms = 100UL; } goto ldv_40186; ldv_40185: { __const_udelay(4295000UL); } ldv_40186: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_40185; } else { } { writew(197, (void volatile *)iop_base + 2U); } if ((unsigned int )asc_dvc->chip_type == 3U) { { status = AdvInitFrom38C1600EEP(asc_dvc); } } else if ((unsigned int )asc_dvc->chip_type == 2U) { { status = AdvInitFrom38C0800EEP(asc_dvc); } } else { { status = AdvInitFrom3550EEP(asc_dvc); } } warn_code = (unsigned short )((int )((short )warn_code) | (int )((short )status)); } if ((unsigned int )warn_code != 0U) { { dev_printk("\f", (struct device const *)(& shost->shost_gendev), "warning: 0x%x\n", (int )warn_code); } } else { } if ((unsigned int )asc_dvc->err_code != 0U) { { dev_printk("\v", (struct device const *)(& shost->shost_gendev), "error code 0x%x\n", (int )asc_dvc->err_code); } } else { } return ((int )asc_dvc->err_code); } } static struct scsi_host_template advansys_template = {0, "advansys", 0, 0, & advansys_info, 0, 0, & advansys_queuecommand, 0, 0, 0, & advansys_reset, 0, 0, & advansys_slave_configure, 0, 0, 0, 0, 0, 0, & advansys_biosparam, 0, & advansys_show_info, 0, 0, 0, "advansys", 0, 0, 0, (unsigned short)0, (unsigned short)0, 0U, 0UL, (short)0, (unsigned char)0, 0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1U, 1U, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0U, 0, 0, {0, 0}, 0ULL, 0U, 0, (_Bool)0}; static int advansys_wide_init_chip(struct Scsi_Host *shost ) { struct asc_board *board ; void *tmp ; struct adv_dvc_var *adv_dvc ; int req_cnt ; adv_req_t *reqp ; int sg_cnt ; adv_sgblk_t *sgp ; int warn_code ; int err_code ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; { { tmp = shost_priv(shost); board = (struct asc_board *)tmp; adv_dvc = & board->dvc_var.adv_dvc_var; req_cnt = 0; reqp = (adv_req_t *)0; sg_cnt = 0; tmp___0 = kmalloc(4320UL, 208U); adv_dvc->carrier_buf = (ADV_CARR_T *)tmp___0; } if ((unsigned long )adv_dvc->carrier_buf == (unsigned long )((ADV_CARR_T *)0)) { goto kmalloc_failed; } else { } req_cnt = (int )adv_dvc->max_host_qng; goto ldv_40203; ldv_40202: { tmp___1 = kmalloc((unsigned long )req_cnt * 144UL, 208U); reqp = (adv_req_t *)tmp___1; } if ((unsigned long )reqp != (unsigned long )((adv_req_t *)0)) { goto ldv_40201; } else { } req_cnt = req_cnt - 1; ldv_40203: ; if (req_cnt > 0) { goto ldv_40202; } else { } ldv_40201: ; if ((unsigned long )reqp == (unsigned long )((adv_req_t *)0)) { goto kmalloc_failed; } else { } adv_dvc->orig_reqp = reqp; board->adv_sgblkp = (adv_sgblk_t *)0; sg_cnt = 0; goto ldv_40206; ldv_40205: { tmp___2 = kmalloc(168UL, 208U); sgp = (adv_sgblk_t *)tmp___2; } if ((unsigned long )sgp == (unsigned long )((adv_sgblk_t *)0)) { goto ldv_40204; } else { } sgp->next_sgblkp = board->adv_sgblkp; board->adv_sgblkp = sgp; sg_cnt = sg_cnt + 1; ldv_40206: ; if (sg_cnt <= 252) { goto ldv_40205; } else { } ldv_40204: ; if ((unsigned long )board->adv_sgblkp == (unsigned long )((adv_sgblk_t *)0)) { goto kmalloc_failed; } else { } req_cnt = req_cnt - 1; (reqp + (unsigned long )req_cnt)->next_reqp = (struct adv_req *)0; goto ldv_40208; ldv_40207: (reqp + ((unsigned long )req_cnt + 0xffffffffffffffffUL))->next_reqp = reqp + (unsigned long )req_cnt; req_cnt = req_cnt - 1; ldv_40208: ; if (req_cnt > 0) { goto ldv_40207; } else { } board->adv_reqp = reqp; if ((unsigned int )adv_dvc->chip_type == 1U) { { warn_code = AdvInitAsc3550Driver(adv_dvc); } } else if ((unsigned int )adv_dvc->chip_type == 2U) { { warn_code = AdvInitAsc38C0800Driver(adv_dvc); } } else { { warn_code = AdvInitAsc38C1600Driver(adv_dvc); } } err_code = (int )adv_dvc->err_code; if ((warn_code | err_code) != 0) { { dev_printk("\f", (struct device const *)(& shost->shost_gendev), "error: warn 0x%x, error 0x%x\n", warn_code, err_code); } } else { } goto exit; kmalloc_failed: { dev_printk("\v", (struct device const *)(& shost->shost_gendev), "error: kmalloc() failed\n"); err_code = -1; } exit: ; return (err_code); } } static void advansys_wide_free_mem(struct asc_board *board ) { struct adv_dvc_var *adv_dvc ; adv_sgblk_t *sgp ; { { adv_dvc = & board->dvc_var.adv_dvc_var; kfree((void const *)adv_dvc->carrier_buf); adv_dvc->carrier_buf = (ADV_CARR_T *)0; kfree((void const *)adv_dvc->orig_reqp); board->adv_reqp = (adv_req_t *)0; adv_dvc->orig_reqp = (struct adv_req *)0; } goto ldv_40217; ldv_40216: { sgp = board->adv_sgblkp; board->adv_sgblkp = sgp->next_sgblkp; kfree((void const *)sgp); } ldv_40217: ; if ((unsigned long )board->adv_sgblkp != (unsigned long )((adv_sgblk_t *)0)) { goto ldv_40216; } else { } return; } } static int advansys_board_found(struct Scsi_Host *shost , unsigned int iop , int bus_type ) { struct pci_dev *pdev ; struct asc_board *boardp ; void *tmp ; ASC_DVC_VAR *asc_dvc_varp ; ADV_DVC_VAR *adv_dvc_varp ; int share_irq ; int warn_code ; int ret ; struct device const *__mptr ; int tmp___0 ; int tmp___1 ; ASCEEP_CONFIG *ep ; int tmp___2 ; ADVEEP_3550_CONFIG *ep_3550 ; ADVEEP_38C0800_CONFIG *ep_38C0800 ; ADVEEP_38C1600_CONFIG *ep_38C1600 ; unsigned short tmp___3 ; void *tmp___4 ; ushort tmp___5 ; int tmp___6 ; { { tmp = shost_priv(shost); boardp = (struct asc_board *)tmp; asc_dvc_varp = (ASC_DVC_VAR *)0; adv_dvc_varp = (ADV_DVC_VAR *)0; } if (bus_type == 4) { __mptr = (struct device const *)boardp->dev; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; } else { pdev = (struct pci_dev *)0; } if ((boardp->flags & 4U) == 0U) { asc_dvc_varp = & boardp->dvc_var.asc_dvc_var; asc_dvc_varp->bus_type = (ushort )bus_type; asc_dvc_varp->drv_ptr = boardp; asc_dvc_varp->cfg = & boardp->dvc_cfg.asc_dvc_cfg; asc_dvc_varp->iop_base = iop; } else { adv_dvc_varp = & boardp->dvc_var.adv_dvc_var; adv_dvc_varp->drv_ptr = boardp; adv_dvc_varp->cfg = & boardp->dvc_cfg.adv_dvc_cfg; if ((unsigned int )pdev->device == 8960U) { adv_dvc_varp->chip_type = 1U; } else if ((unsigned int )pdev->device == 9472U) { adv_dvc_varp->chip_type = 2U; } else { adv_dvc_varp->chip_type = 3U; } { boardp->asc_n_io_port = pdev->resource[1].start != 0ULL || pdev->resource[1].end != pdev->resource[1].start ? (unsigned int )((int )((ushort )pdev->resource[1].end) - (int )((ushort )pdev->resource[1].start)) + 1U : 0U; boardp->ioremap_addr = pci_ioremap_bar(pdev, 1); } if ((unsigned long )boardp->ioremap_addr == (unsigned long )((void *)0)) { { dev_printk("\v", (struct device const *)(& shost->shost_gendev), "ioremap(%lx, %d) returned NULL\n", (long )pdev->resource[1].start, (int )boardp->asc_n_io_port); ret = -19; } goto err_shost; } else { } adv_dvc_varp->iop_base = boardp->ioremap_addr; boardp->ioport = (ushort )iop; } if ((boardp->flags & 4U) == 0U) { { if ((int )asc_dvc_varp->bus_type == 4) { goto case_4; } else { } goto switch_default; case_4: /* CIL Label */ shost->unchecked_isa_dma = 0U; share_irq = 128; goto ldv_40235; switch_default: /* CIL Label */ { dev_printk("\v", (struct device const *)(& shost->shost_gendev), "unknown adapter type: %d\n", (int )asc_dvc_varp->bus_type); shost->unchecked_isa_dma = 1U; share_irq = 0; } goto ldv_40235; switch_break: /* CIL Label */ ; } ldv_40235: { tmp___0 = AscInitGetConfig(shost); ret = tmp___0 != 0 ? -19 : 0; } } else { { shost->unchecked_isa_dma = 0U; share_irq = 128; tmp___1 = AdvInitGetConfig(pdev, shost); ret = tmp___1 != 0 ? -19 : 0; } } if (ret != 0) { goto err_unmap; } else { } if ((boardp->flags & 4U) == 0U) { { boardp->init_tidmask = (ushort )((int )((short )boardp->init_tidmask) | (int )((short )(1 << ((int )(asc_dvc_varp->cfg)->chip_scsi_id & 15)))); ep = & boardp->eep_config.asc_eep; ep->init_sdtr = (asc_dvc_varp->cfg)->sdtr_enable; ep->disc_enable = (asc_dvc_varp->cfg)->disc_enable; ep->use_cmd_qng = (asc_dvc_varp->cfg)->cmd_qng_enabled; ep->id_speed = (uchar )(((int )((signed char )ep->id_speed) & 15) | (int )((signed char )((int )(asc_dvc_varp->cfg)->isa_dma_speed << 4))); ep->start_motor = asc_dvc_varp->start_motor; ep->cntl = asc_dvc_varp->dvc_cntl; ep->no_scam = asc_dvc_varp->no_scam; ep->max_total_qng = asc_dvc_varp->max_total_qng; ep->id_speed = (uchar )(((int )((signed char )ep->id_speed) & -16) | ((int )((signed char )(asc_dvc_varp->cfg)->chip_scsi_id) & 7)); ep->max_tag_qng = (asc_dvc_varp->cfg)->max_tag_qng[0]; ep->adapter_info[0] = (asc_dvc_varp->cfg)->adapter_info[0]; ep->adapter_info[1] = (asc_dvc_varp->cfg)->adapter_info[1]; ep->adapter_info[2] = (asc_dvc_varp->cfg)->adapter_info[2]; ep->adapter_info[3] = (asc_dvc_varp->cfg)->adapter_info[3]; ep->adapter_info[4] = (asc_dvc_varp->cfg)->adapter_info[4]; ep->adapter_info[5] = (asc_dvc_varp->cfg)->adapter_info[5]; tmp___2 = AscInitSetConfig(pdev, shost); ret = tmp___2 != 0 ? -19 : 0; } if (ret != 0) { goto err_unmap; } else { } } else { if ((unsigned int )adv_dvc_varp->chip_type == 1U) { ep_3550 = & boardp->eep_config.adv_3550_eep; ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id; ep_3550->max_host_qng = adv_dvc_varp->max_host_qng; ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng; ep_3550->termination = (adv_dvc_varp->cfg)->termination; ep_3550->disc_enable = (adv_dvc_varp->cfg)->disc_enable; ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl; ep_3550->wdtr_able = adv_dvc_varp->wdtr_able; ep_3550->sdtr_able = adv_dvc_varp->sdtr_able; ep_3550->ultra_able = adv_dvc_varp->ultra_able; ep_3550->tagqng_able = adv_dvc_varp->tagqng_able; ep_3550->start_motor = adv_dvc_varp->start_motor; ep_3550->scsi_reset_delay = adv_dvc_varp->scsi_reset_wait; ep_3550->serial_number_word1 = (adv_dvc_varp->cfg)->serial1; ep_3550->serial_number_word2 = (adv_dvc_varp->cfg)->serial2; ep_3550->serial_number_word3 = (adv_dvc_varp->cfg)->serial3; } else if ((unsigned int )adv_dvc_varp->chip_type == 2U) { ep_38C0800 = & boardp->eep_config.adv_38C0800_eep; ep_38C0800->adapter_scsi_id = adv_dvc_varp->chip_scsi_id; ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng; ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng; ep_38C0800->termination_lvd = (adv_dvc_varp->cfg)->termination; ep_38C0800->disc_enable = (adv_dvc_varp->cfg)->disc_enable; ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl; ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able; ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; ep_38C0800->start_motor = adv_dvc_varp->start_motor; ep_38C0800->scsi_reset_delay = adv_dvc_varp->scsi_reset_wait; ep_38C0800->serial_number_word1 = (adv_dvc_varp->cfg)->serial1; ep_38C0800->serial_number_word2 = (adv_dvc_varp->cfg)->serial2; ep_38C0800->serial_number_word3 = (adv_dvc_varp->cfg)->serial3; } else { ep_38C1600 = & boardp->eep_config.adv_38C1600_eep; ep_38C1600->adapter_scsi_id = adv_dvc_varp->chip_scsi_id; ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng; ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng; ep_38C1600->termination_lvd = (adv_dvc_varp->cfg)->termination; ep_38C1600->disc_enable = (adv_dvc_varp->cfg)->disc_enable; ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl; ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able; ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; ep_38C1600->start_motor = adv_dvc_varp->start_motor; ep_38C1600->scsi_reset_delay = adv_dvc_varp->scsi_reset_wait; ep_38C1600->serial_number_word1 = (adv_dvc_varp->cfg)->serial1; ep_38C1600->serial_number_word2 = (adv_dvc_varp->cfg)->serial2; ep_38C1600->serial_number_word3 = (adv_dvc_varp->cfg)->serial3; } boardp->init_tidmask = (ushort )((int )((short )boardp->init_tidmask) | (int )((short )(1 << ((int )adv_dvc_varp->chip_scsi_id & 15)))); } shost->max_channel = 0U; if ((boardp->flags & 4U) == 0U) { shost->max_id = 8U; shost->max_lun = 8ULL; shost->max_cmd_len = 12U; shost->io_port = (unsigned long )asc_dvc_varp->iop_base; boardp->asc_n_io_port = 16U; shost->this_id = (int )(asc_dvc_varp->cfg)->chip_scsi_id; shost->can_queue = (int )asc_dvc_varp->max_total_qng; } else { shost->max_id = 16U; shost->max_lun = 8ULL; shost->max_cmd_len = 16U; shost->io_port = (unsigned long )iop; shost->this_id = (int )adv_dvc_varp->chip_scsi_id; shost->can_queue = (int )adv_dvc_varp->max_host_qng; } shost->cmd_per_lun = 1; if ((boardp->flags & 4U) == 0U) { shost->sg_tablesize = (unsigned int )((unsigned short )(((int )asc_dvc_varp->max_total_qng + -2) / 2)) * 7U + 1U; } else { shost->sg_tablesize = 255U; } if ((unsigned int )shost->sg_tablesize > 128U) { shost->sg_tablesize = 128U; } else { } if ((boardp->flags & 4U) == 0U) { { tmp___3 = AscGetChipBiosAddress(asc_dvc_varp->iop_base, (int )asc_dvc_varp->bus_type); shost->base = (unsigned long )tmp___3; } } else { { writew(88, (void volatile *)adv_dvc_varp->iop_base + 4U); boardp->bios_signature = readw((void const volatile *)adv_dvc_varp->iop_base + 6U); writew(90, (void volatile *)adv_dvc_varp->iop_base + 4U); boardp->bios_version = readw((void const volatile *)adv_dvc_varp->iop_base + 6U); writew(84, (void volatile *)adv_dvc_varp->iop_base + 4U); boardp->bios_codeseg = readw((void const volatile *)adv_dvc_varp->iop_base + 6U); writew(86, (void volatile *)adv_dvc_varp->iop_base + 4U); boardp->bios_codelen = readw((void const volatile *)adv_dvc_varp->iop_base + 6U); } if ((unsigned int )boardp->bios_signature == 21930U) { shost->base = (unsigned long )boardp->bios_codeseg << 4; } else { shost->base = 0UL; } } { shost->dma_channel = 255U; ret = ldv_request_irq_106(boardp->irq, & advansys_interrupt, (unsigned long )share_irq, "advansys", (void *)shost); } if (ret != 0) { if (ret == -16) { { dev_printk("\v", (struct device const *)(& shost->shost_gendev), "request_irq(): IRQ 0x%x already in use\n", boardp->irq); } } else if (ret == -22) { { dev_printk("\v", (struct device const *)(& shost->shost_gendev), "request_irq(): IRQ 0x%x not valid\n", boardp->irq); } } else { { dev_printk("\v", (struct device const *)(& shost->shost_gendev), "request_irq(): IRQ 0x%x failed with %d\n", boardp->irq, ret); } } goto err_free_dma; } else { } if ((boardp->flags & 4U) == 0U) { { tmp___4 = kzalloc(64UL, 208U); asc_dvc_varp->overrun_buf = (uchar *)tmp___4; } if ((unsigned long )asc_dvc_varp->overrun_buf == (unsigned long )((uchar *)0U)) { ret = -12; goto err_free_irq; } else { } { tmp___5 = AscInitAsc1000Driver(asc_dvc_varp); warn_code = (int )tmp___5; } if (warn_code != 0 || (unsigned int )asc_dvc_varp->err_code != 0U) { { dev_printk("\v", (struct device const *)(& shost->shost_gendev), "error: init_state 0x%x, warn 0x%x, error 0x%x\n", (int )asc_dvc_varp->init_state, warn_code, (int )asc_dvc_varp->err_code); } if (asc_dvc_varp->overrun_dma == 0ULL) { ret = -19; goto err_free_mem; } else { } } else { } } else { { tmp___6 = advansys_wide_init_chip(shost); } if (tmp___6 != 0) { ret = -19; goto err_free_mem; } else { } } { ret = ldv_scsi_add_host_107(shost, boardp->dev); } if (ret != 0) { goto err_free_mem; } else { } { scsi_scan_host(shost); } return (0); err_free_mem: ; if ((boardp->flags & 4U) == 0U) { if (asc_dvc_varp->overrun_dma != 0ULL) { { dma_unmap_single_attrs(boardp->dev, asc_dvc_varp->overrun_dma, 64UL, 2, (struct dma_attrs *)0); } } else { } { kfree((void const *)asc_dvc_varp->overrun_buf); } } else { { advansys_wide_free_mem(boardp); } } err_free_irq: { ldv_free_irq_108(boardp->irq, (void *)shost); } err_free_dma: ; err_unmap: ; if ((unsigned long )boardp->ioremap_addr != (unsigned long )((void *)0)) { { ldv_iounmap_109((void volatile *)boardp->ioremap_addr); } } else { } err_shost: ; return (ret); } } static int advansys_release(struct Scsi_Host *shost ) { struct asc_board *board ; void *tmp ; { { tmp = shost_priv(shost); board = (struct asc_board *)tmp; ldv_scsi_remove_host_110(shost); ldv_free_irq_111(board->irq, (void *)shost); } if ((board->flags & 4U) == 0U) { { dma_unmap_single_attrs(board->dev, board->dvc_var.asc_dvc_var.overrun_dma, 64UL, 2, (struct dma_attrs *)0); kfree((void const *)board->dvc_var.asc_dvc_var.overrun_buf); } } else { { ldv_iounmap_112((void volatile *)board->ioremap_addr); advansys_wide_free_mem(board); } } { scsi_host_put(shost); } return (0); } } static unsigned int _asc_def_iop_base[11U] = { 256U, 272U, 288U, 304U, 320U, 336U, 400U, 528U, 560U, 592U, 816U}; static unsigned int advansys_isa_irq_no(unsigned int iop_base ) { unsigned short cfg_lsw ; unsigned short tmp ; unsigned int chip_irq ; { { tmp = inw((int )(iop_base + 2U)); cfg_lsw = tmp; chip_irq = (unsigned int )((((int )cfg_lsw >> 2) & 3) + 10); } if (chip_irq == 13U) { chip_irq = 15U; } else { } return (chip_irq); } } static int advansys_isa_probe(struct device *dev , unsigned int id ) { int err ; unsigned int iop_base ; struct Scsi_Host *shost ; struct asc_board *board ; struct resource *tmp ; int tmp___0 ; unsigned char tmp___1 ; void *tmp___2 ; { { err = -19; iop_base = _asc_def_iop_base[id]; tmp = __request_region(& ioport_resource, (resource_size_t )iop_base, 16ULL, "advansys", 0); } if ((unsigned long )tmp == (unsigned long )((struct resource *)0)) { return (-19); } else { } { tmp___0 = AscFindSignature(iop_base); } if (tmp___0 == 0) { goto release_region; } else { } { tmp___1 = AscGetChipVersion(iop_base, 1); } if (((int )tmp___1 & 48) == 0) { goto release_region; } else { } { err = -12; shost = ldv_scsi_host_alloc_113(& advansys_template, 640); } if ((unsigned long )shost == (unsigned long )((struct Scsi_Host *)0)) { goto release_region; } else { } { tmp___2 = shost_priv(shost); board = (struct asc_board *)tmp___2; board->irq = advansys_isa_irq_no(iop_base); board->dev = dev; err = advansys_board_found(shost, iop_base, 1); } if (err != 0) { goto free_host; } else { } { dev_set_drvdata(dev, (void *)shost); } return (0); free_host: { scsi_host_put(shost); } release_region: { __release_region(& ioport_resource, (resource_size_t )iop_base, 16ULL); } return (err); } } static int advansys_isa_remove(struct device *dev , unsigned int id ) { int ioport ; void *tmp ; { { ioport = (int )_asc_def_iop_base[id]; tmp = dev_get_drvdata((struct device const *)dev); advansys_release((struct Scsi_Host *)tmp); __release_region(& ioport_resource, (resource_size_t )ioport, 16ULL); } return (0); } } static struct isa_driver advansys_isa_driver = {0, & advansys_isa_probe, & advansys_isa_remove, 0, 0, 0, {"advansys", 0, & __this_module, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 0}; static unsigned int advansys_vlb_irq_no(unsigned int iop_base ) { unsigned short cfg_lsw ; unsigned short tmp ; unsigned int chip_irq ; { { tmp = inw((int )(iop_base + 2U)); cfg_lsw = tmp; chip_irq = (unsigned int )((((int )cfg_lsw >> 2) & 7) + 9); } if ((chip_irq <= 9U || chip_irq == 13U) || chip_irq > 15U) { return (0U); } else { } return (chip_irq); } } static int advansys_vlb_probe(struct device *dev , unsigned int id ) { int err ; unsigned int iop_base ; struct Scsi_Host *shost ; struct asc_board *board ; struct resource *tmp ; int tmp___0 ; unsigned char tmp___1 ; void *tmp___2 ; { { err = -19; iop_base = _asc_def_iop_base[id]; tmp = __request_region(& ioport_resource, (resource_size_t )iop_base, 16ULL, "advansys", 0); } if ((unsigned long )tmp == (unsigned long )((struct resource *)0)) { return (-19); } else { } { tmp___0 = AscFindSignature(iop_base); } if (tmp___0 == 0) { goto release_region; } else { } { tmp___1 = AscGetChipVersion(iop_base, 64); } if ((unsigned int )tmp___1 > 7U) { goto release_region; } else { } { err = -12; shost = ldv_scsi_host_alloc_114(& advansys_template, 640); } if ((unsigned long )shost == (unsigned long )((struct Scsi_Host *)0)) { goto release_region; } else { } { tmp___2 = shost_priv(shost); board = (struct asc_board *)tmp___2; board->irq = advansys_vlb_irq_no(iop_base); board->dev = dev; err = advansys_board_found(shost, iop_base, 64); } if (err != 0) { goto free_host; } else { } { dev_set_drvdata(dev, (void *)shost); } return (0); free_host: { scsi_host_put(shost); } release_region: { __release_region(& ioport_resource, (resource_size_t )iop_base, 16ULL); } return (-19); } } static struct isa_driver advansys_vlb_driver = {0, & advansys_vlb_probe, & advansys_isa_remove, 0, 0, 0, {"advansys_vlb", 0, & __this_module, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 0}; static struct eisa_device_id advansys_eisa_table[3U] = { {{'A', 'B', 'P', '7', '4', '0', '1', '\000'}, 0UL}, {{'A', 'B', 'P', '7', '5', '0', '1', '\000'}, 0UL}, {{'\000'}, 0UL}}; struct eisa_device_id const __mod_eisa__advansys_eisa_table_device_table[3U] ; static unsigned int advansys_eisa_irq_no(struct eisa_device *edev ) { unsigned short cfg_lsw ; unsigned short tmp ; unsigned int chip_irq ; { { tmp = inw((int )((unsigned int )edev->base_addr + 3206U)); cfg_lsw = tmp; chip_irq = (unsigned int )((((int )cfg_lsw >> 8) & 7) + 10); } if (chip_irq == 13U || chip_irq > 15U) { return (0U); } else { } return (chip_irq); } } static int advansys_eisa_probe(struct device *dev ) { int i ; int ioport ; int irq ; int err ; struct eisa_device *edev ; struct device const *__mptr ; struct eisa_scsi_data *data ; void *tmp ; struct asc_board *board ; struct Scsi_Host *shost ; struct resource *tmp___0 ; int tmp___1 ; unsigned int tmp___2 ; void *tmp___3 ; { { irq = 0; __mptr = (struct device const *)dev; edev = (struct eisa_device *)__mptr + 0xfffffffffffffef8UL; err = -12; tmp = kzalloc(16UL, 208U); data = (struct eisa_scsi_data *)tmp; } if ((unsigned long )data == (unsigned long )((struct eisa_scsi_data *)0)) { goto fail; } else { } ioport = (int )((unsigned int )edev->base_addr + 3120U); err = -19; i = 0; goto ldv_40314; ldv_40313: { tmp___0 = __request_region(& ioport_resource, (resource_size_t )ioport, 16ULL, "advansys", 0); } if ((unsigned long )tmp___0 == (unsigned long )((struct resource *)0)) { { printk("\fRegion %x-%x busy\n", ioport, ioport + 15); } goto ldv_40310; } else { } { tmp___1 = AscFindSignature((unsigned int )ioport); } if (tmp___1 == 0) { { __release_region(& ioport_resource, (resource_size_t )ioport, 16ULL); } goto ldv_40310; } else { } { inw(ioport + 4); } if (irq == 0) { { tmp___2 = advansys_eisa_irq_no(edev); irq = (int )tmp___2; } } else { } { err = -12; shost = ldv_scsi_host_alloc_115(& advansys_template, 640); } if ((unsigned long )shost == (unsigned long )((struct Scsi_Host *)0)) { goto release_region; } else { } { tmp___3 = shost_priv(shost); board = (struct asc_board *)tmp___3; board->irq = (unsigned int )irq; board->dev = dev; err = advansys_board_found(shost, (unsigned int )ioport, 2); } if (err == 0) { data->host[i] = shost; goto ldv_40310; } else { } { scsi_host_put(shost); } release_region: { __release_region(& ioport_resource, (resource_size_t )ioport, 16ULL); } goto ldv_40312; ldv_40310: i = i + 1; ioport = ioport + 32; ldv_40314: ; if (i <= 1) { goto ldv_40313; } else { } ldv_40312: ; if (err != 0) { goto free_data; } else { } { dev_set_drvdata(dev, (void *)data); } return (0); free_data: { kfree((void const *)data->host[0]); kfree((void const *)data->host[1]); kfree((void const *)data); } fail: ; return (err); } } static int advansys_eisa_remove(struct device *dev ) { int i ; struct eisa_scsi_data *data ; void *tmp ; int ioport ; struct Scsi_Host *shost ; { { tmp = dev_get_drvdata((struct device const *)dev); data = (struct eisa_scsi_data *)tmp; i = 0; } goto ldv_40325; ldv_40324: shost = data->host[i]; if ((unsigned long )shost == (unsigned long )((struct Scsi_Host *)0)) { goto ldv_40323; } else { } { ioport = (int )shost->io_port; advansys_release(shost); __release_region(& ioport_resource, (resource_size_t )ioport, 16ULL); } ldv_40323: i = i + 1; ldv_40325: ; if (i <= 1) { goto ldv_40324; } else { } { kfree((void const *)data); } return (0); } } static struct eisa_driver advansys_eisa_driver = {(struct eisa_device_id const *)(& advansys_eisa_table), {"advansys", 0, 0, 0, (_Bool)0, 0, 0, & advansys_eisa_probe, & advansys_eisa_remove, 0, 0, 0, 0, 0, 0}}; static struct pci_device_id advansys_pci_tbl[7U] = { {4301U, 4352U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4301U, 4608U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4301U, 4864U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4301U, 8960U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4301U, 9472U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4301U, 9984U, 4294967295U, 4294967295U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__advansys_pci_tbl_device_table[7U] ; static void advansys_set_latency(struct pci_dev *pdev ) { u8 latency ; { if ((unsigned int )pdev->device == 4352U || (unsigned int )pdev->device == 4608U) { { pci_write_config_byte((struct pci_dev const *)pdev, 13, 0); } } else { { pci_read_config_byte((struct pci_dev const *)pdev, 13, & latency); } if ((unsigned int )latency <= 31U) { { pci_write_config_byte((struct pci_dev const *)pdev, 13, 32); } } else { } } return; } } static int advansys_pci_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) { int err ; int ioport ; struct Scsi_Host *shost ; struct asc_board *board ; void *tmp ; { { err = pci_enable_device(pdev); } if (err != 0) { goto fail; } else { } { err = pci_request_regions(pdev, "advansys"); } if (err != 0) { goto disable_device; } else { } { pci_set_master(pdev); advansys_set_latency(pdev); err = -19; } if ((pdev->resource[0].start == 0ULL && pdev->resource[0].end == pdev->resource[0].start) || pdev->resource[0].end - pdev->resource[0].start == 0xffffffffffffffffULL) { goto release_region; } else { } { ioport = (int )pdev->resource[0].start; err = -12; shost = ldv_scsi_host_alloc_116(& advansys_template, 640); } if ((unsigned long )shost == (unsigned long )((struct Scsi_Host *)0)) { goto release_region; } else { } { tmp = shost_priv(shost); board = (struct asc_board *)tmp; board->irq = pdev->irq; board->dev = & pdev->dev; } if (((unsigned int )pdev->device == 8960U || (unsigned int )pdev->device == 9472U) || (unsigned int )pdev->device == 9984U) { board->flags = board->flags | 4U; } else { } { err = advansys_board_found(shost, (unsigned int )ioport, 4); } if (err != 0) { goto free_host; } else { } { pci_set_drvdata(pdev, (void *)shost); } return (0); free_host: { scsi_host_put(shost); } release_region: { pci_release_regions(pdev); } disable_device: { pci_disable_device(pdev); } fail: ; return (err); } } static void advansys_pci_remove(struct pci_dev *pdev ) { void *tmp ; { { tmp = pci_get_drvdata(pdev); advansys_release((struct Scsi_Host *)tmp); pci_release_regions(pdev); pci_disable_device(pdev); } return; } } static struct pci_driver advansys_pci_driver = {{0, 0}, "advansys", (struct pci_device_id const *)(& advansys_pci_tbl), & advansys_pci_probe, & advansys_pci_remove, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int advansys_init(void) { int error ; { { error = ldv_isa_register_driver_117(& advansys_isa_driver, 11U); } if (error != 0) { goto fail; } else { } { error = ldv_isa_register_driver_118(& advansys_vlb_driver, 11U); } if (error != 0) { goto unregister_isa; } else { } { error = eisa_driver_register(& advansys_eisa_driver); } if (error != 0) { goto unregister_vlb; } else { } { error = ldv___pci_register_driver_119(& advansys_pci_driver, & __this_module, "advansys"); } if (error != 0) { goto unregister_eisa; } else { } return (0); unregister_eisa: { eisa_driver_unregister(& advansys_eisa_driver); } unregister_vlb: { ldv_isa_unregister_driver_120(& advansys_vlb_driver); } unregister_isa: { ldv_isa_unregister_driver_120(& advansys_isa_driver); } fail: ; return (error); } } static void advansys_exit(void) { { { ldv_pci_unregister_driver_122(& advansys_pci_driver); eisa_driver_unregister(& advansys_eisa_driver); ldv_isa_unregister_driver_120(& advansys_vlb_driver); ldv_isa_unregister_driver_120(& advansys_isa_driver); } return; } } void ldv_EMGentry_exit_advansys_exit_14_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_advansys_init_14_7(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_device_driver_io_instance_0(void *arg0 ) ; void ldv_device_driver_io_instance_1(void *arg0 ) ; void ldv_dispatch_deregister_10_1(struct isa_driver *arg0 ) ; void ldv_dispatch_deregister_12_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_9_1(struct Scsi_Host *arg0 ) ; void ldv_dispatch_irq_deregister_5_1(int arg0 ) ; void ldv_dispatch_irq_register_6_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_11_2(struct isa_driver *arg0 ) ; void ldv_dispatch_register_13_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_7_2(struct Scsi_Host *arg0 ) ; void ldv_entry_EMGentry_14(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_2(void *arg0 ) ; int ldv_io_instance_probe_0_11(int (*arg0)(struct device * , unsigned int ) , struct device *arg1 , unsigned int arg2 ) ; int ldv_io_instance_probe_1_11(int (*arg0)(struct device * , unsigned int ) , struct device *arg1 , unsigned int arg2 ) ; void ldv_io_instance_release_0_2(int (*arg0)(struct device * , unsigned int ) , struct device *arg1 , unsigned int arg2 ) ; void ldv_io_instance_release_1_2(int (*arg0)(struct device * , unsigned int ) , struct device *arg1 , unsigned int arg2 ) ; int ldv_isa_register_driver(int arg0 , struct isa_driver *arg1 , unsigned int arg2 ) ; void ldv_isa_unregister_driver(void *arg0 , struct isa_driver *arg1 ) ; int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_3(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; int ldv_scsi_add_host(int arg0 , struct Scsi_Host *arg1 , struct device *arg2 ) ; struct Scsi_Host *ldv_scsi_host_alloc(struct Scsi_Host *arg0 , struct scsi_host_template *arg1 , int arg2 ) ; void ldv_scsi_host_template_instance_callback_4_17(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) ; void ldv_scsi_host_template_instance_callback_4_18(char *(*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) ; void ldv_scsi_host_template_instance_callback_4_19(int (*arg0)(struct Scsi_Host * , struct scsi_cmnd * ) , struct Scsi_Host *arg1 , struct scsi_cmnd *arg2 ) ; void ldv_scsi_host_template_instance_callback_4_20(int (*arg0)(struct seq_file * , struct Scsi_Host * ) , struct seq_file *arg1 , struct Scsi_Host *arg2 ) ; void ldv_scsi_host_template_instance_callback_4_23(int (*arg0)(struct scsi_device * ) , struct scsi_device *arg1 ) ; void ldv_scsi_host_template_instance_callback_4_4(int (*arg0)(struct scsi_device * , struct block_device * , unsigned long , int * ) , struct scsi_device *arg1 , struct block_device *arg2 , unsigned long arg3 , int *arg4 ) ; int ldv_scsi_host_template_instance_probe_4_10(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) ; void ldv_scsi_host_template_instance_release_4_2(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) ; void ldv_scsi_host_template_scsi_host_template_instance_4(void *arg0 ) ; void ldv_scsi_remove_host(void *arg0 , struct Scsi_Host *arg1 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_14 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; void ldv_EMGentry_exit_advansys_exit_14_2(void (*arg0)(void) ) { { { advansys_exit(); } return; } } int ldv_EMGentry_init_advansys_init_14_7(int (*arg0)(void) ) { int tmp ; { { tmp = advansys_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_13_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not(arg0 == 0); ldv_13_pci_driver_pci_driver = arg1; ldv_dispatch_register_13_2(ldv_13_pci_driver_pci_driver); } return (arg0); } else { { assume_abort_if_not(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_device_driver_io_instance_0(void *arg0 ) { struct isa_driver *ldv_0_container_struct_isa_driver ; unsigned int ldv_0_ldv_param_11_1_default ; unsigned int ldv_0_ldv_param_2_1_default ; struct device *ldv_0_resource_struct_device_ptr ; int ldv_0_ret_default ; struct ldv_struct_io_instance_0 *data ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { data = (struct ldv_struct_io_instance_0 *)arg0; ldv_0_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_io_instance_0 *)0)) { { ldv_0_container_struct_isa_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(1408UL); ldv_0_resource_struct_device_ptr = (struct device *)tmp; } goto ldv_main_0; return; ldv_main_0: { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_0_ret_default = ldv_io_instance_probe_0_11(ldv_0_container_struct_isa_driver->probe, ldv_0_resource_struct_device_ptr, ldv_0_ldv_param_11_1_default); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { assume_abort_if_not(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { assume_abort_if_not(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_struct_device_ptr); } return; } return; ldv_call_0: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_io_instance_release_0_2(ldv_0_container_struct_isa_driver->remove, ldv_0_resource_struct_device_ptr, ldv_0_ldv_param_2_1_default); } goto ldv_main_0; } else { goto ldv_call_0; } return; } } void ldv_device_driver_io_instance_1(void *arg0 ) { struct isa_driver *ldv_1_container_struct_isa_driver ; unsigned int ldv_1_ldv_param_11_1_default ; unsigned int ldv_1_ldv_param_2_1_default ; struct device *ldv_1_resource_struct_device_ptr ; int ldv_1_ret_default ; struct ldv_struct_io_instance_0 *data ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { data = (struct ldv_struct_io_instance_0 *)arg0; ldv_1_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_io_instance_0 *)0)) { { ldv_1_container_struct_isa_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(1408UL); ldv_1_resource_struct_device_ptr = (struct device *)tmp; } goto ldv_main_1; return; ldv_main_1: { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_1_ret_default = ldv_io_instance_probe_1_11(ldv_1_container_struct_isa_driver->probe, ldv_1_resource_struct_device_ptr, ldv_1_ldv_param_11_1_default); ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { assume_abort_if_not(ldv_1_ret_default == 0); } goto ldv_call_1; } else { { assume_abort_if_not(ldv_1_ret_default != 0); } goto ldv_main_1; } } else { { ldv_free((void *)ldv_1_resource_struct_device_ptr); } return; } return; ldv_call_1: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_io_instance_release_1_2(ldv_1_container_struct_isa_driver->remove, ldv_1_resource_struct_device_ptr, ldv_1_ldv_param_2_1_default); } goto ldv_main_1; } else { goto ldv_call_1; } return; } } void ldv_dispatch_deregister_10_1(struct isa_driver *arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } return; } } void ldv_dispatch_deregister_12_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_9_1(struct Scsi_Host *arg0 ) { { return; } } void ldv_dispatch_irq_deregister_5_1(int arg0 ) { { return; } } void ldv_dispatch_irq_register_6_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_2 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(40UL); cf_arg_2 = (struct ldv_struct_interrupt_instance_2 *)tmp; cf_arg_2->arg0 = arg0; cf_arg_2->arg1 = arg1; cf_arg_2->arg2 = arg2; cf_arg_2->arg3 = arg3; ldv_interrupt_interrupt_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_11_2(struct isa_driver *arg0 ) { struct ldv_struct_io_instance_0 *cf_arg_0 ; struct ldv_struct_io_instance_0 *cf_arg_1 ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(16UL); cf_arg_0 = (struct ldv_struct_io_instance_0 *)tmp; cf_arg_0->arg0 = arg0; ldv_device_driver_io_instance_0((void *)cf_arg_0); } } else { { tmp___0 = ldv_xmalloc(16UL); cf_arg_1 = (struct ldv_struct_io_instance_0 *)tmp___0; cf_arg_1->arg0 = arg0; ldv_device_driver_io_instance_1((void *)cf_arg_1); } } return; } } void ldv_dispatch_register_13_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_3 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_3 = (struct ldv_struct_pci_instance_3 *)tmp; cf_arg_3->arg0 = arg0; ldv_pci_pci_instance_3((void *)cf_arg_3); } return; } } void ldv_dispatch_register_7_2(struct Scsi_Host *arg0 ) { struct ldv_struct_scsi_host_template_instance_4 *cf_arg_4 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_4 = (struct ldv_struct_scsi_host_template_instance_4 *)tmp; cf_arg_4->arg0 = arg0; ldv_scsi_host_template_scsi_host_template_instance_4((void *)cf_arg_4); } return; } } void ldv_entry_EMGentry_14(void *arg0 ) { void (*ldv_14_exit_advansys_exit_default)(void) ; int (*ldv_14_init_advansys_init_default)(void) ; int ldv_14_ret_default ; int tmp ; { { ldv_14_ret_default = ldv_EMGentry_init_advansys_init_14_7(ldv_14_init_advansys_init_default); ldv_14_ret_default = ldv_ldv_post_init_125(ldv_14_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not(ldv_14_ret_default != 0); ldv_ldv_check_final_state_126(); assume_abort_if_not(0); } return; } else { { assume_abort_if_not(ldv_14_ret_default == 0); ldv_EMGentry_exit_advansys_exit_14_2(ldv_14_exit_advansys_exit_default); ldv_ldv_check_final_state_127(); assume_abort_if_not(0); } return; } return; } } int main(void) { { { ldv_ldv_initialize_128(); ldv_entry_EMGentry_14((void *)0); } return 0; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_5_line_line ; { { ldv_5_line_line = arg1; ldv_dispatch_irq_deregister_5_1(ldv_5_line_line); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = advansys_interrupt(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_2(void *arg0 ) { enum irqreturn (*ldv_2_callback_handler)(int , void * ) ; void *ldv_2_data_data ; int ldv_2_line_line ; enum irqreturn ldv_2_ret_val_default ; enum irqreturn (*ldv_2_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_2 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_2 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_2 *)0)) { { ldv_2_line_line = data->arg0; ldv_2_callback_handler = data->arg1; ldv_2_thread_thread = data->arg2; ldv_2_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_2_ret_val_default = ldv_interrupt_instance_handler_2_5(ldv_2_callback_handler, ldv_2_line_line, ldv_2_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not((unsigned int )ldv_2_ret_val_default == 2U); } if ((unsigned long )ldv_2_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_2_3(ldv_2_thread_thread, ldv_2_line_line, ldv_2_data_data); } } else { } } else { { assume_abort_if_not((unsigned int )ldv_2_ret_val_default != 2U); } } return; return; } } int ldv_io_instance_probe_0_11(int (*arg0)(struct device * , unsigned int ) , struct device *arg1 , unsigned int arg2 ) { int tmp ; { { tmp = advansys_isa_probe(arg1, arg2); } return (tmp); } } int ldv_io_instance_probe_1_11(int (*arg0)(struct device * , unsigned int ) , struct device *arg1 , unsigned int arg2 ) { int tmp ; { { tmp = advansys_vlb_probe(arg1, arg2); } return (tmp); } } void ldv_io_instance_release_0_2(int (*arg0)(struct device * , unsigned int ) , struct device *arg1 , unsigned int arg2 ) { { { advansys_isa_remove(arg1, arg2); } return; } } void ldv_io_instance_release_1_2(int (*arg0)(struct device * , unsigned int ) , struct device *arg1 , unsigned int arg2 ) { { { advansys_isa_remove(arg1, arg2); } return; } } int ldv_isa_register_driver(int arg0 , struct isa_driver *arg1 , unsigned int arg2 ) { struct isa_driver *ldv_11_struct_isa_driver_struct_isa_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not(arg0 == 0); ldv_11_struct_isa_driver_struct_isa_driver = arg1; ldv_dispatch_register_11_2(ldv_11_struct_isa_driver_struct_isa_driver); } return (arg0); } else { { assume_abort_if_not(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_isa_unregister_driver(void *arg0 , struct isa_driver *arg1 ) { struct isa_driver *ldv_10_struct_isa_driver_struct_isa_driver ; { { ldv_10_struct_isa_driver_struct_isa_driver = arg1; ldv_dispatch_deregister_10_1(ldv_10_struct_isa_driver_struct_isa_driver); } return; return; } } int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = advansys_pci_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { advansys_pci_remove(arg1); } return; } } void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_3(void *arg0 ) { struct pci_driver *ldv_3_container_pci_driver ; struct pci_dev *ldv_3_resource_dev ; struct pm_message ldv_3_resource_pm_message ; struct pci_device_id *ldv_3_resource_struct_pci_device_id_ptr ; int ldv_3_ret_default ; struct ldv_struct_pci_instance_3 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_3 *)arg0; ldv_3_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_3 *)0)) { { ldv_3_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2968UL); ldv_3_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_3_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_3; return; ldv_main_3: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_ldv_pre_probe_129(); ldv_3_ret_default = ldv_pci_instance_probe_3_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_3_container_pci_driver->probe, ldv_3_resource_dev, ldv_3_resource_struct_pci_device_id_ptr); ldv_3_ret_default = ldv_ldv_post_probe_130(ldv_3_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { assume_abort_if_not(ldv_3_ret_default == 0); } goto ldv_call_3; } else { { assume_abort_if_not(ldv_3_ret_default != 0); } goto ldv_main_3; } } else { { ldv_free((void *)ldv_3_resource_dev); ldv_free((void *)ldv_3_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_3: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_3; case_2: /* CIL Label */ ; if ((unsigned long )ldv_3_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_3_ret_default = ldv_pci_instance_suspend_3_8(ldv_3_container_pci_driver->suspend, ldv_3_resource_dev, ldv_3_resource_pm_message); } } else { } { ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); } if ((unsigned long )ldv_3_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_3_ret_default = ldv_pci_instance_suspend_late_3_7(ldv_3_container_pci_driver->suspend_late, ldv_3_resource_dev, ldv_3_resource_pm_message); } } else { } { ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); } if ((unsigned long )ldv_3_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_3_6(ldv_3_container_pci_driver->resume_early, ldv_3_resource_dev); } } else { } if ((unsigned long )ldv_3_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_3_5(ldv_3_container_pci_driver->resume, ldv_3_resource_dev); } } else { } goto ldv_call_3; case_3: /* CIL Label */ ; if ((unsigned long )ldv_3_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_3_3(ldv_3_container_pci_driver->shutdown, ldv_3_resource_dev); } } else { } { ldv_pci_instance_release_3_2(ldv_3_container_pci_driver->remove, ldv_3_resource_dev); } goto ldv_main_3; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_12_pci_driver_pci_driver ; { { ldv_12_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_12_1(ldv_12_pci_driver_pci_driver); } return; return; } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_6_callback_handler)(int , void * ) ; void *ldv_6_data_data ; int ldv_6_line_line ; enum irqreturn (*ldv_6_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not(arg0 == 0); ldv_6_line_line = (int )arg1; ldv_6_callback_handler = arg2; ldv_6_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_6_data_data = arg5; ldv_dispatch_irq_register_6_2(ldv_6_line_line, ldv_6_callback_handler, ldv_6_thread_thread, ldv_6_data_data); } return (arg0); } else { { assume_abort_if_not(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_scsi_add_host(int arg0 , struct Scsi_Host *arg1 , struct device *arg2 ) { struct Scsi_Host *ldv_7_host_host ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not(arg0 == 0); ldv_dispatch_register_7_2(ldv_7_host_host); } return (arg0); } else { { assume_abort_if_not(arg0 != 0); } return (arg0); } return (arg0); } } struct Scsi_Host *ldv_scsi_host_alloc(struct Scsi_Host *arg0 , struct scsi_host_template *arg1 , int arg2 ) { struct Scsi_Host *ldv_8_host_host ; struct scsi_host_template *ldv_8_scsi_host_template_scsi_host_template ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3800UL); ldv_8_host_host = (struct Scsi_Host *)tmp; ldv_8_scsi_host_template_scsi_host_template = arg1; ldv_8_host_host->hostt = ldv_8_scsi_host_template_scsi_host_template; } return (ldv_8_host_host); return (arg0); } else { return ((struct Scsi_Host *)0); return (arg0); } return (arg0); } } void ldv_scsi_host_template_instance_callback_4_17(int (*arg0)(struct scsi_cmnd * ) , struct scsi_cmnd *arg1 ) { { { advansys_reset(arg1); } return; } } void ldv_scsi_host_template_instance_callback_4_18(char *(*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) { { { advansys_info(arg1); } return; } } void ldv_scsi_host_template_instance_callback_4_19(int (*arg0)(struct Scsi_Host * , struct scsi_cmnd * ) , struct Scsi_Host *arg1 , struct scsi_cmnd *arg2 ) { { { advansys_queuecommand(arg1, arg2); } return; } } void ldv_scsi_host_template_instance_callback_4_20(int (*arg0)(struct seq_file * , struct Scsi_Host * ) , struct seq_file *arg1 , struct Scsi_Host *arg2 ) { { { advansys_show_info(arg1, arg2); } return; } } void ldv_scsi_host_template_instance_callback_4_23(int (*arg0)(struct scsi_device * ) , struct scsi_device *arg1 ) { { { advansys_slave_configure(arg1); } return; } } void ldv_scsi_host_template_instance_callback_4_4(int (*arg0)(struct scsi_device * , struct block_device * , unsigned long , int * ) , struct scsi_device *arg1 , struct block_device *arg2 , unsigned long arg3 , int *arg4 ) { { { advansys_biosparam(arg1, arg2, arg3, arg4); } return; } } int ldv_scsi_host_template_instance_probe_4_10(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_scsi_host_template_instance_release_4_2(int (*arg0)(struct Scsi_Host * ) , struct Scsi_Host *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_scsi_host_template_scsi_host_template_instance_4(void *arg0 ) { int (*ldv_4_callback_bios_param)(struct scsi_device * , struct block_device * , unsigned long , int * ) ; int (*ldv_4_callback_eh_bus_reset_handler)(struct scsi_cmnd * ) ; char *(*ldv_4_callback_info)(struct Scsi_Host * ) ; int (*ldv_4_callback_queuecommand)(struct Scsi_Host * , struct scsi_cmnd * ) ; int (*ldv_4_callback_show_info)(struct seq_file * , struct Scsi_Host * ) ; int (*ldv_4_callback_slave_configure)(struct scsi_device * ) ; struct Scsi_Host *ldv_4_host_host ; struct scsi_cmnd *ldv_4_host_struct_scsi_cmnd_ptr ; struct scsi_device *ldv_4_host_struct_scsi_device_ptr ; struct seq_file *ldv_4_ldv_param_20_0_default ; struct block_device *ldv_4_ldv_param_4_1_default ; unsigned long ldv_4_ldv_param_4_2_default ; int *ldv_4_ldv_param_4_3_default ; int ldv_4_ret_default ; struct ldv_struct_scsi_host_template_instance_4 *data ; int tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; int tmp___3 ; void *tmp___4 ; int tmp___5 ; { data = (struct ldv_struct_scsi_host_template_instance_4 *)arg0; ldv_4_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_scsi_host_template_instance_4 *)0)) { { ldv_4_host_host = data->arg0; ldv_free((void *)data); } } else { } goto ldv_main_4; return; ldv_main_4: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_ldv_pre_probe_131(); } if ((unsigned long )(ldv_4_host_host->hostt)->detect != (unsigned long )((int (*)(struct scsi_host_template * ))0)) { { ldv_4_ret_default = ldv_scsi_host_template_instance_probe_4_10((int (*)(struct Scsi_Host * ))(ldv_4_host_host->hostt)->detect, ldv_4_host_host); } } else { } { ldv_4_ret_default = ldv_ldv_post_probe_132(ldv_4_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not(ldv_4_ret_default == 0); } goto ldv_call_4; } else { { assume_abort_if_not(ldv_4_ret_default != 0); } goto ldv_main_4; } } else { return; } return; ldv_call_4: { tmp___5 = ldv_undef_int(); } if (tmp___5 != 0) { if ((unsigned long )(ldv_4_host_host->hostt)->release != (unsigned long )((int (*)(struct Scsi_Host * ))0)) { { ldv_scsi_host_template_instance_release_4_2((ldv_4_host_host->hostt)->release, ldv_4_host_host); } } else { } goto ldv_main_4; } else { { tmp___1 = ldv_xmalloc(480UL); ldv_4_ldv_param_4_1_default = (struct block_device *)tmp___1; tmp___2 = ldv_xmalloc(4UL); ldv_4_ldv_param_4_3_default = (int *)tmp___2; tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } if (tmp___3 == 4) { goto case_4; } else { } if (tmp___3 == 5) { goto case_5; } else { } if (tmp___3 == 6) { goto case_6; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_23(ldv_4_callback_slave_configure, ldv_4_host_struct_scsi_device_ptr); } goto ldv_40940; case_2: /* CIL Label */ { tmp___4 = ldv_xmalloc(256UL); ldv_4_ldv_param_20_0_default = (struct seq_file *)tmp___4; ldv_scsi_host_template_instance_callback_4_20(ldv_4_callback_show_info, ldv_4_ldv_param_20_0_default, ldv_4_host_host); ldv_free((void *)ldv_4_ldv_param_20_0_default); } goto ldv_40940; case_3: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_19(ldv_4_callback_queuecommand, ldv_4_host_host, ldv_4_host_struct_scsi_cmnd_ptr); } goto ldv_40940; case_4: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_18(ldv_4_callback_info, ldv_4_host_host); } goto ldv_40940; case_5: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_17(ldv_4_callback_eh_bus_reset_handler, ldv_4_host_struct_scsi_cmnd_ptr); } goto ldv_40940; case_6: /* CIL Label */ { ldv_scsi_host_template_instance_callback_4_4(ldv_4_callback_bios_param, ldv_4_host_struct_scsi_device_ptr, ldv_4_ldv_param_4_1_default, ldv_4_ldv_param_4_2_default, ldv_4_ldv_param_4_3_default); } goto ldv_40940; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } ldv_40940: ; } { ldv_free((void *)ldv_4_ldv_param_4_1_default); ldv_free((void *)ldv_4_ldv_param_4_3_default); } goto ldv_call_4; return; } } void ldv_scsi_remove_host(void *arg0 , struct Scsi_Host *arg1 ) { struct Scsi_Host *ldv_9_host_host ; { { ldv_9_host_host = arg1; ldv_dispatch_deregister_9_1(ldv_9_host_host); } return; return; } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc(size); ldv_after_alloc(res); } return (res); } } void *ldv_zalloc(size_t size ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static void *ldv_krealloc_98(void const *ldv_func_arg1 , size_t ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = realloc(ldv_func_arg1, ldv_func_arg2); } return (tmp); } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_99(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_100(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_101(spinlock_t *lock , unsigned long flags ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_host_lock_of_Scsi_Host(); spin_unlock_irqrestore(lock, flags); } return; } } __inline static void ldv_spin_lock_102(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_103(spinlock_t *lock ) { { { ldv_linux_kernel_locking_spinlock_spin_unlock_host_lock_of_Scsi_Host(); spin_unlock(lock); } return; } } static void ldv___ldv_linux_kernel_locking_spinlock_spin_lock_104(spinlock_t *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(); __ldv_linux_kernel_locking_spinlock_spin_lock(ldv_func_arg1); } return; } } __inline static int ldv_request_irq_106(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_scsi_add_host_107(struct Scsi_Host *host , struct device *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = scsi_add_host(host, dev); ldv_func_res = tmp; tmp___0 = ldv_scsi_add_host(ldv_func_res, host, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_108(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_iounmap_109(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void ldv_scsi_remove_host_110(struct Scsi_Host *ldv_func_arg1 ) { { { scsi_remove_host(ldv_func_arg1); ldv_scsi_remove_host((void *)0, ldv_func_arg1); } return; } } static void ldv_free_irq_111(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_iounmap_112(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static struct Scsi_Host *ldv_scsi_host_alloc_113(struct scsi_host_template *ldv_func_arg1 , int ldv_func_arg2 ) { ldv_func_ret_type___2 ldv_func_res ; struct Scsi_Host *tmp ; struct Scsi_Host *tmp___0 ; { { tmp = scsi_host_alloc(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_scsi_host_alloc(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static struct Scsi_Host *ldv_scsi_host_alloc_114(struct scsi_host_template *ldv_func_arg1 , int ldv_func_arg2 ) { ldv_func_ret_type___3 ldv_func_res ; struct Scsi_Host *tmp ; struct Scsi_Host *tmp___0 ; { { tmp = scsi_host_alloc(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_scsi_host_alloc(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static struct Scsi_Host *ldv_scsi_host_alloc_115(struct scsi_host_template *ldv_func_arg1 , int ldv_func_arg2 ) { ldv_func_ret_type___4 ldv_func_res ; struct Scsi_Host *tmp ; struct Scsi_Host *tmp___0 ; { { tmp = scsi_host_alloc(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_scsi_host_alloc(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static struct Scsi_Host *ldv_scsi_host_alloc_116(struct scsi_host_template *ldv_func_arg1 , int ldv_func_arg2 ) { ldv_func_ret_type___5 ldv_func_res ; struct Scsi_Host *tmp ; struct Scsi_Host *tmp___0 ; { { tmp = scsi_host_alloc(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_scsi_host_alloc(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_isa_register_driver_117(struct isa_driver *d , unsigned int i ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = isa_register_driver(d, i); ldv_func_res = tmp; tmp___0 = ldv_isa_register_driver(ldv_func_res, d, i); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_isa_register_driver_118(struct isa_driver *d , unsigned int i ) { ldv_func_ret_type___7 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = isa_register_driver(d, i); ldv_func_res = tmp; tmp___0 = ldv_isa_register_driver(ldv_func_res, d, i); } return (tmp___0); return (ldv_func_res); } } static int ldv___pci_register_driver_119(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___8 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } __inline static void ldv_isa_unregister_driver_120(struct isa_driver *d ) { { { isa_unregister_driver(d); ldv_isa_unregister_driver((void *)0, d); } return; } } static void ldv_pci_unregister_driver_122(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_init_125(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_126(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_127(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_128(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_129(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_130(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } static void ldv_ldv_pre_probe_131(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_132(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(size_t size ) { void *ptr ; void *tmp ; { { tmp = ldv_malloc(size); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; struct gendisk *ldv_linux_block_genhd_alloc_disk(void) { struct gendisk *res ; void *tmp ; { { tmp = ldv_malloc(sizeof(struct gendisk)); res = (struct gendisk *)tmp; ldv_assert_linux_block_genhd__double_allocation(ldv_linux_block_genhd_disk_state == 0); } if ((unsigned long )res != (unsigned long )((struct gendisk *)0)) { ldv_linux_block_genhd_disk_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; struct request_queue *ldv_linux_block_queue_request_queue(void) { struct request_queue *res ; void *tmp ; { { tmp = ldv_malloc(sizeof(struct request_queue)); res = (struct request_queue *)tmp; ldv_assert_linux_block_queue__double_allocation(ldv_linux_block_queue_queue_state == 0); } if ((unsigned long )res != (unsigned long )((struct request_queue *)0)) { ldv_linux_block_queue_queue_state = 1; return (res); } else { } return (res); } } void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; struct request *ldv_linux_block_request_blk_get_request(gfp_t mask ) { struct request *res ; void *tmp ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_malloc(sizeof(struct request)); res = (struct request *)tmp; } if ((mask == 16U || mask == 208U) || mask == 16U) { { assume_abort_if_not((unsigned long )res != (unsigned long )((struct request *)0)); } } else { } if ((unsigned long )res != (unsigned long )((struct request *)0)) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } struct request *ldv_linux_block_request_blk_make_request(gfp_t mask ) { struct request *res ; void *tmp ; long tmp___0 ; { { ldv_assert_linux_block_request__double_get(ldv_linux_block_request_blk_rq == 0); tmp = ldv_malloc(sizeof(struct request)); res = (struct request *)tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((struct request *)0)); tmp___0 = ldv_is_err((void const *)res); } if (tmp___0 == 0L) { ldv_linux_block_request_blk_rq = 1; } else { } return (res); } } void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_malloc(sizeof(struct class)); assume_abort_if_not((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); assume_abort_if_not(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { assume_abort_if_not(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); assume_abort_if_not(nondet <= size); assume_abort_if_not(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; assume_abort_if_not(nondet <= size); assume_abort_if_not(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { assume_abort_if_not(nr_cpu_ids > 0); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(size_t size ) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_malloc(size); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void *is_got ) { long tmp ; { { assume_abort_if_not((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); assume_abort_if_not(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; assume_abort_if_not(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; assume_abort_if_not(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_dma_spin_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_dma_spin_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_dma_spin_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_dma_spin_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_dma_spin_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_dma_spin_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_dma_spin_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_dma_spin_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_dma_spin_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_host_lock_of_Scsi_Host(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_host_lock_of_Scsi_Host(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 2); ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_host_lock_of_Scsi_Host(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_host_lock_of_Scsi_Host(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_host_lock_of_Scsi_Host(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_host_lock_of_Scsi_Host(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_host_lock_of_Scsi_Host(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_host_lock_of_Scsi_Host(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_host_lock_of_Scsi_Host(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_dma_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_host_lock_of_Scsi_Host == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } void reach_error_linux_net_rtnetlink(void) { reach_error(); } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { reach_error_linux_net_rtnetlink(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { reach_error_linux_net_rtnetlink(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { reach_error_linux_net_rtnetlink(); } } else { } return; } } void reach_error_linux_kernel_locking_rwlock(void) { reach_error(); } void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void reach_error_linux_lib_idr(void) { reach_error(); } void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void reach_error_linux_kernel_sched_completion(void) { reach_error(); } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { reach_error_linux_kernel_sched_completion(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { reach_error_linux_kernel_sched_completion(); } } else { } return; } } void reach_error_linux_net_register(void) { reach_error(); } void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { reach_error_linux_net_register(); } } else { } return; } } void reach_error_linux_fs_char_dev(void) { reach_error(); } void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { reach_error_linux_fs_char_dev(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { reach_error_linux_fs_char_dev(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { reach_error_linux_fs_char_dev(); } } else { } return; } } void reach_error_linux_kernel_rcu_srcu(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_srcu(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_srcu(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_srcu(); } } else { } return; } } void reach_error_linux_kernel_module(void) { reach_error(); } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_kernel_module(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_module(); } } else { } return; } } void reach_error_linux_alloc_spinlock(void) { reach_error(); } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { reach_error_linux_alloc_spinlock(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { reach_error_linux_alloc_spinlock(); } } else { } return; } } void reach_error_linux_lib_find_bit(void) { reach_error(); } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { reach_error_linux_lib_find_bit(); } } else { } return; } } void reach_error_linux_mmc_sdio_func(void) { reach_error(); } void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void reach_error_linux_usb_coherent(void) { reach_error(); } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_coherent(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_coherent(); } } else { } return; } } void reach_error_linux_kernel_rcu_update_lock(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock(); } } else { } return; } } void reach_error_linux_net_sock(void) { reach_error(); } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { reach_error_linux_net_sock(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { reach_error_linux_net_sock(); } } else { } return; } } void reach_error_linux_kernel_rcu_update_lock_bh(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_bh(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_bh(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_bh(); } } else { } return; } } void reach_error_linux_usb_dev(void) { reach_error(); } void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void reach_error_linux_kernel_locking_mutex(void) { reach_error(); } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void reach_error_linux_usb_gadget(void) { reach_error(); } void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void reach_error_linux_alloc_usb_lock(void) { reach_error(); } void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { reach_error_linux_alloc_usb_lock(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { reach_error_linux_alloc_usb_lock(); } } else { } return; } } void reach_error_linux_block_request(void) { reach_error(); } void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { reach_error_linux_block_request(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { reach_error_linux_block_request(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { reach_error_linux_block_request(); } } else { } return; } } void reach_error_linux_alloc_irq(void) { reach_error(); } void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { reach_error_linux_alloc_irq(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { reach_error_linux_alloc_irq(); } } else { } return; } } void reach_error_linux_drivers_base_class(void) { reach_error(); } void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { reach_error_linux_drivers_base_class(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { reach_error_linux_drivers_base_class(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { reach_error_linux_drivers_base_class(); } } else { } return; } } void reach_error_linux_block_queue(void) { reach_error(); } void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_queue(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_queue(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_block_queue(); } } else { } return; } } void reach_error_linux_block_genhd(void) { reach_error(); } void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void reach_error_linux_arch_io(void) { reach_error(); } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_arch_io(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_arch_io(); } } else { } return; } } void reach_error_linux_usb_register(void) { reach_error(); } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { reach_error_linux_usb_register(); } } else { } return; } } void reach_error_linux_fs_sysfs(void) { reach_error(); } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_fs_sysfs(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_fs_sysfs(); } } else { } return; } } void reach_error_linux_kernel_locking_spinlock(void) { reach_error(); } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void reach_error_linux_usb_urb(void) { reach_error(); } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_urb(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_urb(); } } else { } return; } } void reach_error_linux_kernel_rcu_update_lock_sched(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_sched(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_sched(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_sched(); } } else { } return; } }