/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); void reach_error() { __assert_fail("0", "linux-4.0-rc1---drivers--video--fbdev--s3fb.ko.cil.c", 5, "reach_error"); } typedef signed char __s8; typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef unsigned int u_int; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct class; struct device; struct completion; struct gendisk; struct module; struct mutex; struct request_queue; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct qrwlock { atomic_t cnts ; arch_spinlock_t lock ; }; typedef struct qrwlock arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_10 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_11 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion____missing_field_name_9 { struct __anonstruct____missing_field_name_10 __annonCompField5 ; struct __anonstruct____missing_field_name_11 __annonCompField6 ; }; struct desc_struct { union __anonunion____missing_field_name_9 __annonCompField7 ; }; struct gate_struct64 { u16 offset_low ; u16 segment ; unsigned char ist : 3 ; unsigned char zero0 : 5 ; unsigned char type : 5 ; unsigned char dpl : 2 ; unsigned char p : 1 ; u16 offset_middle ; u32 offset_high ; u32 zero1 ; }; typedef struct gate_struct64 gate_desc; struct desc_ptr { unsigned short size ; unsigned long address ; }; typedef unsigned long pteval_t; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct __anonstruct_pte_t_12 { pteval_t pte ; }; typedef struct __anonstruct_pte_t_12 pte_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct tss_struct; struct mm_struct; struct cpumask; struct pv_cpu_ops { unsigned long (*get_debugreg)(int ) ; void (*set_debugreg)(int , unsigned long ) ; void (*clts)(void) ; unsigned long (*read_cr0)(void) ; void (*write_cr0)(unsigned long ) ; unsigned long (*read_cr4_safe)(void) ; unsigned long (*read_cr4)(void) ; void (*write_cr4)(unsigned long ) ; unsigned long (*read_cr8)(void) ; void (*write_cr8)(unsigned long ) ; void (*load_tr_desc)(void) ; void (*load_gdt)(struct desc_ptr const * ) ; void (*load_idt)(struct desc_ptr const * ) ; void (*store_idt)(struct desc_ptr * ) ; void (*set_ldt)(void const * , unsigned int ) ; unsigned long (*store_tr)(void) ; void (*load_tls)(struct thread_struct * , unsigned int ) ; void (*load_gs_index)(unsigned int ) ; void (*write_ldt_entry)(struct desc_struct * , int , void const * ) ; void (*write_gdt_entry)(struct desc_struct * , int , void const * , int ) ; void (*write_idt_entry)(gate_desc * , int , gate_desc const * ) ; void (*alloc_ldt)(struct desc_struct * , unsigned int ) ; void (*free_ldt)(struct desc_struct * , unsigned int ) ; void (*load_sp0)(struct tss_struct * , struct thread_struct * ) ; void (*set_iopl_mask)(unsigned int ) ; void (*wbinvd)(void) ; void (*io_delay)(void) ; void (*cpuid)(unsigned int * , unsigned int * , unsigned int * , unsigned int * ) ; u64 (*read_msr)(unsigned int , int * ) ; int (*write_msr)(unsigned int , unsigned int , unsigned int ) ; u64 (*read_tsc)(void) ; u64 (*read_pmc)(int ) ; unsigned long long (*read_tscp)(unsigned int * ) ; void (*irq_enable_sysexit)(void) ; void (*usergs_sysret64)(void) ; void (*usergs_sysret32)(void) ; void (*iret)(void) ; void (*swapgs)(void) ; void (*start_context_switch)(struct task_struct * ) ; void (*end_context_switch)(struct task_struct * ) ; }; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct file_operations; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_16 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_16 __annonCompField8 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct x86_hw_tss { u32 reserved1 ; u64 sp0 ; u64 sp1 ; u64 sp2 ; u64 reserved2 ; u64 ist[7U] ; u32 reserved3 ; u32 reserved4 ; u16 reserved5 ; u16 io_bitmap_base ; }; struct tss_struct { struct x86_hw_tss x86_tss ; unsigned long io_bitmap[1025U] ; unsigned long stack[64U] ; }; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField12 ; struct __anonstruct____missing_field_name_22 __annonCompField13 ; }; union __anonunion____missing_field_name_23 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField14 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_23 __annonCompField15 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndreg { u64 lower_bound ; u64 upper_bound ; }; struct bndcsr { u64 bndcfgu ; u64 bndstatus ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 xcomp_bv ; u64 reserved[6U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndreg bndreg[4U] ; struct bndcsr bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 1 ; unsigned char hardirqs_off : 1 ; unsigned short references : 12 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_27 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_26 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_27 __annonCompField17 ; }; struct spinlock { union __anonunion____missing_field_name_26 __annonCompField18 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_28 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_28 rwlock_t; struct ldv_thread; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct optimistic_spin_queue { atomic_t tail ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_33 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_34 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_35 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_32 { struct __anonstruct_futex_33 futex ; struct __anonstruct_nanosleep_34 nanosleep ; struct __anonstruct_poll_35 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_32 __annonCompField19 ; }; struct jump_entry; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_48 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_48 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; union __anonunion____missing_field_name_49 { unsigned long bitmap[4U] ; struct callback_head callback_head ; }; struct idr_layer { int prefix ; int layer ; struct idr_layer *ary[256U] ; int count ; union __anonunion____missing_field_name_49 __annonCompField20 ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; int layers ; int cur ; spinlock_t lock ; int id_free_cnt ; struct idr_layer *id_free ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; struct kernfs_node *notify_next ; }; union __anonunion____missing_field_name_50 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_50 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root * , int * , char * ) ; int (*show_options)(struct seq_file * , struct kernfs_root * ) ; int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; unsigned int flags ; struct ida ino_ida ; struct kernfs_syscall_ops *syscall_ops ; struct list_head supers ; wait_queue_head_t deactivate_waitq ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; void *priv ; struct mutex mutex ; int event ; struct list_head list ; char *prealloc_buf ; size_t atomic_write_len ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; size_t atomic_write_len ; bool prealloc ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_51 { uid_t val ; }; typedef struct __anonstruct_kuid_t_51 kuid_t; struct __anonstruct_kgid_t_52 { gid_t val ; }; typedef struct __anonstruct_kgid_t_52 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *argv[3U] ; char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_53 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_53 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool is_noirq_suspended ; bool is_late_suspended ; bool ignore_children ; bool early_init ; bool direct_complete ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; unsigned char memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; void (*set_latency_tolerance)(struct device * , s32 ) ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; void (*detach)(struct device * , bool ) ; }; struct rw_semaphore; struct rw_semaphore { long count ; struct list_head wait_list ; raw_spinlock_t wait_lock ; struct optimistic_spin_queue osq ; struct task_struct *owner ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_118 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; atomic_t perf_rdpmc_allowed ; }; typedef struct __anonstruct_mm_context_t_118 mm_context_t; struct bio_vec; struct device_node; struct llist_node; struct llist_head { struct llist_node *first ; }; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops const *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct cma; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; void *driver_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; unsigned long dma_pfn_offset ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct cma *cma_area ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled ; bool offline ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_151 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_152 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_150 { struct __anonstruct____missing_field_name_151 __annonCompField34 ; struct __anonstruct____missing_field_name_152 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_150 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; struct mem_cgroup; typedef void compound_page_dtor(struct page * ); union __anonunion____missing_field_name_153 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_155 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_159 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion____missing_field_name_158 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_159 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_157 { union __anonunion____missing_field_name_158 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_156 { unsigned long counters ; struct __anonstruct____missing_field_name_157 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField38 ; union __anonunion____missing_field_name_156 __annonCompField42 ; }; struct __anonstruct____missing_field_name_161 { struct page *next ; int pages ; int pobjects ; }; struct slab; struct __anonstruct____missing_field_name_162 { compound_page_dtor *compound_dtor ; unsigned long compound_order ; }; union __anonunion____missing_field_name_160 { struct list_head lru ; struct __anonstruct____missing_field_name_161 __annonCompField44 ; struct slab *slab_page ; struct callback_head callback_head ; struct __anonstruct____missing_field_name_162 __annonCompField45 ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_163 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_153 __annonCompField37 ; struct __anonstruct____missing_field_name_154 __annonCompField43 ; union __anonunion____missing_field_name_160 __annonCompField46 ; union __anonunion____missing_field_name_163 __annonCompField47 ; struct mem_cgroup *mem_cgroup ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_shared_164 { struct rb_node rb ; unsigned long rb_subtree_last ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct __anonstruct_shared_164 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; u32 vmacache_seqnum ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; atomic_long_t nr_pmds ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; void *bd_addr ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct user_struct; struct sysv_shm { struct list_head shm_clist ; }; struct __anonstruct_sigset_t_166 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_166 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_169 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_170 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_171 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__addr_bnd_173 { void *_lower ; void *_upper ; }; struct __anonstruct__sigfault_172 { void *_addr ; short _addr_lsb ; struct __anonstruct__addr_bnd_173 _addr_bnd ; }; struct __anonstruct__sigpoll_174 { long _band ; int _fd ; }; struct __anonstruct__sigsys_175 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_167 { int _pad[28U] ; struct __anonstruct__kill_168 _kill ; struct __anonstruct__timer_169 _timer ; struct __anonstruct__rt_170 _rt ; struct __anonstruct__sigchld_171 _sigchld ; struct __anonstruct__sigfault_172 _sigfault ; struct __anonstruct__sigpoll_174 _sigpoll ; struct __anonstruct__sigsys_175 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_167 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex { raw_spinlock_t wait_lock ; struct rb_root waiters ; struct rb_node *waiters_leftmost ; struct task_struct *owner ; int save_state ; char const *name ; char const *file ; int line ; void *magic ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int cpu ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int in_hrtirq ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_180 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_181 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_183 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_182 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_183 __annonCompField52 ; }; union __anonunion_type_data_184 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_186 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_185 { union __anonunion_payload_186 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_180 __annonCompField50 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_181 __annonCompField51 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_182 __annonCompField53 ; union __anonunion_type_data_184 type_data ; union __anonunion____missing_field_name_185 __annonCompField54 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; seqlock_t stats_lock ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; u64 blkio_start ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; u64 freepages_start ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; int depth ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; int dl_yielded ; struct hrtimer dl_timer ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned char may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; unsigned long rcu_tasks_nvcsw ; bool rcu_tasks_holdout ; struct list_head rcu_tasks_holdout_list ; int rcu_tasks_idle_cpu ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; u32 vmacache_seqnum ; struct vm_area_struct *vmacache[4U] ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char memcg_kmem_skip_account : 1 ; unsigned long atomic_flags ; struct restart_block restart_block ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; u64 start_time ; u64 real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; struct sysv_shm sysvshm ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; unsigned long numa_migrate_retry ; u64 node_stamp ; u64 last_task_numa_placement ; u64 last_sum_exec_runtime ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned int kasan_depth ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; unsigned long task_state_change ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion____missing_field_name_191 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; unsigned char pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; u8 dma_alias_devfn ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char pme_poll : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char no_d3cold : 1 ; unsigned char d3cold_allowed : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned char runtime_d3cold : 1 ; unsigned char ignore_hotplug : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char no_64bit_msi : 1 ; unsigned char block_cfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; unsigned char broken_intx_masking : 1 ; unsigned char io_window_1k : 1 ; unsigned char irq_managed : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_191 __annonCompField58 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; char *driver_override ; }; struct pci_ops; struct msi_controller; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_controller *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { void *(*map_bus)(struct pci_bus * , unsigned int , int ) ; int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_bus_region { dma_addr_t start ; dma_addr_t end ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*reset_notify)(struct pci_dev * , bool ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; int nid ; struct mem_cgroup *memcg ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *cow_page ; struct page *page ; unsigned long max_pgoff ; pte_t *pte ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; void (*map_pages)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; char const *(*name)(struct vm_area_struct * ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; struct page *(*find_special_page)(struct vm_area_struct * , unsigned long ) ; }; struct kvec; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_196 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s8 level ; u8 flags ; union __anonunion____missing_field_name_196 __annonCompField59 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_sect_attrs; struct module_notes_attrs; struct tracepoint; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; atomic_t refcnt ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_198 { spinlock_t lock ; int count ; }; union __anonunion____missing_field_name_197 { struct __anonstruct____missing_field_name_198 __annonCompField60 ; }; struct lockref { union __anonunion____missing_field_name_197 __annonCompField61 ; }; struct vfsmount; struct __anonstruct____missing_field_name_200 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_199 { struct __anonstruct____missing_field_name_200 __annonCompField62 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_199 __annonCompField63 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_201 { struct hlist_node d_alias ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; struct list_head d_child ; struct list_head d_subdirs ; union __anonunion_d_u_201 d_u ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_one { struct list_head list ; long nr_items ; }; struct list_lru_memcg { struct list_lru_one *lru[0U] ; }; struct list_lru_node { spinlock_t lock ; struct list_lru_one lru ; struct list_lru_memcg *memcg_lrus ; }; struct list_lru { struct list_lru_node *node ; struct list_head list ; }; struct __anonstruct____missing_field_name_203 { struct radix_tree_node *parent ; void *private_data ; }; union __anonunion____missing_field_name_202 { struct __anonstruct____missing_field_name_203 __annonCompField64 ; struct callback_head callback_head ; }; struct radix_tree_node { unsigned int path ; unsigned int count ; union __anonunion____missing_field_name_202 __annonCompField65 ; struct list_head private_list ; void *slots[64U] ; unsigned long tags[3U][1U] ; }; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct export_operations; struct iovec; struct nameidata; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iov_iter; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_205 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_205 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_206 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_206 __annonCompField67 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_max_spc_limit ; qsize_t dqi_max_ino_limit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct qc_dqblk { int d_fieldmask ; u64 d_spc_hardlimit ; u64 d_spc_softlimit ; u64 d_ino_hardlimit ; u64 d_ino_softlimit ; u64 d_space ; u64 d_ino_count ; s64 d_ino_timer ; s64 d_spc_timer ; int d_ino_warns ; int d_spc_warns ; u64 d_rt_spc_hardlimit ; u64 d_rt_spc_softlimit ; u64 d_rt_space ; s64 d_rt_spc_timer ; int d_rt_spc_warns ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_enable)(struct super_block * , unsigned int ) ; int (*quota_disable)(struct super_block * , unsigned int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct qc_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; int (*rm_xquota)(struct super_block * , unsigned int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iov_iter * , loff_t ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , unsigned long , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; atomic_t i_mmap_writable ; struct rb_root i_mmap ; struct rw_semaphore i_mmap_rwsem ; unsigned long nrpages ; unsigned long nrshadows ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct hd_struct; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_209 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_210 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock_context; struct cdev; union __anonunion____missing_field_name_211 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_209 __annonCompField68 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_210 __annonCompField69 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; atomic_t i_readcount ; struct file_operations const *i_fop ; struct file_lock_context *i_flctx ; struct address_space i_data ; struct list_head i_devices ; union __anonunion____missing_field_name_211 __annonCompField70 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_212 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_212 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; }; typedef void *fl_owner_t; struct file_lock; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_get_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_put_owner)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , int ) ; bool (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock * , int , struct list_head * ) ; void (*lm_setup)(struct file_lock * , void ** ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_214 { struct list_head link ; int state ; }; union __anonunion_fl_u_213 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_214 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_list ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_213 fl_u ; }; struct file_lock_context { spinlock_t flc_lock ; struct list_head flc_flock ; struct list_head flc_posix ; struct list_head flc_lease ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; unsigned int s_quota_types ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct hlist_head s_pins ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; int s_stack_depth ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context; struct dir_context { int (*actor)(struct dir_context * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*read_iter)(struct kiocb * , struct iov_iter * ) ; ssize_t (*write_iter)(struct kiocb * , struct iov_iter * ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; void (*mremap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** , void ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; void (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*rename2)(struct inode * , struct dentry * , struct inode * , struct dentry * , unsigned int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; int (*dentry_open)(struct dentry * , struct file * , struct cred const * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_super)(struct super_block * ) ; int (*freeze_fs)(struct super_block * ) ; int (*thaw_super)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; struct dquot **(*get_dquots)(struct inode * ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , struct shrink_control * ) ; long (*free_cached_objects)(struct super_block * , struct shrink_control * ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct exception_table_entry { int insn ; int fixup ; }; typedef unsigned char cc_t; typedef unsigned int speed_t; typedef unsigned int tcflag_t; struct ktermios { tcflag_t c_iflag ; tcflag_t c_oflag ; tcflag_t c_cflag ; tcflag_t c_lflag ; cc_t c_line ; cc_t c_cc[19U] ; speed_t c_ispeed ; speed_t c_ospeed ; }; struct winsize { unsigned short ws_row ; unsigned short ws_col ; unsigned short ws_xpixel ; unsigned short ws_ypixel ; }; struct termiox { __u16 x_hflag ; __u16 x_cflag ; __u16 x_rflag[5U] ; __u16 x_sflag ; }; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct tty_driver; struct serial_icounter_struct; struct tty_operations { struct tty_struct *(*lookup)(struct tty_driver * , struct inode * , int ) ; int (*install)(struct tty_driver * , struct tty_struct * ) ; void (*remove)(struct tty_driver * , struct tty_struct * ) ; int (*open)(struct tty_struct * , struct file * ) ; void (*close)(struct tty_struct * , struct file * ) ; void (*shutdown)(struct tty_struct * ) ; void (*cleanup)(struct tty_struct * ) ; int (*write)(struct tty_struct * , unsigned char const * , int ) ; int (*put_char)(struct tty_struct * , unsigned char ) ; void (*flush_chars)(struct tty_struct * ) ; int (*write_room)(struct tty_struct * ) ; int (*chars_in_buffer)(struct tty_struct * ) ; int (*ioctl)(struct tty_struct * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct tty_struct * , unsigned int , unsigned long ) ; void (*set_termios)(struct tty_struct * , struct ktermios * ) ; void (*throttle)(struct tty_struct * ) ; void (*unthrottle)(struct tty_struct * ) ; void (*stop)(struct tty_struct * ) ; void (*start)(struct tty_struct * ) ; void (*hangup)(struct tty_struct * ) ; int (*break_ctl)(struct tty_struct * , int ) ; void (*flush_buffer)(struct tty_struct * ) ; void (*set_ldisc)(struct tty_struct * ) ; void (*wait_until_sent)(struct tty_struct * , int ) ; void (*send_xchar)(struct tty_struct * , char ) ; int (*tiocmget)(struct tty_struct * ) ; int (*tiocmset)(struct tty_struct * , unsigned int , unsigned int ) ; int (*resize)(struct tty_struct * , struct winsize * ) ; int (*set_termiox)(struct tty_struct * , struct termiox * ) ; int (*get_icount)(struct tty_struct * , struct serial_icounter_struct * ) ; int (*poll_init)(struct tty_driver * , int , char * ) ; int (*poll_get_char)(struct tty_driver * , int ) ; void (*poll_put_char)(struct tty_driver * , int , char ) ; struct file_operations const *proc_fops ; }; struct tty_port; struct tty_driver { int magic ; struct kref kref ; struct cdev *cdevs ; struct module *owner ; char const *driver_name ; char const *name ; int name_base ; int major ; int minor_start ; unsigned int num ; short type ; short subtype ; struct ktermios init_termios ; unsigned long flags ; struct proc_dir_entry *proc_entry ; struct tty_driver *other ; struct tty_struct **ttys ; struct tty_port **ports ; struct ktermios **termios ; void *driver_state ; struct tty_operations const *ops ; struct list_head tty_drivers ; }; struct ld_semaphore { long count ; raw_spinlock_t wait_lock ; unsigned int wait_readers ; struct list_head read_wait ; struct list_head write_wait ; struct lockdep_map dep_map ; }; struct tty_ldisc_ops { int magic ; char *name ; int num ; int flags ; int (*open)(struct tty_struct * ) ; void (*close)(struct tty_struct * ) ; void (*flush_buffer)(struct tty_struct * ) ; ssize_t (*chars_in_buffer)(struct tty_struct * ) ; ssize_t (*read)(struct tty_struct * , struct file * , unsigned char * , size_t ) ; ssize_t (*write)(struct tty_struct * , struct file * , unsigned char const * , size_t ) ; int (*ioctl)(struct tty_struct * , struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct tty_struct * , struct file * , unsigned int , unsigned long ) ; void (*set_termios)(struct tty_struct * , struct ktermios * ) ; unsigned int (*poll)(struct tty_struct * , struct file * , struct poll_table_struct * ) ; int (*hangup)(struct tty_struct * ) ; void (*receive_buf)(struct tty_struct * , unsigned char const * , char * , int ) ; void (*write_wakeup)(struct tty_struct * ) ; void (*dcd_change)(struct tty_struct * , unsigned int ) ; void (*fasync)(struct tty_struct * , int ) ; int (*receive_buf2)(struct tty_struct * , unsigned char const * , char * , int ) ; struct module *owner ; int refcount ; }; struct tty_ldisc { struct tty_ldisc_ops *ops ; struct tty_struct *tty ; }; union __anonunion____missing_field_name_215 { struct tty_buffer *next ; struct llist_node free ; }; struct tty_buffer { union __anonunion____missing_field_name_215 __annonCompField71 ; int used ; int size ; int commit ; int read ; int flags ; unsigned long data[0U] ; }; struct tty_bufhead { struct tty_buffer *head ; struct work_struct work ; struct mutex lock ; atomic_t priority ; struct tty_buffer sentinel ; struct llist_head free ; atomic_t mem_used ; int mem_limit ; struct tty_buffer *tail ; }; struct tty_port_operations { int (*carrier_raised)(struct tty_port * ) ; void (*dtr_rts)(struct tty_port * , int ) ; void (*shutdown)(struct tty_port * ) ; int (*activate)(struct tty_port * , struct tty_struct * ) ; void (*destruct)(struct tty_port * ) ; }; struct tty_port { struct tty_bufhead buf ; struct tty_struct *tty ; struct tty_struct *itty ; struct tty_port_operations const *ops ; spinlock_t lock ; int blocked_open ; int count ; wait_queue_head_t open_wait ; wait_queue_head_t close_wait ; wait_queue_head_t delta_msr_wait ; unsigned long flags ; unsigned char console : 1 ; unsigned char low_latency : 1 ; struct mutex mutex ; struct mutex buf_mutex ; unsigned char *xmit_buf ; unsigned int close_delay ; unsigned int closing_wait ; int drain_delay ; struct kref kref ; }; struct tty_struct { int magic ; struct kref kref ; struct device *dev ; struct tty_driver *driver ; struct tty_operations const *ops ; int index ; struct ld_semaphore ldisc_sem ; struct tty_ldisc *ldisc ; struct mutex atomic_write_lock ; struct mutex legacy_mutex ; struct mutex throttle_mutex ; struct rw_semaphore termios_rwsem ; struct mutex winsize_mutex ; spinlock_t ctrl_lock ; spinlock_t flow_lock ; struct ktermios termios ; struct ktermios termios_locked ; struct termiox *termiox ; char name[64U] ; struct pid *pgrp ; struct pid *session ; unsigned long flags ; int count ; struct winsize winsize ; unsigned char stopped : 1 ; unsigned char flow_stopped : 1 ; unsigned long unused : 62 ; int hw_stopped ; unsigned char ctrl_status ; unsigned char packet : 1 ; unsigned long unused_ctrl : 55 ; unsigned int receive_room ; int flow_change ; struct tty_struct *link ; struct fasync_struct *fasync ; int alt_speed ; wait_queue_head_t write_wait ; wait_queue_head_t read_wait ; struct work_struct hangup_work ; void *disc_data ; void *driver_data ; struct list_head tty_files ; int closing ; unsigned char *write_buf ; int write_cnt ; struct work_struct SAK_work ; struct tty_port *port ; }; enum fwnode_type { FWNODE_INVALID = 0, FWNODE_OF = 1, FWNODE_ACPI = 2 } ; struct fwnode_handle { enum fwnode_type type ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; struct bin_attribute attr ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct fwnode_handle fwnode ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct kobject kobj ; unsigned long _flags ; void *data ; }; struct i2c_msg { __u16 addr ; __u16 flags ; __u16 len ; __u8 *buf ; }; union i2c_smbus_data { __u8 byte ; __u16 word ; __u8 block[34U] ; }; struct i2c_algorithm; struct i2c_adapter; struct i2c_client; enum i2c_slave_event; enum i2c_slave_event; struct i2c_client { unsigned short flags ; unsigned short addr ; char name[20U] ; struct i2c_adapter *adapter ; struct device dev ; int irq ; struct list_head detected ; int (*slave_cb)(struct i2c_client * , enum i2c_slave_event , u8 * ) ; }; enum i2c_slave_event { I2C_SLAVE_REQ_READ_START = 0, I2C_SLAVE_REQ_READ_END = 1, I2C_SLAVE_REQ_WRITE_START = 2, I2C_SLAVE_REQ_WRITE_END = 3, I2C_SLAVE_STOP = 4 } ; struct i2c_algorithm { int (*master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; int (*smbus_xfer)(struct i2c_adapter * , u16 , unsigned short , char , u8 , int , union i2c_smbus_data * ) ; u32 (*functionality)(struct i2c_adapter * ) ; int (*reg_slave)(struct i2c_client * ) ; int (*unreg_slave)(struct i2c_client * ) ; }; struct i2c_bus_recovery_info { int (*recover_bus)(struct i2c_adapter * ) ; int (*get_scl)(struct i2c_adapter * ) ; void (*set_scl)(struct i2c_adapter * , int ) ; int (*get_sda)(struct i2c_adapter * ) ; void (*prepare_recovery)(struct i2c_bus_recovery_info * ) ; void (*unprepare_recovery)(struct i2c_bus_recovery_info * ) ; int scl_gpio ; int sda_gpio ; }; struct i2c_adapter { struct module *owner ; unsigned int class ; struct i2c_algorithm const *algo ; void *algo_data ; struct rt_mutex bus_lock ; int timeout ; int retries ; struct device dev ; int nr ; char name[48U] ; struct completion dev_released ; struct mutex userspace_clients_lock ; struct list_head userspace_clients ; struct i2c_bus_recovery_info *bus_recovery_info ; }; struct fb_fix_screeninfo { char id[16U] ; unsigned long smem_start ; __u32 smem_len ; __u32 type ; __u32 type_aux ; __u32 visual ; __u16 xpanstep ; __u16 ypanstep ; __u16 ywrapstep ; __u32 line_length ; unsigned long mmio_start ; __u32 mmio_len ; __u32 accel ; __u16 capabilities ; __u16 reserved[2U] ; }; struct fb_bitfield { __u32 offset ; __u32 length ; __u32 msb_right ; }; struct fb_var_screeninfo { __u32 xres ; __u32 yres ; __u32 xres_virtual ; __u32 yres_virtual ; __u32 xoffset ; __u32 yoffset ; __u32 bits_per_pixel ; __u32 grayscale ; struct fb_bitfield red ; struct fb_bitfield green ; struct fb_bitfield blue ; struct fb_bitfield transp ; __u32 nonstd ; __u32 activate ; __u32 height ; __u32 width ; __u32 accel_flags ; __u32 pixclock ; __u32 left_margin ; __u32 right_margin ; __u32 upper_margin ; __u32 lower_margin ; __u32 hsync_len ; __u32 vsync_len ; __u32 sync ; __u32 vmode ; __u32 rotate ; __u32 colorspace ; __u32 reserved[4U] ; }; struct fb_cmap { __u32 start ; __u32 len ; __u16 *red ; __u16 *green ; __u16 *blue ; __u16 *transp ; }; struct fb_copyarea { __u32 dx ; __u32 dy ; __u32 width ; __u32 height ; __u32 sx ; __u32 sy ; }; struct fb_fillrect { __u32 dx ; __u32 dy ; __u32 width ; __u32 height ; __u32 color ; __u32 rop ; }; struct fb_image { __u32 dx ; __u32 dy ; __u32 width ; __u32 height ; __u32 fg_color ; __u32 bg_color ; __u8 depth ; char const *data ; struct fb_cmap cmap ; }; struct fbcurpos { __u16 x ; __u16 y ; }; struct fb_cursor { __u16 set ; __u16 enable ; __u16 rop ; char const *mask ; struct fbcurpos hot ; struct fb_image image ; }; enum backlight_type { BACKLIGHT_RAW = 1, BACKLIGHT_PLATFORM = 2, BACKLIGHT_FIRMWARE = 3, BACKLIGHT_TYPE_MAX = 4 } ; struct backlight_device; struct fb_info; struct backlight_ops { unsigned int options ; int (*update_status)(struct backlight_device * ) ; int (*get_brightness)(struct backlight_device * ) ; int (*check_fb)(struct backlight_device * , struct fb_info * ) ; }; struct backlight_properties { int brightness ; int max_brightness ; int power ; int fb_blank ; enum backlight_type type ; unsigned int state ; }; struct backlight_device { struct backlight_properties props ; struct mutex update_lock ; struct mutex ops_lock ; struct backlight_ops const *ops ; struct notifier_block fb_notif ; struct list_head entry ; struct device dev ; bool fb_bl_on[32U] ; int use_count ; }; struct fb_chroma { __u32 redx ; __u32 greenx ; __u32 bluex ; __u32 whitex ; __u32 redy ; __u32 greeny ; __u32 bluey ; __u32 whitey ; }; struct fb_videomode; struct fb_monspecs { struct fb_chroma chroma ; struct fb_videomode *modedb ; __u8 manufacturer[4U] ; __u8 monitor[14U] ; __u8 serial_no[14U] ; __u8 ascii[14U] ; __u32 modedb_len ; __u32 model ; __u32 serial ; __u32 year ; __u32 week ; __u32 hfmin ; __u32 hfmax ; __u32 dclkmin ; __u32 dclkmax ; __u16 input ; __u16 dpms ; __u16 signal ; __u16 vfmin ; __u16 vfmax ; __u16 gamma ; unsigned char gtf : 1 ; __u16 misc ; __u8 version ; __u8 revision ; __u8 max_x ; __u8 max_y ; }; struct fb_blit_caps { u32 x ; u32 y ; u32 len ; u32 flags ; }; struct fb_pixmap { u8 *addr ; u32 size ; u32 offset ; u32 buf_align ; u32 scan_align ; u32 access_align ; u32 flags ; u32 blit_x ; u32 blit_y ; void (*writeio)(struct fb_info * , void * , void * , unsigned int ) ; void (*readio)(struct fb_info * , void * , void * , unsigned int ) ; }; struct fb_deferred_io { unsigned long delay ; struct mutex lock ; struct list_head pagelist ; void (*first_io)(struct fb_info * ) ; void (*deferred_io)(struct fb_info * , struct list_head * ) ; }; struct fb_ops { struct module *owner ; int (*fb_open)(struct fb_info * , int ) ; int (*fb_release)(struct fb_info * , int ) ; ssize_t (*fb_read)(struct fb_info * , char * , size_t , loff_t * ) ; ssize_t (*fb_write)(struct fb_info * , char const * , size_t , loff_t * ) ; int (*fb_check_var)(struct fb_var_screeninfo * , struct fb_info * ) ; int (*fb_set_par)(struct fb_info * ) ; int (*fb_setcolreg)(unsigned int , unsigned int , unsigned int , unsigned int , unsigned int , struct fb_info * ) ; int (*fb_setcmap)(struct fb_cmap * , struct fb_info * ) ; int (*fb_blank)(int , struct fb_info * ) ; int (*fb_pan_display)(struct fb_var_screeninfo * , struct fb_info * ) ; void (*fb_fillrect)(struct fb_info * , struct fb_fillrect const * ) ; void (*fb_copyarea)(struct fb_info * , struct fb_copyarea const * ) ; void (*fb_imageblit)(struct fb_info * , struct fb_image const * ) ; int (*fb_cursor)(struct fb_info * , struct fb_cursor * ) ; void (*fb_rotate)(struct fb_info * , int ) ; int (*fb_sync)(struct fb_info * ) ; int (*fb_ioctl)(struct fb_info * , unsigned int , unsigned long ) ; int (*fb_compat_ioctl)(struct fb_info * , unsigned int , unsigned long ) ; int (*fb_mmap)(struct fb_info * , struct vm_area_struct * ) ; void (*fb_get_caps)(struct fb_info * , struct fb_blit_caps * , struct fb_var_screeninfo * ) ; void (*fb_destroy)(struct fb_info * ) ; int (*fb_debug_enter)(struct fb_info * ) ; int (*fb_debug_leave)(struct fb_info * ) ; }; struct fb_tilemap { __u32 width ; __u32 height ; __u32 depth ; __u32 length ; __u8 const *data ; }; struct fb_tilerect { __u32 sx ; __u32 sy ; __u32 width ; __u32 height ; __u32 index ; __u32 fg ; __u32 bg ; __u32 rop ; }; struct fb_tilearea { __u32 sx ; __u32 sy ; __u32 dx ; __u32 dy ; __u32 width ; __u32 height ; }; struct fb_tileblit { __u32 sx ; __u32 sy ; __u32 width ; __u32 height ; __u32 fg ; __u32 bg ; __u32 length ; __u32 *indices ; }; struct fb_tilecursor { __u32 sx ; __u32 sy ; __u32 mode ; __u32 shape ; __u32 fg ; __u32 bg ; }; struct fb_tile_ops { void (*fb_settile)(struct fb_info * , struct fb_tilemap * ) ; void (*fb_tilecopy)(struct fb_info * , struct fb_tilearea * ) ; void (*fb_tilefill)(struct fb_info * , struct fb_tilerect * ) ; void (*fb_tileblit)(struct fb_info * , struct fb_tileblit * ) ; void (*fb_tilecursor)(struct fb_info * , struct fb_tilecursor * ) ; int (*fb_get_tilemax)(struct fb_info * ) ; }; struct aperture { resource_size_t base ; resource_size_t size ; }; struct apertures_struct { unsigned int count ; struct aperture ranges[0U] ; }; struct fb_info { atomic_t count ; int node ; int flags ; struct mutex lock ; struct mutex mm_lock ; struct fb_var_screeninfo var ; struct fb_fix_screeninfo fix ; struct fb_monspecs monspecs ; struct work_struct queue ; struct fb_pixmap pixmap ; struct fb_pixmap sprite ; struct fb_cmap cmap ; struct list_head modelist ; struct fb_videomode *mode ; struct backlight_device *bl_dev ; struct mutex bl_curve_mutex ; u8 bl_curve[128U] ; struct delayed_work deferred_work ; struct fb_deferred_io *fbdefio ; struct fb_ops *fbops ; struct device *device ; struct device *dev ; int class_flag ; struct fb_tile_ops *tileops ; char *screen_base ; unsigned long screen_size ; void *pseudo_palette ; u32 state ; void *fbcon_par ; void *par ; struct apertures_struct *apertures ; bool skip_vt_switch ; }; struct fb_videomode { char const *name ; u32 refresh ; u32 xres ; u32 yres ; u32 pixclock ; u32 left_margin ; u32 right_margin ; u32 upper_margin ; u32 lower_margin ; u32 hsync_len ; u32 vsync_len ; u32 sync ; u32 vmode ; u32 flag ; }; struct vgastate { void *vgabase ; unsigned long membase ; __u32 memsize ; __u32 flags ; __u32 depth ; __u32 num_attr ; __u32 num_crtc ; __u32 num_gfx ; __u32 num_seq ; void *vidstate ; }; struct vga_regset { u8 regnum ; u8 lowbit ; u8 highbit ; }; struct svga_fb_format { u32 bits_per_pixel ; struct fb_bitfield red ; struct fb_bitfield green ; struct fb_bitfield blue ; struct fb_bitfield transp ; u32 nonstd ; u32 type ; u32 type_aux ; u32 visual ; u32 xpanstep ; u32 xresstep ; }; struct svga_timing_regs { struct vga_regset const *h_total_regs ; struct vga_regset const *h_display_regs ; struct vga_regset const *h_blank_start_regs ; struct vga_regset const *h_blank_end_regs ; struct vga_regset const *h_sync_start_regs ; struct vga_regset const *h_sync_end_regs ; struct vga_regset const *v_total_regs ; struct vga_regset const *v_display_regs ; struct vga_regset const *v_blank_start_regs ; struct vga_regset const *v_blank_end_regs ; struct vga_regset const *v_sync_start_regs ; struct vga_regset const *v_sync_end_regs ; }; struct svga_pll { u16 m_min ; u16 m_max ; u16 n_min ; u16 n_max ; u16 r_min ; u16 r_max ; u32 f_vco_min ; u32 f_vco_max ; u32 f_base ; }; struct i2c_algo_bit_data { void *data ; void (*setsda)(void * , int ) ; void (*setscl)(void * , int ) ; int (*getsda)(void * ) ; int (*getscl)(void * ) ; int (*pre_xfer)(struct i2c_adapter * ) ; void (*post_xfer)(struct i2c_adapter * ) ; int udelay ; int timeout ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kvec { void *iov_base ; size_t iov_len ; }; union __anonunion____missing_field_name_216 { struct iovec const *iov ; struct kvec const *kvec ; struct bio_vec const *bvec ; }; struct iov_iter { int type ; size_t iov_offset ; size_t count ; union __anonunion____missing_field_name_216 __annonCompField72 ; unsigned long nr_segs ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct s3fb_info { int chip ; int rev ; int mclk_freq ; int mtrr_reg ; struct vgastate state ; struct mutex open_lock ; unsigned int ref_count ; u32 pseudo_palette[16U] ; u8 *mmio ; bool ddc_registered ; struct i2c_adapter ddc_adapter ; struct i2c_algo_bit_data ddc_algo ; }; struct ldv_struct_dummy_resourceless_instance_1 { struct fb_info *arg0 ; int signal_pending ; }; struct ldv_struct_pci_instance_0 { struct pci_driver *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; struct request; struct device_private { void *driver_data ; }; typedef short s16; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; struct kthread_worker *worker ; }; struct dma_chan; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool (*can_dma)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool idling ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; bool cur_msg_mapped ; struct completion xfer_completion ; size_t max_dma_len ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; struct dma_chan *dma_tx ; struct dma_chan *dma_rx ; void *dummy_rx ; void *dummy_tx ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; struct sg_table tx_sg ; struct sg_table rx_sg ; unsigned char cs_change : 1 ; unsigned char tx_nbits : 3 ; unsigned char rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned char is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; enum hrtimer_restart; struct ratelimit_state { raw_spinlock_t lock ; int interval ; int burst ; int printed ; int missed ; unsigned long begin ; }; typedef unsigned int mmc_pm_flag_t; struct mmc_card; struct sdio_func; typedef void sdio_irq_handler_t(struct sdio_func * ); struct sdio_func_tuple { struct sdio_func_tuple *next ; unsigned char code ; unsigned char size ; unsigned char data[0U] ; }; struct sdio_func { struct mmc_card *card ; struct device dev ; sdio_irq_handler_t *irq_handler ; unsigned int num ; unsigned char class ; unsigned short vendor ; unsigned short device ; unsigned int max_blksize ; unsigned int cur_blksize ; unsigned int enable_timeout ; unsigned int state ; u8 tmpbuf[4U] ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; int (*brightness_set_sync)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct attribute_group const **groups ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; void (*flash_resume)(struct led_classdev * ) ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; struct mutex led_access ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct fault_attr { unsigned long probability ; unsigned long interval ; atomic_t times ; atomic_t space ; unsigned long verbose ; u32 task_filter ; unsigned long stacktrace_depth ; unsigned long require_start ; unsigned long require_end ; unsigned long reject_start ; unsigned long reject_end ; unsigned long count ; struct ratelimit_state ratelimit_state ; struct dentry *dname ; }; struct mmc_data; struct mmc_request; struct mmc_command { u32 opcode ; u32 arg ; u32 resp[4U] ; unsigned int flags ; unsigned int retries ; unsigned int error ; unsigned int busy_timeout ; bool sanitize_busy ; struct mmc_data *data ; struct mmc_request *mrq ; }; struct mmc_data { unsigned int timeout_ns ; unsigned int timeout_clks ; unsigned int blksz ; unsigned int blocks ; unsigned int error ; unsigned int flags ; unsigned int bytes_xfered ; struct mmc_command *stop ; struct mmc_request *mrq ; unsigned int sg_len ; struct scatterlist *sg ; s32 host_cookie ; }; struct mmc_host; struct mmc_request { struct mmc_command *sbc ; struct mmc_command *cmd ; struct mmc_data *data ; struct mmc_command *stop ; struct completion completion ; void (*done)(struct mmc_request * ) ; struct mmc_host *host ; }; struct mmc_async_req; struct mmc_cid { unsigned int manfid ; char prod_name[8U] ; unsigned char prv ; unsigned int serial ; unsigned short oemid ; unsigned short year ; unsigned char hwrev ; unsigned char fwrev ; unsigned char month ; }; struct mmc_csd { unsigned char structure ; unsigned char mmca_vsn ; unsigned short cmdclass ; unsigned short tacc_clks ; unsigned int tacc_ns ; unsigned int c_size ; unsigned int r2w_factor ; unsigned int max_dtr ; unsigned int erase_size ; unsigned int read_blkbits ; unsigned int write_blkbits ; unsigned int capacity ; unsigned char read_partial : 1 ; unsigned char read_misalign : 1 ; unsigned char write_partial : 1 ; unsigned char write_misalign : 1 ; unsigned char dsr_imp : 1 ; }; struct mmc_ext_csd { u8 rev ; u8 erase_group_def ; u8 sec_feature_support ; u8 rel_sectors ; u8 rel_param ; u8 part_config ; u8 cache_ctrl ; u8 rst_n_function ; u8 max_packed_writes ; u8 max_packed_reads ; u8 packed_event_en ; unsigned int part_time ; unsigned int sa_timeout ; unsigned int generic_cmd6_time ; unsigned int power_off_longtime ; u8 power_off_notification ; unsigned int hs_max_dtr ; unsigned int hs200_max_dtr ; unsigned int sectors ; unsigned int hc_erase_size ; unsigned int hc_erase_timeout ; unsigned int sec_trim_mult ; unsigned int sec_erase_mult ; unsigned int trim_timeout ; bool partition_setting_completed ; unsigned long long enhanced_area_offset ; unsigned int enhanced_area_size ; unsigned int cache_size ; bool hpi_en ; bool hpi ; unsigned int hpi_cmd ; bool bkops ; bool man_bkops_en ; unsigned int data_sector_size ; unsigned int data_tag_unit_size ; unsigned int boot_ro_lock ; bool boot_ro_lockable ; bool ffu_capable ; u8 fwrev[8U] ; u8 raw_exception_status ; u8 raw_partition_support ; u8 raw_rpmb_size_mult ; u8 raw_erased_mem_count ; u8 raw_ext_csd_structure ; u8 raw_card_type ; u8 out_of_int_time ; u8 raw_pwr_cl_52_195 ; u8 raw_pwr_cl_26_195 ; u8 raw_pwr_cl_52_360 ; u8 raw_pwr_cl_26_360 ; u8 raw_s_a_timeout ; u8 raw_hc_erase_gap_size ; u8 raw_erase_timeout_mult ; u8 raw_hc_erase_grp_size ; u8 raw_sec_trim_mult ; u8 raw_sec_erase_mult ; u8 raw_sec_feature_support ; u8 raw_trim_mult ; u8 raw_pwr_cl_200_195 ; u8 raw_pwr_cl_200_360 ; u8 raw_pwr_cl_ddr_52_195 ; u8 raw_pwr_cl_ddr_52_360 ; u8 raw_pwr_cl_ddr_200_360 ; u8 raw_bkops_status ; u8 raw_sectors[4U] ; unsigned int feature_support ; }; struct sd_scr { unsigned char sda_vsn ; unsigned char sda_spec3 ; unsigned char bus_widths ; unsigned char cmds ; }; struct sd_ssr { unsigned int au ; unsigned int erase_timeout ; unsigned int erase_offset ; }; struct sd_switch_caps { unsigned int hs_max_dtr ; unsigned int uhs_max_dtr ; unsigned int sd3_bus_mode ; unsigned int sd3_drv_type ; unsigned int sd3_curr_limit ; }; struct sdio_cccr { unsigned int sdio_vsn ; unsigned int sd_vsn ; unsigned char multi_block : 1 ; unsigned char low_speed : 1 ; unsigned char wide_bus : 1 ; unsigned char high_power : 1 ; unsigned char high_speed : 1 ; unsigned char disable_cd : 1 ; }; struct sdio_cis { unsigned short vendor ; unsigned short device ; unsigned short blksize ; unsigned int max_dtr ; }; struct mmc_ios; struct mmc_part { unsigned int size ; unsigned int part_cfg ; char name[20U] ; bool force_ro ; unsigned int area_type ; }; struct mmc_card { struct mmc_host *host ; struct device dev ; u32 ocr ; unsigned int rca ; unsigned int type ; unsigned int state ; unsigned int quirks ; unsigned int erase_size ; unsigned int erase_shift ; unsigned int pref_erase ; u8 erased_byte ; u32 raw_cid[4U] ; u32 raw_csd[4U] ; u32 raw_scr[2U] ; struct mmc_cid cid ; struct mmc_csd csd ; struct mmc_ext_csd ext_csd ; struct sd_scr scr ; struct sd_ssr ssr ; struct sd_switch_caps sw_caps ; unsigned int sdio_funcs ; struct sdio_cccr cccr ; struct sdio_cis cis ; struct sdio_func *sdio_func[7U] ; struct sdio_func *sdio_single_irq ; unsigned int num_info ; char const **info ; struct sdio_func_tuple *tuples ; unsigned int sd_bus_speed ; unsigned int mmc_avail_type ; struct dentry *debugfs_root ; struct mmc_part part[7U] ; unsigned int nr_parts ; }; struct mmc_ios { unsigned int clock ; unsigned short vdd ; unsigned char bus_mode ; unsigned char chip_select ; unsigned char power_mode ; unsigned char bus_width ; unsigned char timing ; unsigned char signal_voltage ; unsigned char drv_type ; }; struct mmc_host_ops { int (*enable)(struct mmc_host * ) ; int (*disable)(struct mmc_host * ) ; void (*post_req)(struct mmc_host * , struct mmc_request * , int ) ; void (*pre_req)(struct mmc_host * , struct mmc_request * , bool ) ; void (*request)(struct mmc_host * , struct mmc_request * ) ; void (*set_ios)(struct mmc_host * , struct mmc_ios * ) ; int (*get_ro)(struct mmc_host * ) ; int (*get_cd)(struct mmc_host * ) ; void (*enable_sdio_irq)(struct mmc_host * , int ) ; void (*init_card)(struct mmc_host * , struct mmc_card * ) ; int (*start_signal_voltage_switch)(struct mmc_host * , struct mmc_ios * ) ; int (*card_busy)(struct mmc_host * ) ; int (*execute_tuning)(struct mmc_host * , u32 ) ; int (*prepare_hs400_tuning)(struct mmc_host * , struct mmc_ios * ) ; int (*select_drive_strength)(unsigned int , int , int ) ; void (*hw_reset)(struct mmc_host * ) ; void (*card_event)(struct mmc_host * ) ; int (*multi_io_quirk)(struct mmc_card * , unsigned int , int ) ; }; struct mmc_async_req { struct mmc_request *mrq ; int (*err_check)(struct mmc_card * , struct mmc_async_req * ) ; }; struct mmc_slot { int cd_irq ; void *handler_priv ; }; struct mmc_context_info { bool is_done_rcv ; bool is_new_req ; bool is_waiting_last_req ; wait_queue_head_t wait ; spinlock_t lock ; }; struct regulator; struct mmc_pwrseq; struct mmc_supply { struct regulator *vmmc ; struct regulator *vqmmc ; }; struct mmc_bus_ops; struct mmc_host { struct device *parent ; struct device class_dev ; int index ; struct mmc_host_ops const *ops ; struct mmc_pwrseq *pwrseq ; unsigned int f_min ; unsigned int f_max ; unsigned int f_init ; u32 ocr_avail ; u32 ocr_avail_sdio ; u32 ocr_avail_sd ; u32 ocr_avail_mmc ; struct notifier_block pm_notify ; u32 max_current_330 ; u32 max_current_300 ; u32 max_current_180 ; u32 caps ; u32 caps2 ; mmc_pm_flag_t pm_caps ; int clk_requests ; unsigned int clk_delay ; bool clk_gated ; struct delayed_work clk_gate_work ; unsigned int clk_old ; spinlock_t clk_lock ; struct mutex clk_gate_mutex ; struct device_attribute clkgate_delay_attr ; unsigned long clkgate_delay ; unsigned int max_seg_size ; unsigned short max_segs ; unsigned short unused ; unsigned int max_req_size ; unsigned int max_blk_size ; unsigned int max_blk_count ; unsigned int max_busy_timeout ; spinlock_t lock ; struct mmc_ios ios ; unsigned char use_spi_crc : 1 ; unsigned char claimed : 1 ; unsigned char bus_dead : 1 ; unsigned char removed : 1 ; int rescan_disable ; int rescan_entered ; bool trigger_card_event ; struct mmc_card *card ; wait_queue_head_t wq ; struct task_struct *claimer ; int claim_cnt ; struct delayed_work detect ; int detect_change ; struct mmc_slot slot ; struct mmc_bus_ops const *bus_ops ; unsigned int bus_refs ; unsigned int sdio_irqs ; struct task_struct *sdio_irq_thread ; bool sdio_irq_pending ; atomic_t sdio_irq_thread_abort ; mmc_pm_flag_t pm_flags ; struct led_trigger *led ; bool regulator_enabled ; struct mmc_supply supply ; struct dentry *debugfs_root ; struct mmc_async_req *areq ; struct mmc_context_info context_info ; struct fault_attr fail_mmc_request ; unsigned int actual_clock ; unsigned int slotno ; int dsr_req ; u32 dsr ; unsigned long private[0U] ; }; typedef int ldv_map; struct usb_device; struct urb; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; extern void abort(void); void assume_abort_if_not(int cond) { if(!cond) {abort();} } void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_irq_check_alloc_nonatomic(void) ; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) ; void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) ; void ldv_linux_arch_io_check_final_state(void) ; void ldv_linux_block_genhd_check_final_state(void) ; void ldv_linux_block_queue_check_final_state(void) ; void ldv_linux_block_request_check_final_state(void) ; void *ldv_linux_drivers_base_class_create_class(void) ; int ldv_linux_drivers_base_class_register_class(void) ; void ldv_linux_drivers_base_class_check_final_state(void) ; void ldv_linux_fs_char_dev_check_final_state(void) ; void ldv_linux_fs_sysfs_check_final_state(void) ; void ldv_linux_kernel_locking_rwlock_check_final_state(void) ; void ldv_linux_kernel_module_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) ; void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) ; void ldv_linux_kernel_rcu_update_lock_check_final_state(void) ; void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) ; void ldv_linux_kernel_rcu_srcu_check_final_state(void) ; void ldv_linux_lib_find_bit_initialize(void) ; void ldv_linux_lib_idr_check_final_state(void) ; void ldv_linux_mmc_sdio_func_check_final_state(void) ; void ldv_linux_net_register_reset_error_counter(void) ; void ldv_linux_net_register_check_return_value_probe(int retval ) ; void ldv_linux_net_rtnetlink_check_final_state(void) ; void ldv_linux_net_sock_check_final_state(void) ; void ldv_linux_usb_coherent_check_final_state(void) ; void *ldv_linux_usb_gadget_create_class(void *is_got ) ; int ldv_linux_usb_gadget_register_class(void) ; void ldv_linux_usb_gadget_check_final_state(void) ; void ldv_linux_usb_register_reset_error_counter(void) ; void ldv_linux_usb_register_check_return_value_probe(int retval ) ; void ldv_linux_usb_urb_check_final_state(void) ; void ldv_check_alloc_nonatomic(void) { { { ldv_linux_alloc_irq_check_alloc_nonatomic(); ldv_linux_alloc_usb_lock_check_alloc_nonatomic(); } return; } } void ldv_check_alloc_flags(gfp_t flags ) { { { ldv_linux_alloc_irq_check_alloc_flags(flags); ldv_linux_alloc_usb_lock_check_alloc_flags(flags); } return; } } void ldv_check_for_read_section(void) { { { ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(); ldv_linux_kernel_rcu_update_lock_check_for_read_section(); ldv_linux_kernel_rcu_srcu_check_for_read_section(); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_create_class(void) { void *res1 ; void *tmp ; void *res2 ; void *tmp___0 ; { { tmp = ldv_linux_drivers_base_class_create_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_create_class(res1); res2 = tmp___0; assume_abort_if_not((unsigned long )res1 == (unsigned long )res2); } return (res1); } } int ldv_register_class(void) { int res1 ; int tmp ; int res2 ; int tmp___0 ; { { tmp = ldv_linux_drivers_base_class_register_class(); res1 = tmp; tmp___0 = ldv_linux_usb_gadget_register_class(); res2 = tmp___0; assume_abort_if_not(res1 == res2); } return (res1); } } int ldv_undef_int(void) ; void *ldv_linux_arch_io_io_mem_remap(size_t size ) ; void ldv_linux_arch_io_io_mem_unmap(void) ; static void ldv_ldv_initialize_120(void) ; int ldv_post_init(int init_ret_val ) ; static int ldv_ldv_post_init_117(int ldv_func_arg1 ) ; extern void ldv_pre_probe(void) ; static void ldv_ldv_pre_probe_121(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_122(int retval ) ; int ldv_filter_err_code(int ret_val ) ; static void ldv_ldv_check_final_state_118(void) ; static void ldv_ldv_check_final_state_119(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; static void ldv_mutex_lock_99(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_101(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_108(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_111(struct mutex *ldv_func_arg1 ) ; void ldv_linux_kernel_locking_mutex_mutex_lock_open_lock_of_s3fb_info(struct mutex *lock ) ; void ldv_linux_kernel_locking_mutex_mutex_unlock_open_lock_of_s3fb_info(struct mutex *lock ) ; extern struct module __this_module ; extern struct pv_cpu_ops pv_cpu_ops ; extern int printk(char const * , ...) ; extern void __dynamic_pr_debug(struct _ddebug * , char const * , ...) ; extern void *memset(void * , int , size_t ) ; extern char *strcpy(char * , char const * ) ; extern size_t strlcpy(char * , char const * , size_t ) ; __inline static void slow_down_io(void) { { { (*(pv_cpu_ops.io_delay))(); } return; } } extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; static void ldv_mutex_unlock_100(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_102(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_103(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_109(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_110(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_112(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_113(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_114(struct mutex *ldv_func_arg1 ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static unsigned char readb(void const volatile *addr ) { unsigned char ret ; { __asm__ volatile ("movb %1,%0": "=q" (ret): "m" (*((unsigned char volatile *)addr)): "memory"); return (ret); } } __inline static void writeb(unsigned char val , void volatile *addr ) { { __asm__ volatile ("movb %0,%1": : "q" (val), "m" (*((unsigned char volatile *)addr)): "memory"); return; } } __inline static void writew(unsigned short val , void volatile *addr ) { { __asm__ volatile ("movw %0,%1": : "r" (val), "m" (*((unsigned short volatile *)addr)): "memory"); return; } } __inline static void __writeb(unsigned char val , void volatile *addr ) { { __asm__ volatile ("movb %0,%1": : "q" (val), "m" (*((unsigned char volatile *)addr))); return; } } __inline static void __writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr))); return; } } __inline static void *ioremap(resource_size_t offset , unsigned long size ) ; static void ldv_iounmap_105(void volatile *ldv_func_arg1 ) ; static void ldv_iounmap_107(void volatile *ldv_func_arg1 ) ; extern void pci_iounmap(struct pci_dev * , void * ) ; extern void *pci_iomap(struct pci_dev * , int , unsigned long ) ; __inline static void memset_io(void volatile *addr , unsigned char val , size_t count ) { { { memset((void *)addr, (int )val, count); } return; } } __inline static void outb(unsigned char value , int port ) { { __asm__ volatile ("outb %b0, %w1": : "a" (value), "Nd" (port)); return; } } __inline static unsigned char inb(int port ) { unsigned char value ; { __asm__ volatile ("inb %w1, %b0": "=a" (value): "Nd" (port)); return (value); } } __inline static void outb_p(unsigned char value , int port ) { { { outb((int )value, port); slow_down_io(); } return; } } __inline static unsigned char inb_p(int port ) { unsigned char value ; unsigned char tmp ; { { tmp = inb(port); value = tmp; slow_down_io(); } return (value); } } __inline static void outw(unsigned short value , int port ) { { __asm__ volatile ("outw %w0, %w1": : "a" (value), "Nd" (port)); return; } } __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } __inline static void *dev_get_drvdata(struct device const *dev ) { { return ((void *)dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern void dev_err(struct device const * , char const * , ...) ; extern void _dev_info(struct device const * , char const * , ...) ; extern void kfree(void const * ) ; extern void pcibios_bus_to_resource(struct pci_bus * , struct resource * , struct pci_bus_region * ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern pci_power_t pci_choose_state(struct pci_dev * , pm_message_t ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_116(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_115(struct pci_driver *ldv_func_arg1 ) ; __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; __inline static void i2c_set_adapdata(struct i2c_adapter *dev , void *data ) { { { dev_set_drvdata(& dev->dev, data); } return; } } extern void i2c_del_adapter(struct i2c_adapter * ) ; extern void cfb_fillrect(struct fb_info * , struct fb_fillrect const * ) ; extern void cfb_copyarea(struct fb_info * , struct fb_copyarea const * ) ; extern void cfb_imageblit(struct fb_info * , struct fb_image const * ) ; extern int register_framebuffer(struct fb_info * ) ; static int ldv_register_framebuffer_104(struct fb_info *ldv_func_arg1 ) ; extern int unregister_framebuffer(struct fb_info * ) ; static int ldv_unregister_framebuffer_106(struct fb_info *ldv_func_arg1 ) ; extern void fb_set_suspend(struct fb_info * , int ) ; extern struct fb_info *framebuffer_alloc(size_t , struct device * ) ; extern void framebuffer_release(struct fb_info * ) ; extern void fb_edid_to_monspecs(unsigned char * , struct fb_monspecs * ) ; extern void fb_destroy_modedb(struct fb_videomode * ) ; extern unsigned char *fb_ddc_read(struct i2c_adapter * ) ; extern void fb_videomode_to_var(struct fb_var_screeninfo * , struct fb_videomode const * ) ; extern void fb_videomode_to_modelist(struct fb_videomode const * , int , struct list_head * ) ; extern struct fb_videomode const *fb_find_best_display(struct fb_monspecs const * , struct list_head * ) ; extern int fb_alloc_cmap(struct fb_cmap * , int , int ) ; extern void fb_dealloc_cmap(struct fb_cmap * ) ; extern int fb_find_mode(struct fb_var_screeninfo * , struct fb_info * , char const * , struct fb_videomode const * , unsigned int , struct fb_videomode const * , unsigned int ) ; extern int save_vga(struct vgastate * ) ; extern int restore_vga(struct vgastate * ) ; __inline static unsigned char vga_io_r(unsigned short port ) { unsigned char tmp ; { { tmp = inb_p((int )port); } return (tmp); } } __inline static void vga_io_w(unsigned short port , unsigned char val ) { { { outb_p((int )val, (int )port); } return; } } __inline static void vga_io_w_fast(unsigned short port , unsigned char reg , unsigned char val ) { { { outw((int )((unsigned short )((int )((short )((int )val << 8)) | (int )((short )reg))), (int )port); } return; } } __inline static unsigned char vga_mm_r(void *regbase , unsigned short port ) { unsigned char tmp ; { { tmp = readb((void const volatile *)regbase + (unsigned long )port); } return (tmp); } } __inline static void vga_mm_w(void *regbase , unsigned short port , unsigned char val ) { { { writeb((int )val, (void volatile *)regbase + (unsigned long )port); } return; } } __inline static void vga_mm_w_fast(void *regbase , unsigned short port , unsigned char reg , unsigned char val ) { { { writew((int )((unsigned short )((int )((short )((int )val << 8)) | (int )((short )reg))), (void volatile *)regbase + (unsigned long )port); } return; } } __inline static unsigned char vga_r(void *regbase , unsigned short port ) { unsigned char tmp ; unsigned char tmp___0 ; { if ((unsigned long )regbase != (unsigned long )((void *)0)) { { tmp = vga_mm_r(regbase, (int )port); } return (tmp); } else { { tmp___0 = vga_io_r((int )port); } return (tmp___0); } } } __inline static void vga_w(void *regbase , unsigned short port , unsigned char val ) { { if ((unsigned long )regbase != (unsigned long )((void *)0)) { { vga_mm_w(regbase, (int )port, (int )val); } } else { { vga_io_w((int )port, (int )val); } } return; } } __inline static void vga_w_fast(void *regbase , unsigned short port , unsigned char reg , unsigned char val ) { { if ((unsigned long )regbase != (unsigned long )((void *)0)) { { vga_mm_w_fast(regbase, (int )port, (int )reg, (int )val); } } else { { vga_io_w_fast((int )port, (int )reg, (int )val); } } return; } } __inline static unsigned char vga_rcrt(void *regbase , unsigned char reg ) { unsigned char tmp ; { { vga_w(regbase, 980, (int )reg); tmp = vga_r(regbase, 981); } return (tmp); } } __inline static void vga_wcrt(void *regbase , unsigned char reg , unsigned char val ) { { { vga_w_fast(regbase, 980, (int )reg, (int )val); } return; } } __inline static unsigned char vga_rseq(void *regbase , unsigned char reg ) { unsigned char tmp ; { { vga_w(regbase, 964, (int )reg); tmp = vga_r(regbase, 965); } return (tmp); } } __inline static void vga_wseq(void *regbase , unsigned char reg , unsigned char val ) { { { vga_w_fast(regbase, 964, (int )reg, (int )val); } return; } } __inline static void vga_wgfx(void *regbase , unsigned char reg , unsigned char val ) { { { vga_w_fast(regbase, 974, (int )reg, (int )val); } return; } } __inline static void svga_wattr(void *regbase , u8 index , u8 data ) { { { vga_r(regbase, 986); vga_w(regbase, 960, (int )index); vga_w(regbase, 960, (int )data); } return; } } __inline static void svga_wseq_mask(void *regbase , u8 index , u8 data , u8 mask ) { unsigned char tmp ; { { tmp = vga_rseq(regbase, (int )index); vga_wseq(regbase, (int )index, (int )((unsigned char )((int )((signed char )((int )data & (int )mask)) | ((int )((signed char )tmp) & ~ ((int )((signed char )mask)))))); } return; } } __inline static void svga_wcrt_mask(void *regbase , u8 index , u8 data , u8 mask ) { unsigned char tmp ; { { tmp = vga_rcrt(regbase, (int )index); vga_wcrt(regbase, (int )index, (int )((unsigned char )((int )((signed char )((int )data & (int )mask)) | ((int )((signed char )tmp) & ~ ((int )((signed char )mask)))))); } return; } } __inline static int svga_primary_device(struct pci_dev *dev ) { u16 flags ; { { pci_read_config_word((struct pci_dev const *)dev, 4, & flags); } return ((int )flags & 1); } } extern void svga_wcrt_multi(void * , struct vga_regset const * , u32 ) ; extern void svga_set_default_gfx_regs(void * ) ; extern void svga_set_default_atc_regs(void * ) ; extern void svga_set_default_seq_regs(void * ) ; extern void svga_set_default_crt_regs(void * ) ; extern void svga_set_textmode_vga_regs(void * ) ; extern void svga_settile(struct fb_info * , struct fb_tilemap * ) ; extern void svga_tilecopy(struct fb_info * , struct fb_tilearea * ) ; extern void svga_tilefill(struct fb_info * , struct fb_tilerect * ) ; extern void svga_tileblit(struct fb_info * , struct fb_tileblit * ) ; extern void svga_tilecursor(void * , struct fb_info * , struct fb_tilecursor * ) ; extern int svga_get_tilemax(struct fb_info * ) ; extern void svga_get_caps(struct fb_info * , struct fb_blit_caps * , struct fb_var_screeninfo * ) ; extern int svga_compute_pll(struct svga_pll const * , u32 , u16 * , u16 * , u16 * , int ) ; extern int svga_check_timings(struct svga_timing_regs const * , struct fb_var_screeninfo * , int ) ; extern void svga_set_timings(void * , struct svga_timing_regs const * , struct fb_var_screeninfo * , u32 , u32 , u32 , u32 , u32 , int ) ; extern int svga_match_format(struct svga_fb_format const * , struct fb_var_screeninfo * , struct fb_fix_screeninfo * ) ; extern void console_lock(void) ; extern void console_unlock(void) ; extern int i2c_bit_add_bus(struct i2c_adapter * ) ; extern int mtrr_add(unsigned long , unsigned long , unsigned int , bool ) ; extern int mtrr_del(int , unsigned long , unsigned long ) ; static struct svga_fb_format const s3fb_formats[9U] = { {0U, {0U, 6U, 0U}, {0U, 6U, 0U}, {0U, 6U, 0U}, {0U, 0U, 0U}, 0U, 3U, 9U, 3U, 8U, 16U}, {4U, {0U, 4U, 0U}, {0U, 4U, 0U}, {0U, 4U, 0U}, {0U, 0U, 0U}, 0U, 0U, 0U, 3U, 8U, 16U}, {4U, {0U, 4U, 0U}, {0U, 4U, 0U}, {0U, 4U, 0U}, {0U, 0U, 0U}, 1U, 2U, 1U, 3U, 8U, 16U}, {8U, {0U, 8U, 0U}, {0U, 8U, 0U}, {0U, 8U, 0U}, {0U, 0U, 0U}, 0U, 0U, 0U, 3U, 4U, 8U}, {16U, {10U, 5U, 0U}, {5U, 5U, 0U}, {0U, 5U, 0U}, {0U, 0U, 0U}, 0U, 0U, 0U, 2U, 2U, 4U}, {16U, {11U, 5U, 0U}, {5U, 6U, 0U}, {0U, 5U, 0U}, {0U, 0U, 0U}, 0U, 0U, 0U, 2U, 2U, 4U}, {24U, {16U, 8U, 0U}, {8U, 8U, 0U}, {0U, 8U, 0U}, {0U, 0U, 0U}, 0U, 0U, 0U, 2U, 1U, 2U}, {32U, {16U, 8U, 0U}, {8U, 8U, 0U}, {0U, 8U, 0U}, {0U, 0U, 0U}, 0U, 0U, 0U, 2U, 1U, 2U}, {65535U, {0U, 0U, 0U}, {0U, 0U, 0U}, {0U, 0U, 0U}, {0U, 0U, 0U}, 0U, 0U, 0U, 0U, 0U, 0U}}; static struct svga_pll const s3_pll = {3U, 129U, 3U, 33U, 0U, 3U, 35000U, 240000U, 14318U}; static struct svga_pll const s3_trio3d_pll = {3U, 129U, 3U, 31U, 0U, 4U, 230000U, 460000U, 14318U}; static int const s3_memsizes[8U] = { 4096, 0, 3072, 8192, 2048, 6144, 1024, 512}; static char const * const s3_names[21U] = { "S3 Unknown", "S3 Trio32", "S3 Trio64", "S3 Trio64V+", "S3 Trio64UV+", "S3 Trio64V2/DX", "S3 Trio64V2/GX", "S3 Plato/PX", "S3 Aurora64V+", "S3 Virge", "S3 Virge/VX", "S3 Virge/DX", "S3 Virge/GX", "S3 Virge/GX2", "S3 Virge/GX2+", "", "S3 Trio3D/1X", "S3 Trio3D/2X", "S3 Trio3D/2X", "S3 Trio3D", "S3 Virge/MX"}; static struct vga_regset const s3_h_total_regs[3U] = { {0U, 0U, 7U}, {93U, 0U, 0U}, {255U, 0U, 0U}}; static struct vga_regset const s3_h_display_regs[3U] = { {1U, 0U, 7U}, {93U, 1U, 1U}, {255U, 0U, 0U}}; static struct vga_regset const s3_h_blank_start_regs[3U] = { {2U, 0U, 7U}, {93U, 2U, 2U}, {255U, 0U, 0U}}; static struct vga_regset const s3_h_blank_end_regs[3U] = { {3U, 0U, 4U}, {5U, 7U, 7U}, {255U, 0U, 0U}}; static struct vga_regset const s3_h_sync_start_regs[3U] = { {4U, 0U, 7U}, {93U, 4U, 4U}, {255U, 0U, 0U}}; static struct vga_regset const s3_h_sync_end_regs[2U] = { {5U, 0U, 4U}, {255U, 0U, 0U}}; static struct vga_regset const s3_v_total_regs[5U] = { {6U, 0U, 7U}, {7U, 0U, 0U}, {7U, 5U, 5U}, {94U, 0U, 0U}, {255U, 0U, 0U}}; static struct vga_regset const s3_v_display_regs[5U] = { {18U, 0U, 7U}, {7U, 1U, 1U}, {7U, 6U, 6U}, {94U, 1U, 1U}, {255U, 0U, 0U}}; static struct vga_regset const s3_v_blank_start_regs[5U] = { {21U, 0U, 7U}, {7U, 3U, 3U}, {9U, 5U, 5U}, {94U, 2U, 2U}, {255U, 0U, 0U}}; static struct vga_regset const s3_v_blank_end_regs[2U] = { {22U, 0U, 7U}, {255U, 0U, 0U}}; static struct vga_regset const s3_v_sync_start_regs[5U] = { {16U, 0U, 7U}, {7U, 2U, 2U}, {7U, 7U, 7U}, {94U, 4U, 4U}, {255U, 0U, 0U}}; static struct vga_regset const s3_v_sync_end_regs[2U] = { {17U, 0U, 3U}, {255U, 0U, 0U}}; static struct vga_regset const s3_line_compare_regs[5U] = { {24U, 0U, 7U}, {7U, 4U, 4U}, {9U, 6U, 6U}, {94U, 6U, 6U}, {255U, 0U, 0U}}; static struct vga_regset const s3_start_address_regs[4U] = { {13U, 0U, 7U}, {12U, 0U, 7U}, {105U, 0U, 4U}, {255U, 0U, 0U}}; static struct vga_regset const s3_offset_regs[3U] = { {19U, 0U, 7U}, {81U, 4U, 5U}, {255U, 0U, 0U}}; static struct vga_regset const s3_dtpc_regs[3U] = { {59U, 0U, 7U}, {93U, 6U, 6U}, {255U, 0U, 0U}}; static struct svga_timing_regs const s3_timing_regs = {(struct vga_regset const *)(& s3_h_total_regs), (struct vga_regset const *)(& s3_h_display_regs), (struct vga_regset const *)(& s3_h_blank_start_regs), (struct vga_regset const *)(& s3_h_blank_end_regs), (struct vga_regset const *)(& s3_h_sync_start_regs), (struct vga_regset const *)(& s3_h_sync_end_regs), (struct vga_regset const *)(& s3_v_total_regs), (struct vga_regset const *)(& s3_v_display_regs), (struct vga_regset const *)(& s3_v_blank_start_regs), (struct vga_regset const *)(& s3_v_blank_end_regs), (struct vga_regset const *)(& s3_v_sync_start_regs), (struct vga_regset const *)(& s3_v_sync_end_regs)}; static char *mode_option ; static int mtrr = 1; static int fasttext = 1; static bool s3fb_ddc_needs_mmio(int chip ) { { return ((unsigned int )chip - 16U > 2U); } } static u8 s3fb_ddc_read(struct s3fb_info *par ) { unsigned char tmp ; unsigned char tmp___0 ; bool tmp___1 ; { { tmp___1 = s3fb_ddc_needs_mmio(par->chip); } if ((int )tmp___1) { { tmp = readb((void const volatile *)par->mmio + 65312U); } return (tmp); } else { { tmp___0 = vga_rcrt(par->state.vgabase, 170); } return (tmp___0); } } } static void s3fb_ddc_write(struct s3fb_info *par , u8 val ) { bool tmp ; { { tmp = s3fb_ddc_needs_mmio(par->chip); } if ((int )tmp) { { writeb((int )val, (void volatile *)par->mmio + 65312U); } } else { { vga_wcrt(par->state.vgabase, 170, (int )val); } } return; } } static void s3fb_ddc_setscl(void *data , int val ) { struct s3fb_info *par ; unsigned char reg ; u8 tmp ; { { par = (struct s3fb_info *)data; tmp = s3fb_ddc_read(par); reg = (unsigned int )tmp | 16U; } if (val != 0) { reg = (unsigned int )reg | 1U; } else { reg = (unsigned int )reg & 254U; } { s3fb_ddc_write(par, (int )reg); } return; } } static void s3fb_ddc_setsda(void *data , int val ) { struct s3fb_info *par ; unsigned char reg ; u8 tmp ; { { par = (struct s3fb_info *)data; tmp = s3fb_ddc_read(par); reg = (unsigned int )tmp | 16U; } if (val != 0) { reg = (unsigned int )reg | 2U; } else { reg = (unsigned int )reg & 253U; } { s3fb_ddc_write(par, (int )reg); } return; } } static int s3fb_ddc_getscl(void *data ) { struct s3fb_info *par ; u8 tmp ; { { par = (struct s3fb_info *)data; tmp = s3fb_ddc_read(par); } return (((int )tmp & 4) != 0); } } static int s3fb_ddc_getsda(void *data ) { struct s3fb_info *par ; u8 tmp ; { { par = (struct s3fb_info *)data; tmp = s3fb_ddc_read(par); } return (((int )tmp & 8) != 0); } } static int s3fb_setup_ddc_bus(struct fb_info *info ) { struct s3fb_info *par ; int tmp ; { { par = (struct s3fb_info *)info->par; strlcpy((char *)(& par->ddc_adapter.name), (char const *)(& info->fix.id), 48UL); par->ddc_adapter.owner = & __this_module; par->ddc_adapter.class = 8U; par->ddc_adapter.algo_data = (void *)(& par->ddc_algo); par->ddc_adapter.dev.parent = info->device; par->ddc_algo.setsda = & s3fb_ddc_setsda; par->ddc_algo.setscl = & s3fb_ddc_setscl; par->ddc_algo.getsda = & s3fb_ddc_getsda; par->ddc_algo.getscl = & s3fb_ddc_getscl; par->ddc_algo.udelay = 10; par->ddc_algo.timeout = 20; par->ddc_algo.data = (void *)par; i2c_set_adapdata(& par->ddc_adapter, (void *)par); } if ((unsigned int )par->chip - 13U <= 1U || par->chip == 20) { { svga_wseq_mask(par->state.vgabase, 13, 1, 3); } } else { { svga_wseq_mask(par->state.vgabase, 13, 0, 3); } } { svga_wcrt_mask(par->state.vgabase, 92, 3, 3); tmp = i2c_bit_add_bus(& par->ddc_adapter); } return (tmp); } } static void s3fb_settile_fast(struct fb_info *info , struct fb_tilemap *map ) { u8 const *font ; u8 *fb ; int i ; int c ; { font = map->data; fb = (u8 *)info->screen_base; if (*((unsigned long *)map + 0UL) != 68719476744UL || *((unsigned long *)map + 1UL) != 1099511627777UL) { { printk("\vfb%d: unsupported font parameters: width %d, height %d, depth %d, length %d\n", info->node, map->width, map->height, map->depth, map->length); } return; } else { } fb = fb + 2UL; i = 0; goto ldv_36256; ldv_36255: c = 0; goto ldv_36253; ldv_36252: { __writeb((int )*(font + (unsigned long )((__u32 )c * map->height + (__u32 )i)), (void volatile *)fb + (unsigned long )(c * 4)); c = c + 1; } ldv_36253: ; if ((__u32 )c < map->length) { goto ldv_36252; } else { } fb = fb + 1024UL; i = i + 1; ldv_36256: ; if ((__u32 )i < map->height) { goto ldv_36255; } else { } return; } } static void s3fb_tilecursor(struct fb_info *info , struct fb_tilecursor *cursor ) { struct s3fb_info *par ; { { par = (struct s3fb_info *)info->par; svga_tilecursor(par->state.vgabase, info, cursor); } return; } } static struct fb_tile_ops s3fb_tile_ops = {& svga_settile, & svga_tilecopy, & svga_tilefill, & svga_tileblit, & s3fb_tilecursor, & svga_get_tilemax}; static struct fb_tile_ops s3fb_fast_tile_ops = {& s3fb_settile_fast, & svga_tilecopy, & svga_tilefill, & svga_tileblit, & s3fb_tilecursor, & svga_get_tilemax}; __inline static u32 expand_color(u32 c ) { { return (((((c & 1U) | ((c & 2U) << 7)) | ((c & 4U) << 14)) | ((c & 8U) << 21)) * 255U); } } static void s3fb_iplan_imageblit(struct fb_info *info , struct fb_image const *image ) { u32 fg ; u32 tmp ; u32 bg ; u32 tmp___0 ; u8 const *src1 ; u8 const *src ; u8 *dst1 ; u32 *dst ; u32 val ; int x ; int y ; u8 const *tmp___1 ; u32 *tmp___2 ; { { tmp = expand_color(image->fg_color); fg = tmp; tmp___0 = expand_color(image->bg_color); bg = tmp___0; src1 = (u8 const *)image->data; dst1 = (u8 *)(info->screen_base + ((unsigned long )((unsigned int )image->dy * info->fix.line_length) + (unsigned long )(((unsigned int )image->dx / 8U) * 4U))); y = 0; } goto ldv_36285; ldv_36284: src = src1; dst = (u32 *)dst1; x = 0; goto ldv_36282; ldv_36281: { tmp___1 = src; src = src + 1; val = (u32 )((int )*tmp___1 * 16843009); val = (val & fg) | (~ val & bg); tmp___2 = dst; dst = dst + 1; __writel(val, (void volatile *)tmp___2); x = x + 8; } ldv_36282: ; if ((unsigned int )x < (unsigned int )image->width) { goto ldv_36281; } else { } src1 = src1 + (unsigned long )((unsigned int )image->width / 8U); dst1 = dst1 + (unsigned long )info->fix.line_length; y = y + 1; ldv_36285: ; if ((unsigned int )y < (unsigned int )image->height) { goto ldv_36284; } else { } return; } } static void s3fb_iplan_fillrect(struct fb_info *info , struct fb_fillrect const *rect ) { u32 fg ; u32 tmp ; u8 *dst1 ; u32 *dst ; int x ; int y ; u32 *tmp___0 ; { { tmp = expand_color(rect->color); fg = tmp; dst1 = (u8 *)(info->screen_base + ((unsigned long )((unsigned int )rect->dy * info->fix.line_length) + (unsigned long )(((unsigned int )rect->dx / 8U) * 4U))); y = 0; } goto ldv_36300; ldv_36299: dst = (u32 *)dst1; x = 0; goto ldv_36297; ldv_36296: { tmp___0 = dst; dst = dst + 1; __writel(fg, (void volatile *)tmp___0); x = x + 8; } ldv_36297: ; if ((unsigned int )x < (unsigned int )rect->width) { goto ldv_36296; } else { } dst1 = dst1 + (unsigned long )info->fix.line_length; y = y + 1; ldv_36300: ; if ((unsigned int )y < (unsigned int )rect->height) { goto ldv_36299; } else { } return; } } __inline static u32 expand_pixel(u32 c ) { { return ((((((((((c & 1U) << 24) | ((c & 2U) << 27)) | ((c & 4U) << 14)) | ((c & 8U) << 17)) | ((c & 16U) << 4)) | ((c & 32U) << 7)) | ((c & 64U) >> 6)) | ((c & 128U) >> 3)) * 15U); } } static void s3fb_cfb4_imageblit(struct fb_info *info , struct fb_image const *image ) { u32 fg ; u32 bg ; u8 const *src1 ; u8 const *src ; u8 *dst1 ; u32 *dst ; u32 val ; int x ; int y ; u8 const *tmp ; u32 *tmp___0 ; { fg = (unsigned int )image->fg_color * 286331153U; bg = (unsigned int )image->bg_color * 286331153U; src1 = (u8 const *)image->data; dst1 = (u8 *)(info->screen_base + ((unsigned long )((unsigned int )image->dy * info->fix.line_length) + (unsigned long )(((unsigned int )image->dx / 8U) * 4U))); y = 0; goto ldv_36322; ldv_36321: src = src1; dst = (u32 *)dst1; x = 0; goto ldv_36319; ldv_36318: { tmp = src; src = src + 1; val = expand_pixel((u32 )*tmp); val = (val & fg) | (~ val & bg); tmp___0 = dst; dst = dst + 1; __writel(val, (void volatile *)tmp___0); x = x + 8; } ldv_36319: ; if ((unsigned int )x < (unsigned int )image->width) { goto ldv_36318; } else { } src1 = src1 + (unsigned long )((unsigned int )image->width / 8U); dst1 = dst1 + (unsigned long )info->fix.line_length; y = y + 1; ldv_36322: ; if ((unsigned int )y < (unsigned int )image->height) { goto ldv_36321; } else { } return; } } static void s3fb_imageblit(struct fb_info *info , struct fb_image const *image ) { { if (((info->var.bits_per_pixel == 4U && (unsigned int )((unsigned char )image->depth) == 1U) && ((unsigned int )image->width & 7U) == 0U) && ((unsigned int )image->dx & 7U) == 0U) { if (info->fix.type == 2U) { { s3fb_iplan_imageblit(info, image); } } else { { s3fb_cfb4_imageblit(info, image); } } } else { { cfb_imageblit(info, image); } } return; } } static void s3fb_fillrect(struct fb_info *info , struct fb_fillrect const *rect ) { { if (((info->var.bits_per_pixel == 4U && ((unsigned int )rect->width & 7U) == 0U) && ((unsigned int )rect->dx & 7U) == 0U) && info->fix.type == 2U) { { s3fb_iplan_fillrect(info, rect); } } else { { cfb_fillrect(info, rect); } } return; } } static void s3_set_pixclock(struct fb_info *info , u32 pixclock ) { struct s3fb_info *par ; u16 m ; u16 n ; u16 r ; u8 regval ; int rv ; { { par = (struct s3fb_info *)info->par; rv = svga_compute_pll(par->chip == 19 ? & s3_trio3d_pll : & s3_pll, 1000000000U / pixclock, & m, & n, & r, info->node); } if (rv < 0) { { printk("\vfb%d: cannot set requested pixclock, keeping old value\n", info->node); } return; } else { } { regval = vga_r(par->state.vgabase, 972); vga_w(par->state.vgabase, 962, (int )((unsigned int )regval | 12U)); } if (((((unsigned int )par->chip - 13U <= 1U || par->chip == 16) || par->chip == 17) || par->chip == 18) || par->chip == 20) { { vga_wseq(par->state.vgabase, 18, (int )((unsigned char )((int )((signed char )((unsigned int )((unsigned char )n) + 254U)) | (int )((signed char )((int )r << 6))))); vga_wseq(par->state.vgabase, 41, (int )((unsigned char )((int )r >> 2))); } } else { { vga_wseq(par->state.vgabase, 18, (int )((unsigned char )((int )((signed char )((unsigned int )((unsigned char )n) + 254U)) | (int )((signed char )((int )r << 5))))); } } { vga_wseq(par->state.vgabase, 19, (int )((unsigned int )((unsigned char )m) + 254U)); __const_udelay(4295000UL); regval = vga_rseq(par->state.vgabase, 21); vga_wseq(par->state.vgabase, 21, (int )regval & 223); vga_wseq(par->state.vgabase, 21, (int )((unsigned int )regval | 32U)); vga_wseq(par->state.vgabase, 21, (int )regval & 223); } return; } } static int s3fb_open(struct fb_info *info , int user ) { struct s3fb_info *par ; void *vgabase ; { { par = (struct s3fb_info *)info->par; ldv_mutex_lock_99(& par->open_lock); } if (par->ref_count == 0U) { { vgabase = par->state.vgabase; memset((void *)(& par->state), 0, 56UL); par->state.vgabase = vgabase; par->state.flags = 31U; par->state.num_crtc = 112U; par->state.num_seq = 32U; save_vga(& par->state); } } else { } { par->ref_count = par->ref_count + 1U; ldv_mutex_unlock_100(& par->open_lock); } return (0); } } static int s3fb_release(struct fb_info *info , int user ) { struct s3fb_info *par ; { { par = (struct s3fb_info *)info->par; ldv_mutex_lock_101(& par->open_lock); } if (par->ref_count == 0U) { { ldv_mutex_unlock_102(& par->open_lock); } return (-22); } else { } if (par->ref_count == 1U) { { restore_vga(& par->state); } } else { } { par->ref_count = par->ref_count - 1U; ldv_mutex_unlock_103(& par->open_lock); } return (0); } } static int s3fb_check_var(struct fb_var_screeninfo *var , struct fb_info *info ) { struct s3fb_info *par ; int rv ; int mem ; int step ; u16 m ; u16 n ; u16 r ; { { par = (struct s3fb_info *)info->par; rv = svga_match_format((struct svga_fb_format const *)(& s3fb_formats), var, (struct fb_fix_screeninfo *)0); } if (par->chip == 10 ? rv == 7 : rv == 6) { rv = -22; } else { } if (rv < 0) { { printk("\vfb%d: unsupported mode requested\n", info->node); } return (rv); } else { } if (var->xres > var->xres_virtual) { var->xres_virtual = var->xres; } else { } if (var->yres > var->yres_virtual) { var->yres_virtual = var->yres; } else { } step = (int )((unsigned int )s3fb_formats[rv].xresstep - 1U); var->xres_virtual = (var->xres_virtual + (__u32 )step) & (__u32 )(~ step); mem = (int )((var->bits_per_pixel * var->xres_virtual >> 3) * var->yres_virtual); if ((unsigned long )mem > info->screen_size) { { printk("\vfb%d: not enough framebuffer memory (%d kB requested , %u kB available)\n", info->node, mem >> 10, (unsigned int )(info->screen_size >> 10)); } return (-22); } else { } { rv = svga_check_timings(& s3_timing_regs, var, info->node); } if (rv < 0) { { printk("\vfb%d: invalid timings requested\n", info->node); } return (rv); } else { } { rv = svga_compute_pll(& s3_pll, 1000000000U / var->pixclock, & m, & n, & r, info->node); } if (rv < 0) { { printk("\vfb%d: invalid pixclock value requested\n", info->node); } return (rv); } else { } return (0); } } static int s3fb_set_par(struct fb_info *info ) { struct s3fb_info *par ; u32 value ; u32 mode ; u32 hmul ; u32 offset_value ; u32 screen_size ; u32 multiplex ; u32 dbytes ; u32 bpp ; u32 htotal ; u32 hsstart ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; struct _ddebug descriptor___1 ; long tmp___2 ; struct _ddebug descriptor___2 ; long tmp___3 ; struct _ddebug descriptor___3 ; long tmp___4 ; struct _ddebug descriptor___4 ; long tmp___5 ; struct _ddebug descriptor___5 ; long tmp___6 ; struct _ddebug descriptor___6 ; long tmp___7 ; struct _ddebug descriptor___7 ; long tmp___8 ; struct _ddebug descriptor___8 ; long tmp___9 ; u32 _min1 ; u32 _max1 ; u32 _max2 ; u32 _min2 ; { par = (struct s3fb_info *)info->par; bpp = info->var.bits_per_pixel; if (bpp != 0U) { info->fix.ypanstep = 1U; info->fix.line_length = (info->var.xres_virtual * bpp) / 8U; info->flags = info->flags & -131073; info->tileops = (struct fb_tile_ops *)0; info->pixmap.blit_x = bpp == 4U ? 128U : 4294967295U; info->pixmap.blit_y = 4294967295U; offset_value = (info->var.xres_virtual * bpp) / 64U; screen_size = info->var.yres_virtual * info->fix.line_length; } else { info->fix.ypanstep = 16U; info->fix.line_length = 0U; info->flags = info->flags | 131072; info->tileops = fasttext != 0 ? & s3fb_fast_tile_ops : & s3fb_tile_ops; info->pixmap.blit_x = 128U; info->pixmap.blit_y = 32768U; offset_value = info->var.xres_virtual / 16U; screen_size = (info->var.xres_virtual * info->var.yres_virtual) / 64U; } { info->var.xoffset = 0U; info->var.yoffset = 0U; info->var.activate = 0U; vga_wcrt(par->state.vgabase, 56, 72); vga_wcrt(par->state.vgabase, 57, 165); vga_wseq(par->state.vgabase, 8, 6); svga_wcrt_mask(par->state.vgabase, 17, 0, 128); svga_wseq_mask(par->state.vgabase, 1, 32, 32); svga_wcrt_mask(par->state.vgabase, 23, 0, 128); svga_set_default_gfx_regs(par->state.vgabase); svga_set_default_atc_regs(par->state.vgabase); svga_set_default_seq_regs(par->state.vgabase); svga_set_default_crt_regs(par->state.vgabase); svga_wcrt_multi(par->state.vgabase, (struct vga_regset const *)(& s3_line_compare_regs), 4294967295U); svga_wcrt_multi(par->state.vgabase, (struct vga_regset const *)(& s3_start_address_regs), 0U); svga_wcrt_mask(par->state.vgabase, 88, 16, 16); svga_wcrt_mask(par->state.vgabase, 49, 8, 8); svga_wcrt_mask(par->state.vgabase, 51, 0, 8); svga_wcrt_mask(par->state.vgabase, 67, 0, 1); svga_wcrt_mask(par->state.vgabase, 93, 0, 40); descriptor.modname = "s3fb"; descriptor.function = "s3fb_set_par"; descriptor.filename = "drivers/video/fbdev/s3fb.c"; descriptor.format = "fb%d: offset register : %d\n"; descriptor.lineno = 688U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "fb%d: offset register : %d\n", info->node, offset_value); } } else { } { svga_wcrt_multi(par->state.vgabase, (struct vga_regset const *)(& s3_offset_regs), offset_value); } if (((((unsigned int )par->chip - 13U > 1U && par->chip != 16) && par->chip != 17) && par->chip != 18) && par->chip != 20) { { vga_wcrt(par->state.vgabase, 84, 24); vga_wcrt(par->state.vgabase, 96, 255); vga_wcrt(par->state.vgabase, 97, 255); vga_wcrt(par->state.vgabase, 98, 255); } } else { } { vga_wcrt(par->state.vgabase, 58, 53); svga_wattr(par->state.vgabase, 51, 0); } if ((info->var.vmode & 2U) != 0U) { { svga_wcrt_mask(par->state.vgabase, 9, 128, 128); } } else { { svga_wcrt_mask(par->state.vgabase, 9, 0, 128); } } if ((int )info->var.vmode & 1) { { svga_wcrt_mask(par->state.vgabase, 66, 32, 32); } } else { { svga_wcrt_mask(par->state.vgabase, 66, 0, 32); } } { svga_wcrt_mask(par->state.vgabase, 69, 0, 1); svga_wcrt_mask(par->state.vgabase, 103, 0, 12); tmp___0 = svga_match_format((struct svga_fb_format const *)(& s3fb_formats), & info->var, & info->fix); mode = (u32 )tmp___0; } if (par->chip == 11) { { vga_wcrt(par->state.vgabase, 134, 128); vga_wcrt(par->state.vgabase, 144, 0); } } else { } if (par->chip == 10) { { vga_wcrt(par->state.vgabase, 80, 0); vga_wcrt(par->state.vgabase, 103, 80); msleep(10U); vga_wcrt(par->state.vgabase, 99, mode <= 2U ? 144 : 9); vga_wcrt(par->state.vgabase, 102, 144); } } else { } if ((((((((unsigned int )par->chip - 13U <= 1U || par->chip == 16) || par->chip == 17) || par->chip == 18) || par->chip == 19) || par->chip == 11) || par->chip == 12) || par->chip == 20) { { dbytes = info->var.xres * ((bpp + 7U) / 8U); vga_wcrt(par->state.vgabase, 145, (int )((unsigned char )((dbytes + 7U) / 8U))); vga_wcrt(par->state.vgabase, 144, (int )((unsigned int )((unsigned char )((dbytes + 7U) / 8U >> 8)) | 128U)); vga_wcrt(par->state.vgabase, 102, 129); } } else { } if (((((unsigned int )par->chip - 13U <= 1U || par->chip == 16) || par->chip == 17) || par->chip == 18) || par->chip == 20) { { vga_wcrt(par->state.vgabase, 52, 0); } } else { { vga_wcrt(par->state.vgabase, 52, 16); } } { svga_wcrt_mask(par->state.vgabase, 49, 0, 64); multiplex = 0U; hmul = 1U; } { if (mode == 0U) { goto case_0; } else { } if (mode == 1U) { goto case_1; } else { } if (mode == 2U) { goto case_2; } else { } if (mode == 3U) { goto case_3; } else { } if (mode == 4U) { goto case_4; } else { } if (mode == 5U) { goto case_5; } else { } if (mode == 6U) { goto case_6; } else { } if (mode == 7U) { goto case_7; } else { } goto switch_default; case_0: /* CIL Label */ { descriptor___0.modname = "s3fb"; descriptor___0.function = "s3fb_set_par"; descriptor___0.filename = "drivers/video/fbdev/s3fb.c"; descriptor___0.format = "fb%d: text mode\n"; descriptor___0.lineno = 771U; descriptor___0.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_pr_debug(& descriptor___0, "fb%d: text mode\n", info->node); } } else { } { svga_set_textmode_vga_regs(par->state.vgabase); svga_wcrt_mask(par->state.vgabase, 80, 0, 48); svga_wcrt_mask(par->state.vgabase, 103, 0, 240); svga_wcrt_mask(par->state.vgabase, 58, 0, 48); } if (fasttext != 0) { { descriptor___1.modname = "s3fb"; descriptor___1.function = "s3fb_set_par"; descriptor___1.filename = "drivers/video/fbdev/s3fb.c"; descriptor___1.format = "fb%d: high speed text mode set\n"; descriptor___1.lineno = 782U; descriptor___1.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_pr_debug(& descriptor___1, "fb%d: high speed text mode set\n", info->node); } } else { } { svga_wcrt_mask(par->state.vgabase, 49, 64, 64); } } else { } goto ldv_36383; case_1: /* CIL Label */ { descriptor___2.modname = "s3fb"; descriptor___2.function = "s3fb_set_par"; descriptor___2.filename = "drivers/video/fbdev/s3fb.c"; descriptor___2.format = "fb%d: 4 bit pseudocolor\n"; descriptor___2.lineno = 787U; descriptor___2.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_pr_debug(& descriptor___2, "fb%d: 4 bit pseudocolor\n", info->node); } } else { } { vga_wgfx(par->state.vgabase, 5, 64); svga_wcrt_mask(par->state.vgabase, 80, 0, 48); svga_wcrt_mask(par->state.vgabase, 103, 0, 240); svga_wcrt_mask(par->state.vgabase, 58, 0, 48); } goto ldv_36383; case_2: /* CIL Label */ { descriptor___3.modname = "s3fb"; descriptor___3.function = "s3fb_set_par"; descriptor___3.filename = "drivers/video/fbdev/s3fb.c"; descriptor___3.format = "fb%d: 4 bit pseudocolor, planar\n"; descriptor___3.lineno = 798U; descriptor___3.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___4 != 0L) { { __dynamic_pr_debug(& descriptor___3, "fb%d: 4 bit pseudocolor, planar\n", info->node); } } else { } { svga_wcrt_mask(par->state.vgabase, 80, 0, 48); svga_wcrt_mask(par->state.vgabase, 103, 0, 240); svga_wcrt_mask(par->state.vgabase, 58, 0, 48); } goto ldv_36383; case_3: /* CIL Label */ { descriptor___4.modname = "s3fb"; descriptor___4.function = "s3fb_set_par"; descriptor___4.filename = "drivers/video/fbdev/s3fb.c"; descriptor___4.format = "fb%d: 8 bit pseudocolor\n"; descriptor___4.lineno = 808U; descriptor___4.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___4.flags & 1L, 0L); } if (tmp___5 != 0L) { { __dynamic_pr_debug(& descriptor___4, "fb%d: 8 bit pseudocolor\n", info->node); } } else { } { svga_wcrt_mask(par->state.vgabase, 80, 0, 48); } if ((((((info->var.pixclock > 20000U || par->chip == 13) || par->chip == 14) || par->chip == 16) || par->chip == 17) || par->chip == 18) || par->chip == 20) { { svga_wcrt_mask(par->state.vgabase, 103, 0, 240); } } else { { svga_wcrt_mask(par->state.vgabase, 103, 16, 240); multiplex = 1U; } } goto ldv_36383; case_4: /* CIL Label */ { descriptor___5.modname = "s3fb"; descriptor___5.function = "s3fb_set_par"; descriptor___5.filename = "drivers/video/fbdev/s3fb.c"; descriptor___5.format = "fb%d: 5/5/5 truecolor\n"; descriptor___5.lineno = 824U; descriptor___5.flags = 0U; tmp___6 = ldv__builtin_expect((long )descriptor___5.flags & 1L, 0L); } if (tmp___6 != 0L) { { __dynamic_pr_debug(& descriptor___5, "fb%d: 5/5/5 truecolor\n", info->node); } } else { } if (par->chip == 10) { if (info->var.pixclock > 20000U) { { svga_wcrt_mask(par->state.vgabase, 103, 32, 240); } } else { { svga_wcrt_mask(par->state.vgabase, 103, 48, 240); } } } else if (par->chip == 19) { { svga_wcrt_mask(par->state.vgabase, 80, 16, 48); } if (info->var.pixclock > 8695U) { { svga_wcrt_mask(par->state.vgabase, 103, 48, 240); hmul = 2U; } } else { { svga_wcrt_mask(par->state.vgabase, 103, 32, 240); multiplex = 1U; } } } else { { svga_wcrt_mask(par->state.vgabase, 80, 16, 48); svga_wcrt_mask(par->state.vgabase, 103, 48, 240); } if (((((unsigned int )par->chip - 13U > 1U && par->chip != 16) && par->chip != 17) && par->chip != 18) && par->chip != 20) { hmul = 2U; } else { } } goto ldv_36383; case_5: /* CIL Label */ { descriptor___6.modname = "s3fb"; descriptor___6.function = "s3fb_set_par"; descriptor___6.filename = "drivers/video/fbdev/s3fb.c"; descriptor___6.format = "fb%d: 5/6/5 truecolor\n"; descriptor___6.lineno = 852U; descriptor___6.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___6.flags & 1L, 0L); } if (tmp___7 != 0L) { { __dynamic_pr_debug(& descriptor___6, "fb%d: 5/6/5 truecolor\n", info->node); } } else { } if (par->chip == 10) { if (info->var.pixclock > 20000U) { { svga_wcrt_mask(par->state.vgabase, 103, 64, 240); } } else { { svga_wcrt_mask(par->state.vgabase, 103, 80, 240); } } } else if (par->chip == 19) { { svga_wcrt_mask(par->state.vgabase, 80, 16, 48); } if (info->var.pixclock > 8695U) { { svga_wcrt_mask(par->state.vgabase, 103, 80, 240); hmul = 2U; } } else { { svga_wcrt_mask(par->state.vgabase, 103, 64, 240); multiplex = 1U; } } } else { { svga_wcrt_mask(par->state.vgabase, 80, 16, 48); svga_wcrt_mask(par->state.vgabase, 103, 80, 240); } if (((((unsigned int )par->chip - 13U > 1U && par->chip != 16) && par->chip != 17) && par->chip != 18) && par->chip != 20) { hmul = 2U; } else { } } goto ldv_36383; case_6: /* CIL Label */ { descriptor___7.modname = "s3fb"; descriptor___7.function = "s3fb_set_par"; descriptor___7.filename = "drivers/video/fbdev/s3fb.c"; descriptor___7.format = "fb%d: 8/8/8 truecolor\n"; descriptor___7.lineno = 881U; descriptor___7.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___7.flags & 1L, 0L); } if (tmp___8 != 0L) { { __dynamic_pr_debug(& descriptor___7, "fb%d: 8/8/8 truecolor\n", info->node); } } else { } { svga_wcrt_mask(par->state.vgabase, 103, 208, 240); } goto ldv_36383; case_7: /* CIL Label */ { descriptor___8.modname = "s3fb"; descriptor___8.function = "s3fb_set_par"; descriptor___8.filename = "drivers/video/fbdev/s3fb.c"; descriptor___8.format = "fb%d: 8/8/8/8 truecolor\n"; descriptor___8.lineno = 885U; descriptor___8.flags = 0U; tmp___9 = ldv__builtin_expect((long )descriptor___8.flags & 1L, 0L); } if (tmp___9 != 0L) { { __dynamic_pr_debug(& descriptor___8, "fb%d: 8/8/8/8 truecolor\n", info->node); } } else { } { svga_wcrt_mask(par->state.vgabase, 80, 48, 48); svga_wcrt_mask(par->state.vgabase, 103, 208, 240); } goto ldv_36383; switch_default: /* CIL Label */ { printk("\vfb%d: unsupported mode - bug\n", info->node); } return (-22); switch_break: /* CIL Label */ ; } ldv_36383: ; if (par->chip != 10) { { svga_wseq_mask(par->state.vgabase, 21, multiplex != 0U ? 16 : 0, 16); svga_wseq_mask(par->state.vgabase, 24, multiplex != 0U ? 128 : 0, 128); } } else { } { s3_set_pixclock(info, info->var.pixclock); svga_set_timings(par->state.vgabase, & s3_timing_regs, & info->var, hmul, 1U, (info->var.vmode & 2U) != 0U ? 2U : 1U, (int )info->var.vmode & 1 ? 2U : 1U, hmul, info->node); htotal = ((info->var.xres + info->var.left_margin) + info->var.right_margin) + info->var.hsync_len; htotal = (htotal * hmul) / 8U - 5U; vga_wcrt(par->state.vgabase, 60, (int )((unsigned char )((htotal + 1U) / 2U))); hsstart = ((info->var.xres + info->var.right_margin) * hmul) / 8U; _max1 = ((htotal + hsstart) + 1U) / 2U + 2U; _max2 = hsstart + 4U; _min1 = _max1 > _max2 ? _max1 : _max2; _min2 = htotal + 1U; value = _min1 < _min2 ? _min1 : _min2; svga_wcrt_multi(par->state.vgabase, (struct vga_regset const *)(& s3_dtpc_regs), value); memset_io((void volatile *)info->screen_base, 0, (size_t )screen_size); svga_wcrt_mask(par->state.vgabase, 23, 128, 128); svga_wseq_mask(par->state.vgabase, 1, 0, 32); } return (0); } } static int s3fb_setcolreg(u_int regno , u_int red , u_int green , u_int blue , u_int transp , struct fb_info *fb ) { { { if (fb->var.bits_per_pixel == 0U) { goto case_0; } else { } if (fb->var.bits_per_pixel == 4U) { goto case_4; } else { } if (fb->var.bits_per_pixel == 8U) { goto case_8; } else { } if (fb->var.bits_per_pixel == 16U) { goto case_16; } else { } if (fb->var.bits_per_pixel == 24U) { goto case_24; } else { } if (fb->var.bits_per_pixel == 32U) { goto case_32; } else { } goto switch_default; case_0: /* CIL Label */ ; case_4: /* CIL Label */ ; if (regno > 15U) { return (-22); } else { } if (fb->var.bits_per_pixel == 4U && fb->var.nonstd == 0U) { { outb(240, 966); outb((int )((unsigned int )((unsigned char )regno) * 16U), 968); } } else { { outb(15, 966); outb((int )((unsigned char )regno), 968); } } { outb((int )((unsigned char )(red >> 10)), 969); outb((int )((unsigned char )(green >> 10)), 969); outb((int )((unsigned char )(blue >> 10)), 969); } goto ldv_36418; case_8: /* CIL Label */ ; if (regno > 255U) { return (-22); } else { } { outb(255, 966); outb((int )((unsigned char )regno), 968); outb((int )((unsigned char )(red >> 10)), 969); outb((int )((unsigned char )(green >> 10)), 969); outb((int )((unsigned char )(blue >> 10)), 969); } goto ldv_36418; case_16: /* CIL Label */ ; if (regno > 15U) { return (0); } else { } if (fb->var.green.length == 5U) { *((u32 *)fb->pseudo_palette + (unsigned long )regno) = (((red & 63488U) >> 1) | ((green & 63488U) >> 6)) | ((blue & 63488U) >> 11); } else if (fb->var.green.length == 6U) { *((u32 *)fb->pseudo_palette + (unsigned long )regno) = ((red & 63488U) | ((green & 64512U) >> 5)) | ((blue & 63488U) >> 11); } else { return (-22); } goto ldv_36418; case_24: /* CIL Label */ ; case_32: /* CIL Label */ ; if (regno > 15U) { return (0); } else { } *((u32 *)fb->pseudo_palette + (unsigned long )regno) = (((red & 65280U) << 8) | (green & 65280U)) | ((blue & 65280U) >> 8); goto ldv_36418; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_36418: ; return (0); } } static int s3fb_blank(int blank_mode , struct fb_info *info ) { struct s3fb_info *par ; struct _ddebug descriptor ; long tmp ; struct _ddebug descriptor___0 ; long tmp___0 ; struct _ddebug descriptor___1 ; long tmp___1 ; struct _ddebug descriptor___2 ; long tmp___2 ; struct _ddebug descriptor___3 ; long tmp___3 ; { par = (struct s3fb_info *)info->par; { if (blank_mode == 0) { goto case_0; } else { } if (blank_mode == 1) { goto case_1; } else { } if (blank_mode == 3) { goto case_3; } else { } if (blank_mode == 2) { goto case_2; } else { } if (blank_mode == 4) { goto case_4; } else { } goto switch_break; case_0: /* CIL Label */ { descriptor.modname = "s3fb"; descriptor.function = "s3fb_blank"; descriptor.filename = "drivers/video/fbdev/s3fb.c"; descriptor.format = "fb%d: unblank\n"; descriptor.lineno = 993U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "fb%d: unblank\n", info->node); } } else { } { svga_wcrt_mask(par->state.vgabase, 86, 0, 6); svga_wseq_mask(par->state.vgabase, 1, 0, 32); } goto ldv_36432; case_1: /* CIL Label */ { descriptor___0.modname = "s3fb"; descriptor___0.function = "s3fb_blank"; descriptor___0.filename = "drivers/video/fbdev/s3fb.c"; descriptor___0.format = "fb%d: blank\n"; descriptor___0.lineno = 998U; descriptor___0.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_pr_debug(& descriptor___0, "fb%d: blank\n", info->node); } } else { } { svga_wcrt_mask(par->state.vgabase, 86, 0, 6); svga_wseq_mask(par->state.vgabase, 1, 32, 32); } goto ldv_36432; case_3: /* CIL Label */ { descriptor___1.modname = "s3fb"; descriptor___1.function = "s3fb_blank"; descriptor___1.filename = "drivers/video/fbdev/s3fb.c"; descriptor___1.format = "fb%d: hsync\n"; descriptor___1.lineno = 1003U; descriptor___1.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_pr_debug(& descriptor___1, "fb%d: hsync\n", info->node); } } else { } { svga_wcrt_mask(par->state.vgabase, 86, 2, 6); svga_wseq_mask(par->state.vgabase, 1, 32, 32); } goto ldv_36432; case_2: /* CIL Label */ { descriptor___2.modname = "s3fb"; descriptor___2.function = "s3fb_blank"; descriptor___2.filename = "drivers/video/fbdev/s3fb.c"; descriptor___2.format = "fb%d: vsync\n"; descriptor___2.lineno = 1008U; descriptor___2.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___2.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_pr_debug(& descriptor___2, "fb%d: vsync\n", info->node); } } else { } { svga_wcrt_mask(par->state.vgabase, 86, 4, 6); svga_wseq_mask(par->state.vgabase, 1, 32, 32); } goto ldv_36432; case_4: /* CIL Label */ { descriptor___3.modname = "s3fb"; descriptor___3.function = "s3fb_blank"; descriptor___3.filename = "drivers/video/fbdev/s3fb.c"; descriptor___3.format = "fb%d: sync down\n"; descriptor___3.lineno = 1013U; descriptor___3.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor___3.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_pr_debug(& descriptor___3, "fb%d: sync down\n", info->node); } } else { } { svga_wcrt_mask(par->state.vgabase, 86, 6, 6); svga_wseq_mask(par->state.vgabase, 1, 32, 32); } goto ldv_36432; switch_break: /* CIL Label */ ; } ldv_36432: ; return (0); } } static int s3fb_pan_display(struct fb_var_screeninfo *var , struct fb_info *info ) { struct s3fb_info *par ; unsigned int offset ; { par = (struct s3fb_info *)info->par; if (info->var.bits_per_pixel == 0U) { offset = (var->yoffset / 16U) * (info->var.xres_virtual / 2U) + var->xoffset / 2U; offset = offset >> 2; } else { offset = var->yoffset * info->fix.line_length + (var->xoffset * info->var.bits_per_pixel) / 8U; offset = offset >> 2; } { svga_wcrt_multi(par->state.vgabase, (struct vga_regset const *)(& s3_start_address_regs), offset); } return (0); } } static struct fb_ops s3fb_ops = {& __this_module, & s3fb_open, & s3fb_release, 0, 0, & s3fb_check_var, & s3fb_set_par, & s3fb_setcolreg, 0, & s3fb_blank, & s3fb_pan_display, & s3fb_fillrect, & cfb_copyarea, & s3fb_imageblit, 0, 0, 0, 0, 0, 0, & svga_get_caps, 0, 0, 0}; static int s3_identification(struct s3fb_info *par ) { int chip ; u8 cr30 ; unsigned char tmp ; u8 cr2e ; unsigned char tmp___0 ; u8 cr2f ; unsigned char tmp___1 ; u8 cr6f ; unsigned char tmp___2 ; u8 cr6f___0 ; unsigned char tmp___3 ; unsigned char tmp___4 ; { chip = par->chip; if (chip == 128) { { tmp = vga_rcrt(par->state.vgabase, 48); cr30 = tmp; tmp___0 = vga_rcrt(par->state.vgabase, 46); cr2e = tmp___0; tmp___1 = vga_rcrt(par->state.vgabase, 47); cr2f = tmp___1; } if ((unsigned int )cr30 - 224U <= 1U) { if ((unsigned int )cr2e == 16U) { return (1); } else { } if ((unsigned int )cr2e == 17U) { if (((int )cr2f & 64) == 0) { return (2); } else { return (3); } } else { } } else { } } else { } if (chip == 129) { { tmp___2 = vga_rcrt(par->state.vgabase, 111); cr6f = tmp___2; } if (((int )cr6f & 1) == 0) { return (5); } else { return (6); } } else { } if (chip == 130) { { tmp___3 = vga_rcrt(par->state.vgabase, 111); cr6f___0 = tmp___3; } if (((int )cr6f___0 & 1) == 0) { return (11); } else { return (12); } } else { } if (chip == 131) { { tmp___4 = vga_rcrt(par->state.vgabase, 47); } { if ((int )tmp___4 == 0) { goto case_0; } else { } if ((int )tmp___4 == 1) { goto case_1; } else { } if ((int )tmp___4 == 2) { goto case_2; } else { } goto switch_break; case_0: /* CIL Label */ ; return (16); case_1: /* CIL Label */ ; return (17); case_2: /* CIL Label */ ; return (18); switch_break: /* CIL Label */ ; } } else { } return (0); } } static int s3_pci_probe(struct pci_dev *dev , struct pci_device_id const *id ) { struct pci_bus_region bus_reg ; struct resource vga_res ; struct fb_info *info ; struct s3fb_info *par ; int rc ; u8 regval ; u8 cr38 ; u8 cr39 ; bool found ; int tmp ; struct lock_class_key __key ; void *tmp___0 ; unsigned char tmp___1 ; unsigned char tmp___2 ; void *tmp___3 ; bool tmp___4 ; u8 *edid ; unsigned char *tmp___5 ; struct fb_videomode const *m ; int tmp___6 ; int tmp___7 ; bool tmp___8 ; int tmp___9 ; char const *tmp___10 ; unsigned char tmp___11 ; unsigned char tmp___12 ; unsigned char tmp___13 ; unsigned char tmp___14 ; { { found = 0; tmp = svga_primary_device(dev); } if (tmp == 0) { { _dev_info((struct device const *)(& dev->dev), "ignoring secondary device\n"); } return (-19); } else { } { info = framebuffer_alloc(2304UL, & dev->dev); } if ((unsigned long )info == (unsigned long )((struct fb_info *)0)) { { dev_err((struct device const *)(& dev->dev), "cannot allocate memory\n"); } return (-12); } else { } { par = (struct s3fb_info *)info->par; __mutex_init(& par->open_lock, "&par->open_lock", & __key); info->flags = 8256; info->fbops = & s3fb_ops; rc = pci_enable_device(dev); } if (rc < 0) { { dev_err((struct device const *)info->device, "cannot enable PCI device\n"); } goto err_enable_device; } else { } { rc = pci_request_regions(dev, "s3fb"); } if (rc < 0) { { dev_err((struct device const *)info->device, "cannot reserve framebuffer region\n"); } goto err_request_regions; } else { } { info->fix.smem_start = (unsigned long )dev->resource[0].start; info->fix.smem_len = dev->resource[0].start != 0ULL || dev->resource[0].end != dev->resource[0].start ? ((__u32 )dev->resource[0].end - (__u32 )dev->resource[0].start) + 1U : 0U; tmp___0 = pci_iomap(dev, 0, 0UL); info->screen_base = (char *)tmp___0; } if ((unsigned long )info->screen_base == (unsigned long )((char *)0)) { { rc = -12; dev_err((struct device const *)info->device, "iomap for framebuffer failed\n"); } goto err_iomap; } else { } { bus_reg.start = 0ULL; bus_reg.end = 65536ULL; vga_res.flags = 256UL; pcibios_bus_to_resource(dev->bus, & vga_res, & bus_reg); par->state.vgabase = (void *)vga_res.start; cr38 = vga_rcrt(par->state.vgabase, 56); cr39 = vga_rcrt(par->state.vgabase, 57); vga_wseq(par->state.vgabase, 8, 6); vga_wcrt(par->state.vgabase, 56, 72); vga_wcrt(par->state.vgabase, 57, 165); par->chip = (int )id->driver_data & 255; tmp___1 = vga_rcrt(par->state.vgabase, 47); par->rev = (int )tmp___1; } if ((par->chip & 128) != 0) { { par->chip = s3_identification(par); } } else { } { regval = vga_rcrt(par->state.vgabase, 54); } if ((unsigned int )par->chip - 16U <= 3U) { { if ((int )regval >> 5 == 0) { goto case_0; } else { } if ((int )regval >> 5 == 1) { goto case_1; } else { } if ((int )regval >> 5 == 2) { goto case_2; } else { } if ((int )regval >> 5 == 4) { goto case_4; } else { } if ((int )regval >> 5 == 6) { goto case_6; } else { } goto switch_break; case_0: /* CIL Label */ ; case_1: /* CIL Label */ ; case_2: /* CIL Label */ info->screen_size = 4194304UL; goto ldv_36480; case_4: /* CIL Label */ ; case_6: /* CIL Label */ info->screen_size = 2097152UL; goto ldv_36480; switch_break: /* CIL Label */ ; } ldv_36480: ; } else if ((unsigned int )par->chip - 13U <= 1U || par->chip == 20) { { if ((int )regval >> 6 == 1) { goto case_1___0; } else { } if ((int )regval >> 6 == 3) { goto case_3; } else { } goto switch_break___0; case_1___0: /* CIL Label */ info->screen_size = 4194304UL; goto ldv_36484; case_3: /* CIL Label */ info->screen_size = 2097152UL; goto ldv_36484; switch_break___0: /* CIL Label */ ; } ldv_36484: ; } else if (par->chip == 10) { { if (((int )regval & 96) >> 5 == 0) { goto case_0___0; } else { } if (((int )regval & 96) >> 5 == 1) { goto case_1___1; } else { } if (((int )regval & 96) >> 5 == 2) { goto case_2___0; } else { } if (((int )regval & 96) >> 5 == 3) { goto case_3___0; } else { } goto switch_break___1; case_0___0: /* CIL Label */ info->screen_size = 2097152UL; goto ldv_36487; case_1___1: /* CIL Label */ info->screen_size = 4194304UL; goto ldv_36487; case_2___0: /* CIL Label */ info->screen_size = 6291456UL; goto ldv_36487; case_3___0: /* CIL Label */ info->screen_size = 8388608UL; goto ldv_36487; switch_break___1: /* CIL Label */ ; } ldv_36487: { regval = vga_rcrt(par->state.vgabase, 55); } { if (((int )regval & 96) >> 5 == 1) { goto case_1___2; } else { } if (((int )regval & 96) >> 5 == 2) { goto case_2___1; } else { } goto switch_break___2; case_1___2: /* CIL Label */ info->screen_size = info->screen_size - 4194304UL; goto ldv_36492; case_2___1: /* CIL Label */ info->screen_size = info->screen_size - 2097152UL; goto ldv_36492; switch_break___2: /* CIL Label */ ; } ldv_36492: ; } else { info->screen_size = (unsigned long )(s3_memsizes[(int )regval >> 5] << 10); } { info->fix.smem_len = (__u32 )info->screen_size; regval = vga_rseq(par->state.vgabase, 16); tmp___2 = vga_rseq(par->state.vgabase, 17); par->mclk_freq = ((int )tmp___2 * 14318 + 28636) / (((int )regval & 31) + 2); par->mclk_freq = par->mclk_freq >> ((int )regval >> 5); vga_wcrt(par->state.vgabase, 56, (int )cr38); vga_wcrt(par->state.vgabase, 57, (int )cr39); strcpy((char *)(& info->fix.id), s3_names[par->chip]); info->fix.mmio_start = 0UL; info->fix.mmio_len = 0U; info->fix.type = 0U; info->fix.visual = 3U; info->fix.ypanstep = 0U; info->fix.accel = 0U; info->pseudo_palette = (void *)(& par->pseudo_palette); info->var.bits_per_pixel = 8U; tmp___4 = s3fb_ddc_needs_mmio(par->chip); } if ((int )tmp___4) { { tmp___3 = ioremap((resource_size_t )(info->fix.smem_start + 16777216UL), 65536UL); par->mmio = (u8 *)tmp___3; } if ((unsigned long )par->mmio != (unsigned long )((u8 *)0U)) { { svga_wcrt_mask(par->state.vgabase, 83, 8, 8); } } else { { dev_err((struct device const *)info->device, "unable to map MMIO at 0x%lx, disabling DDC", info->fix.smem_start + 16777216UL); } } } else { } { tmp___8 = s3fb_ddc_needs_mmio(par->chip); } if (tmp___8) { tmp___9 = 0; } else { tmp___9 = 1; } if (tmp___9 || (unsigned long )par->mmio != (unsigned long )((u8 *)0U)) { { tmp___7 = s3fb_setup_ddc_bus(info); } if (tmp___7 == 0) { { tmp___5 = fb_ddc_read(& par->ddc_adapter); edid = tmp___5; par->ddc_registered = 1; } if ((unsigned long )edid != (unsigned long )((u8 *)0U)) { { fb_edid_to_monspecs(edid, & info->monspecs); kfree((void const *)edid); } if ((unsigned long )info->monspecs.modedb == (unsigned long )((struct fb_videomode *)0)) { { dev_err((struct device const *)info->device, "error getting mode database\n"); } } else { { fb_videomode_to_modelist((struct fb_videomode const *)info->monspecs.modedb, (int )info->monspecs.modedb_len, & info->modelist); m = fb_find_best_display((struct fb_monspecs const *)(& info->monspecs), & info->modelist); } if ((unsigned long )m != (unsigned long )((struct fb_videomode const *)0)) { { fb_videomode_to_var(& info->var, m); tmp___6 = s3fb_check_var(& info->var, info); } if (tmp___6 == 0) { found = 1; } else { } } else { } } } else { } } else { } } else { } if ((unsigned long )mode_option == (unsigned long )((char *)0) && ! found) { mode_option = (char *)"640x480-8@60"; } else { } if ((unsigned long )mode_option != (unsigned long )((char *)0)) { { rc = fb_find_mode(& info->var, info, (char const *)mode_option, (struct fb_videomode const *)info->monspecs.modedb, info->monspecs.modedb_len, (struct fb_videomode const *)0, info->var.bits_per_pixel); } if (rc == 0 || rc == 4) { { rc = -22; dev_err((struct device const *)info->device, "mode %s not found\n", mode_option); fb_destroy_modedb(info->monspecs.modedb); info->monspecs.modedb = (struct fb_videomode *)0; } goto err_find_mode; } else { } } else { } { fb_destroy_modedb(info->monspecs.modedb); info->monspecs.modedb = (struct fb_videomode *)0; info->var.yres_virtual = (info->fix.smem_len * 8U) / (info->var.bits_per_pixel * info->var.xres_virtual); } if (info->var.yres_virtual < info->var.yres) { { dev_err((struct device const *)info->device, "virtual vertical size smaller than real\n"); rc = -22; } goto err_find_mode; } else { } { rc = fb_alloc_cmap(& info->cmap, 256, 0); } if (rc < 0) { { dev_err((struct device const *)info->device, "cannot allocate colormap\n"); } goto err_alloc_cmap; } else { } { rc = ldv_register_framebuffer_104(info); } if (rc < 0) { { dev_err((struct device const *)info->device, "cannot register framebuffer\n"); } goto err_reg_fb; } else { } { tmp___10 = pci_name((struct pci_dev const *)dev); printk("\016fb%d: %s on %s, %d MB RAM, %d MHz MCLK\n", info->node, (char *)(& info->fix.id), tmp___10, info->fix.smem_len >> 20, (par->mclk_freq + 500) / 1000); } if (par->chip == 0) { { tmp___11 = vga_rcrt(par->state.vgabase, 48); tmp___12 = vga_rcrt(par->state.vgabase, 47); tmp___13 = vga_rcrt(par->state.vgabase, 46); tmp___14 = vga_rcrt(par->state.vgabase, 45); printk("\016fb%d: unknown chip, CR2D=%x, CR2E=%x, CRT2F=%x, CRT30=%x\n", info->node, (int )tmp___14, (int )tmp___13, (int )tmp___12, (int )tmp___11); } } else { } { pci_set_drvdata(dev, (void *)info); } if (mtrr != 0) { { par->mtrr_reg = -1; par->mtrr_reg = mtrr_add(info->fix.smem_start, (unsigned long )info->fix.smem_len, 1U, 1); } } else { } return (0); err_reg_fb: { fb_dealloc_cmap(& info->cmap); } err_alloc_cmap: ; err_find_mode: ; if ((int )par->ddc_registered) { { i2c_del_adapter(& par->ddc_adapter); } } else { } if ((unsigned long )par->mmio != (unsigned long )((u8 *)0U)) { { ldv_iounmap_105((void volatile *)par->mmio); } } else { } { pci_iounmap(dev, (void *)info->screen_base); } err_iomap: { pci_release_regions(dev); } err_request_regions: ; err_enable_device: { framebuffer_release(info); } return (rc); } } static void s3_pci_remove(struct pci_dev *dev ) { struct fb_info *info ; void *tmp ; struct s3fb_info *par ; { { tmp = pci_get_drvdata(dev); info = (struct fb_info *)tmp; } if ((unsigned long )info != (unsigned long )((struct fb_info *)0)) { par = (struct s3fb_info *)info->par; if (par->mtrr_reg >= 0) { { mtrr_del(par->mtrr_reg, 0UL, 0UL); par->mtrr_reg = -1; } } else { } { ldv_unregister_framebuffer_106(info); fb_dealloc_cmap(& info->cmap); } if ((int )par->ddc_registered) { { i2c_del_adapter(& par->ddc_adapter); } } else { } if ((unsigned long )par->mmio != (unsigned long )((u8 *)0U)) { { ldv_iounmap_107((void volatile *)par->mmio); } } else { } { pci_iounmap(dev, (void *)info->screen_base); pci_release_regions(dev); framebuffer_release(info); } } else { } return; } } static int s3_pci_suspend(struct pci_dev *dev , pm_message_t state ) { struct fb_info *info ; void *tmp ; struct s3fb_info *par ; pci_power_t tmp___0 ; { { tmp = pci_get_drvdata(dev); info = (struct fb_info *)tmp; par = (struct s3fb_info *)info->par; _dev_info((struct device const *)info->device, "suspend\n"); console_lock(); ldv_mutex_lock_108(& par->open_lock); } if (state.event == 1 || par->ref_count == 0U) { { ldv_mutex_unlock_109(& par->open_lock); console_unlock(); } return (0); } else { } { fb_set_suspend(info, 1); pci_save_state(dev); pci_disable_device(dev); tmp___0 = pci_choose_state(dev, state); pci_set_power_state(dev, tmp___0); ldv_mutex_unlock_110(& par->open_lock); console_unlock(); } return (0); } } static int s3_pci_resume(struct pci_dev *dev ) { struct fb_info *info ; void *tmp ; struct s3fb_info *par ; int err ; { { tmp = pci_get_drvdata(dev); info = (struct fb_info *)tmp; par = (struct s3fb_info *)info->par; _dev_info((struct device const *)info->device, "resume\n"); console_lock(); ldv_mutex_lock_111(& par->open_lock); } if (par->ref_count == 0U) { { ldv_mutex_unlock_112(& par->open_lock); console_unlock(); } return (0); } else { } { pci_set_power_state(dev, 0); pci_restore_state(dev); err = pci_enable_device(dev); } if (err != 0) { { ldv_mutex_unlock_113(& par->open_lock); console_unlock(); dev_err((struct device const *)info->device, "error %d enabling device for resume\n", err); } return (err); } else { } { pci_set_master(dev); s3fb_set_par(info); fb_set_suspend(info, 0); ldv_mutex_unlock_114(& par->open_lock); console_unlock(); } return (0); } } static struct pci_device_id s3_devices[16U] = { {21299U, 34832U, 4294967295U, 4294967295U, 0U, 0U, 128UL}, {21299U, 34833U, 4294967295U, 4294967295U, 0U, 0U, 128UL}, {21299U, 34834U, 4294967295U, 4294967295U, 0U, 0U, 8UL}, {21299U, 34836U, 4294967295U, 4294967295U, 0U, 0U, 4UL}, {21299U, 35073U, 4294967295U, 4294967295U, 0U, 0U, 129UL}, {21299U, 35074U, 4294967295U, 4294967295U, 0U, 0U, 7UL}, {21299U, 22065U, 4294967295U, 4294967295U, 0U, 0U, 9UL}, {21299U, 34877U, 4294967295U, 4294967295U, 0U, 0U, 10UL}, {21299U, 35329U, 4294967295U, 4294967295U, 0U, 0U, 130UL}, {21299U, 35344U, 4294967295U, 4294967295U, 0U, 0U, 13UL}, {21299U, 35345U, 4294967295U, 4294967295U, 0U, 0U, 14UL}, {21299U, 35346U, 4294967295U, 4294967295U, 0U, 0U, 14UL}, {21299U, 35347U, 4294967295U, 4294967295U, 0U, 0U, 131UL}, {21299U, 35076U, 4294967295U, 4294967295U, 0U, 0U, 19UL}, {21299U, 35841U, 4294967295U, 4294967295U, 0U, 0U, 20UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci__s3_devices_device_table[16U] ; static struct pci_driver s3fb_pci_driver = {{0, 0}, "s3fb", (struct pci_device_id const *)(& s3_devices), & s3_pci_probe, & s3_pci_remove, & s3_pci_suspend, 0, 0, & s3_pci_resume, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static void s3fb_cleanup(void) { struct _ddebug descriptor ; long tmp ; { { descriptor.modname = "s3fb"; descriptor.function = "s3fb_cleanup"; descriptor.filename = "drivers/video/fbdev/s3fb.c"; descriptor.format = "s3fb: cleaning up\n"; descriptor.lineno = 1572U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "s3fb: cleaning up\n"); } } else { } { ldv_pci_unregister_driver_115(& s3fb_pci_driver); } return; } } static int s3fb_init(void) { struct _ddebug descriptor ; long tmp ; int tmp___0 ; { { descriptor.modname = "s3fb"; descriptor.function = "s3fb_init"; descriptor.filename = "drivers/video/fbdev/s3fb.c"; descriptor.format = "s3fb: initializing\n"; descriptor.lineno = 1589U; descriptor.flags = 0U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp != 0L) { { __dynamic_pr_debug(& descriptor, "s3fb: initializing\n"); } } else { } { tmp___0 = ldv___pci_register_driver_116(& s3fb_pci_driver, & __this_module, "s3fb"); } return (tmp___0); } } void ldv_EMGentry_exit_s3fb_cleanup_6_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_s3fb_init_6_7(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_dispatch_deregister_2_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_4_1(struct fb_info *arg0 ) ; void ldv_dispatch_register_3_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_5_2(struct fb_info *arg0 ) ; void ldv_dummy_resourceless_instance_callback_1_10(void (*arg0)(struct fb_info * , struct fb_copyarea * ) , struct fb_info *arg1 , struct fb_copyarea *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_11(void (*arg0)(struct fb_info * , struct fb_fillrect * ) , struct fb_info *arg1 , struct fb_fillrect *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_12(void (*arg0)(struct fb_info * , struct fb_blit_caps * , struct fb_var_screeninfo * ) , struct fb_info *arg1 , struct fb_blit_caps *arg2 , struct fb_var_screeninfo *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_13(int (*arg0)(struct fb_info * ) , struct fb_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_14(void (*arg0)(struct fb_info * , struct fb_image * ) , struct fb_info *arg1 , struct fb_image *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_15(int (*arg0)(struct fb_info * , int ) , struct fb_info *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_18(int (*arg0)(struct fb_var_screeninfo * , struct fb_info * ) , struct fb_var_screeninfo *arg1 , struct fb_info *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_19(int (*arg0)(struct fb_info * , int ) , struct fb_info *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_22(int (*arg0)(struct fb_info * ) , struct fb_info *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_23(int (*arg0)(unsigned int , unsigned int , unsigned int , unsigned int , unsigned int , struct fb_info * ) , unsigned int arg1 , unsigned int arg2 , unsigned int arg3 , unsigned int arg4 , unsigned int arg5 , struct fb_info *arg6 ) ; void ldv_dummy_resourceless_instance_callback_1_26(void (*arg0)(struct fb_info * , struct fb_tilemap * ) , struct fb_info *arg1 , struct fb_tilemap *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_27(void (*arg0)(struct fb_info * , struct fb_tileblit * ) , struct fb_info *arg1 , struct fb_tileblit *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_28(void (*arg0)(struct fb_info * , struct fb_tilearea * ) , struct fb_info *arg1 , struct fb_tilearea *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_29(void (*arg0)(struct fb_info * , struct fb_tilecursor * ) , struct fb_info *arg1 , struct fb_tilecursor *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(int , struct fb_info * ) , int arg1 , struct fb_info *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_30(void (*arg0)(struct fb_info * , struct fb_tilerect * ) , struct fb_info *arg1 , struct fb_tilerect *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_9(int (*arg0)(struct fb_var_screeninfo * , struct fb_info * ) , struct fb_var_screeninfo *arg1 , struct fb_info *arg2 ) ; void ldv_entry_EMGentry_6(void *arg0 ) ; int main(void) ; int ldv_pci_instance_probe_0_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_0_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_0_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_0_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_0_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_0_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_0_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_0(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_register_framebuffer(int arg0 , struct fb_info *arg1 ) ; void ldv_struct_fb_tile_ops_dummy_resourceless_instance_1(void *arg0 ) ; int ldv_unregister_framebuffer(int arg0 , struct fb_info *arg1 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_6 ; void ldv_EMGentry_exit_s3fb_cleanup_6_2(void (*arg0)(void) ) { { { s3fb_cleanup(); } return; } } int ldv_EMGentry_init_s3fb_init_6_7(int (*arg0)(void) ) { int tmp ; { { tmp = s3fb_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_3_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not(arg0 == 0); ldv_3_pci_driver_pci_driver = arg1; ldv_dispatch_register_3_2(ldv_3_pci_driver_pci_driver); } return (arg0); } else { { assume_abort_if_not(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_dispatch_deregister_2_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_4_1(struct fb_info *arg0 ) { { return; } } void ldv_dispatch_register_3_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_0 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_0 = (struct ldv_struct_pci_instance_0 *)tmp; cf_arg_0->arg0 = arg0; ldv_pci_pci_instance_0((void *)cf_arg_0); } return; } } void ldv_dispatch_register_5_2(struct fb_info *arg0 ) { struct ldv_struct_dummy_resourceless_instance_1 *cf_arg_1 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_1 = (struct ldv_struct_dummy_resourceless_instance_1 *)tmp; cf_arg_1->arg0 = arg0; ldv_struct_fb_tile_ops_dummy_resourceless_instance_1((void *)cf_arg_1); } return; } } void ldv_dummy_resourceless_instance_callback_1_10(void (*arg0)(struct fb_info * , struct fb_copyarea * ) , struct fb_info *arg1 , struct fb_copyarea *arg2 ) { { { cfb_copyarea(arg1, (struct fb_copyarea const *)arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_11(void (*arg0)(struct fb_info * , struct fb_fillrect * ) , struct fb_info *arg1 , struct fb_fillrect *arg2 ) { { { s3fb_fillrect(arg1, (struct fb_fillrect const *)arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_12(void (*arg0)(struct fb_info * , struct fb_blit_caps * , struct fb_var_screeninfo * ) , struct fb_info *arg1 , struct fb_blit_caps *arg2 , struct fb_var_screeninfo *arg3 ) { { { svga_get_caps(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_13(int (*arg0)(struct fb_info * ) , struct fb_info *arg1 ) { { { svga_get_tilemax(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_14(void (*arg0)(struct fb_info * , struct fb_image * ) , struct fb_info *arg1 , struct fb_image *arg2 ) { { { s3fb_imageblit(arg1, (struct fb_image const *)arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_15(int (*arg0)(struct fb_info * , int ) , struct fb_info *arg1 , int arg2 ) { { { s3fb_open(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_18(int (*arg0)(struct fb_var_screeninfo * , struct fb_info * ) , struct fb_var_screeninfo *arg1 , struct fb_info *arg2 ) { { { s3fb_pan_display(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_19(int (*arg0)(struct fb_info * , int ) , struct fb_info *arg1 , int arg2 ) { { { s3fb_release(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_22(int (*arg0)(struct fb_info * ) , struct fb_info *arg1 ) { { { s3fb_set_par(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_23(int (*arg0)(unsigned int , unsigned int , unsigned int , unsigned int , unsigned int , struct fb_info * ) , unsigned int arg1 , unsigned int arg2 , unsigned int arg3 , unsigned int arg4 , unsigned int arg5 , struct fb_info *arg6 ) { { { s3fb_setcolreg(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_1_26(void (*arg0)(struct fb_info * , struct fb_tilemap * ) , struct fb_info *arg1 , struct fb_tilemap *arg2 ) { { { svga_settile(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_27(void (*arg0)(struct fb_info * , struct fb_tileblit * ) , struct fb_info *arg1 , struct fb_tileblit *arg2 ) { { { svga_tileblit(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_28(void (*arg0)(struct fb_info * , struct fb_tilearea * ) , struct fb_info *arg1 , struct fb_tilearea *arg2 ) { { { svga_tilecopy(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_29(void (*arg0)(struct fb_info * , struct fb_tilecursor * ) , struct fb_info *arg1 , struct fb_tilecursor *arg2 ) { { { s3fb_tilecursor(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(int , struct fb_info * ) , int arg1 , struct fb_info *arg2 ) { { { s3fb_blank(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_30(void (*arg0)(struct fb_info * , struct fb_tilerect * ) , struct fb_info *arg1 , struct fb_tilerect *arg2 ) { { { svga_tilefill(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_9(int (*arg0)(struct fb_var_screeninfo * , struct fb_info * ) , struct fb_var_screeninfo *arg1 , struct fb_info *arg2 ) { { { s3fb_check_var(arg1, arg2); } return; } } void ldv_entry_EMGentry_6(void *arg0 ) { void (*ldv_6_exit_s3fb_cleanup_default)(void) ; int (*ldv_6_init_s3fb_init_default)(void) ; int ldv_6_ret_default ; int tmp ; { { ldv_6_ret_default = ldv_EMGentry_init_s3fb_init_6_7(ldv_6_init_s3fb_init_default); ldv_6_ret_default = ldv_ldv_post_init_117(ldv_6_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not(ldv_6_ret_default != 0); ldv_ldv_check_final_state_118(); assume_abort_if_not(0); } return; } else { { assume_abort_if_not(ldv_6_ret_default == 0); ldv_EMGentry_exit_s3fb_cleanup_6_2(ldv_6_exit_s3fb_cleanup_default); ldv_ldv_check_final_state_119(); assume_abort_if_not(0); } return; } return; } } int main(void) { { { ldv_ldv_initialize_120(); ldv_entry_EMGentry_6((void *)0); } return 0; } } int ldv_pci_instance_probe_0_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = s3_pci_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_0_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { s3_pci_remove(arg1); } return; } } void ldv_pci_instance_resume_0_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { s3_pci_resume(arg1); } return; } } void ldv_pci_instance_resume_early_0_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_0_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_0_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = s3_pci_suspend(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_0_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_0(void *arg0 ) { struct pci_driver *ldv_0_container_pci_driver ; struct pci_dev *ldv_0_resource_dev ; struct pm_message ldv_0_resource_pm_message ; struct pci_device_id *ldv_0_resource_struct_pci_device_id_ptr ; int ldv_0_ret_default ; struct ldv_struct_pci_instance_0 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_0 *)arg0; ldv_0_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_0 *)0)) { { ldv_0_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2968UL); ldv_0_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_0_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_0; return; ldv_main_0: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_ldv_pre_probe_121(); ldv_0_ret_default = ldv_pci_instance_probe_0_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_0_container_pci_driver->probe, ldv_0_resource_dev, ldv_0_resource_struct_pci_device_id_ptr); ldv_0_ret_default = ldv_ldv_post_probe_122(ldv_0_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { assume_abort_if_not(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { assume_abort_if_not(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_dev); ldv_free((void *)ldv_0_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_0: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_0; case_2: /* CIL Label */ { ldv_0_ret_default = ldv_pci_instance_suspend_0_8(ldv_0_container_pci_driver->suspend, ldv_0_resource_dev, ldv_0_resource_pm_message); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); } if ((unsigned long )ldv_0_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_0_ret_default = ldv_pci_instance_suspend_late_0_7(ldv_0_container_pci_driver->suspend_late, ldv_0_resource_dev, ldv_0_resource_pm_message); } } else { } { ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); } if ((unsigned long )ldv_0_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_0_6(ldv_0_container_pci_driver->resume_early, ldv_0_resource_dev); } } else { } { ldv_pci_instance_resume_0_5(ldv_0_container_pci_driver->resume, ldv_0_resource_dev); } goto ldv_call_0; case_3: /* CIL Label */ ; if ((unsigned long )ldv_0_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_0_3(ldv_0_container_pci_driver->shutdown, ldv_0_resource_dev); } } else { } { ldv_pci_instance_release_0_2(ldv_0_container_pci_driver->remove, ldv_0_resource_dev); } goto ldv_main_0; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_2_pci_driver_pci_driver ; { { ldv_2_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_2_1(ldv_2_pci_driver_pci_driver); } return; return; } } int ldv_register_framebuffer(int arg0 , struct fb_info *arg1 ) { struct fb_info *ldv_5_struct_fb_info_ptr_struct_fb_info_ptr ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { assume_abort_if_not(arg0 == 0); ldv_5_struct_fb_info_ptr_struct_fb_info_ptr = arg1; ldv_dispatch_register_5_2(ldv_5_struct_fb_info_ptr_struct_fb_info_ptr); } return (arg0); } else { { assume_abort_if_not(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_struct_fb_tile_ops_dummy_resourceless_instance_1(void *arg0 ) { int (*ldv_1_callback_fb_blank)(int , struct fb_info * ) ; int (*ldv_1_callback_fb_check_var)(struct fb_var_screeninfo * , struct fb_info * ) ; void (*ldv_1_callback_fb_copyarea)(struct fb_info * , struct fb_copyarea * ) ; void (*ldv_1_callback_fb_fillrect)(struct fb_info * , struct fb_fillrect * ) ; void (*ldv_1_callback_fb_get_caps)(struct fb_info * , struct fb_blit_caps * , struct fb_var_screeninfo * ) ; int (*ldv_1_callback_fb_get_tilemax)(struct fb_info * ) ; void (*ldv_1_callback_fb_imageblit)(struct fb_info * , struct fb_image * ) ; int (*ldv_1_callback_fb_open)(struct fb_info * , int ) ; int (*ldv_1_callback_fb_pan_display)(struct fb_var_screeninfo * , struct fb_info * ) ; int (*ldv_1_callback_fb_release)(struct fb_info * , int ) ; int (*ldv_1_callback_fb_set_par)(struct fb_info * ) ; int (*ldv_1_callback_fb_setcolreg)(unsigned int , unsigned int , unsigned int , unsigned int , unsigned int , struct fb_info * ) ; void (*ldv_1_callback_fb_settile)(struct fb_info * , struct fb_tilemap * ) ; void (*ldv_1_callback_fb_tileblit)(struct fb_info * , struct fb_tileblit * ) ; void (*ldv_1_callback_fb_tilecopy)(struct fb_info * , struct fb_tilearea * ) ; void (*ldv_1_callback_fb_tilecursor)(struct fb_info * , struct fb_tilecursor * ) ; void (*ldv_1_callback_fb_tilefill)(struct fb_info * , struct fb_tilerect * ) ; struct fb_blit_caps *ldv_1_container_struct_fb_blit_caps_ptr ; struct fb_copyarea *ldv_1_container_struct_fb_copyarea_ptr ; struct fb_fillrect *ldv_1_container_struct_fb_fillrect_ptr ; struct fb_image *ldv_1_container_struct_fb_image_ptr ; struct fb_info *ldv_1_container_struct_fb_info_ptr ; struct fb_tilearea *ldv_1_container_struct_fb_tilearea_ptr ; struct fb_tileblit *ldv_1_container_struct_fb_tileblit_ptr ; struct fb_tilecursor *ldv_1_container_struct_fb_tilecursor_ptr ; struct fb_tilemap *ldv_1_container_struct_fb_tilemap_ptr ; struct fb_tilerect *ldv_1_container_struct_fb_tilerect_ptr ; struct fb_var_screeninfo *ldv_1_container_struct_fb_var_screeninfo_ptr ; int ldv_1_ldv_param_15_1_default ; int ldv_1_ldv_param_19_1_default ; unsigned int ldv_1_ldv_param_23_0_default ; unsigned int ldv_1_ldv_param_23_1_default ; unsigned int ldv_1_ldv_param_23_2_default ; unsigned int ldv_1_ldv_param_23_3_default ; unsigned int ldv_1_ldv_param_23_4_default ; int ldv_1_ldv_param_3_0_default ; struct ldv_struct_dummy_resourceless_instance_1 *data ; int tmp ; int tmp___0 ; { data = (struct ldv_struct_dummy_resourceless_instance_1 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_1 *)0)) { { ldv_1_container_struct_fb_info_ptr = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_1; return; ldv_call_1: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_30(ldv_1_callback_fb_tilefill, ldv_1_container_struct_fb_info_ptr, ldv_1_container_struct_fb_tilerect_ptr); } goto ldv_37041; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_29(ldv_1_callback_fb_tilecursor, ldv_1_container_struct_fb_info_ptr, ldv_1_container_struct_fb_tilecursor_ptr); } goto ldv_37041; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_28(ldv_1_callback_fb_tilecopy, ldv_1_container_struct_fb_info_ptr, ldv_1_container_struct_fb_tilearea_ptr); } goto ldv_37041; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_27(ldv_1_callback_fb_tileblit, ldv_1_container_struct_fb_info_ptr, ldv_1_container_struct_fb_tileblit_ptr); } goto ldv_37041; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_26(ldv_1_callback_fb_settile, ldv_1_container_struct_fb_info_ptr, ldv_1_container_struct_fb_tilemap_ptr); } goto ldv_37041; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_23(ldv_1_callback_fb_setcolreg, ldv_1_ldv_param_23_0_default, ldv_1_ldv_param_23_1_default, ldv_1_ldv_param_23_2_default, ldv_1_ldv_param_23_3_default, ldv_1_ldv_param_23_4_default, ldv_1_container_struct_fb_info_ptr); } goto ldv_37041; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_22(ldv_1_callback_fb_set_par, ldv_1_container_struct_fb_info_ptr); } goto ldv_37041; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_19(ldv_1_callback_fb_release, ldv_1_container_struct_fb_info_ptr, ldv_1_ldv_param_19_1_default); } goto ldv_37041; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_18(ldv_1_callback_fb_pan_display, ldv_1_container_struct_fb_var_screeninfo_ptr, ldv_1_container_struct_fb_info_ptr); } goto ldv_37041; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_15(ldv_1_callback_fb_open, ldv_1_container_struct_fb_info_ptr, ldv_1_ldv_param_15_1_default); } goto ldv_37041; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_14(ldv_1_callback_fb_imageblit, ldv_1_container_struct_fb_info_ptr, ldv_1_container_struct_fb_image_ptr); } goto ldv_37041; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_13(ldv_1_callback_fb_get_tilemax, ldv_1_container_struct_fb_info_ptr); } goto ldv_37041; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_12(ldv_1_callback_fb_get_caps, ldv_1_container_struct_fb_info_ptr, ldv_1_container_struct_fb_blit_caps_ptr, ldv_1_container_struct_fb_var_screeninfo_ptr); } goto ldv_37041; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_11(ldv_1_callback_fb_fillrect, ldv_1_container_struct_fb_info_ptr, ldv_1_container_struct_fb_fillrect_ptr); } goto ldv_37041; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_10(ldv_1_callback_fb_copyarea, ldv_1_container_struct_fb_info_ptr, ldv_1_container_struct_fb_copyarea_ptr); } goto ldv_37041; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_9(ldv_1_callback_fb_check_var, ldv_1_container_struct_fb_var_screeninfo_ptr, ldv_1_container_struct_fb_info_ptr); } goto ldv_37041; case_17: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_3(ldv_1_callback_fb_blank, ldv_1_ldv_param_3_0_default, ldv_1_container_struct_fb_info_ptr); } goto ldv_37041; switch_default: /* CIL Label */ { assume_abort_if_not(0); } switch_break: /* CIL Label */ ; } ldv_37041: ; goto ldv_call_1; } else { return; } return; } } int ldv_unregister_framebuffer(int arg0 , struct fb_info *arg1 ) { struct fb_info *ldv_4_struct_fb_info_ptr_struct_fb_info_ptr ; { { ldv_4_struct_fb_info_ptr_struct_fb_info_ptr = arg1; ldv_dispatch_deregister_4_1(ldv_4_struct_fb_info_ptr_struct_fb_info_ptr); } return (arg0); return (arg0); } } __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { { tmp = ldv_linux_arch_io_io_mem_remap(size); } return (tmp); } } static void ldv_mutex_lock_99(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_open_lock_of_s3fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_100(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_open_lock_of_s3fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_lock_101(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_open_lock_of_s3fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_102(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_open_lock_of_s3fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_103(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_open_lock_of_s3fb_info(ldv_func_arg1); } return; } } static int ldv_register_framebuffer_104(struct fb_info *ldv_func_arg1 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_framebuffer(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_framebuffer(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_iounmap_105(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static int ldv_unregister_framebuffer_106(struct fb_info *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = unregister_framebuffer(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_unregister_framebuffer(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_iounmap_107(void volatile *ldv_func_arg1 ) { { { ldv_linux_arch_io_io_mem_unmap(); } return; } } static void ldv_mutex_lock_108(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_open_lock_of_s3fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_109(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_open_lock_of_s3fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_110(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_open_lock_of_s3fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_lock_111(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_lock_open_lock_of_s3fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_112(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_open_lock_of_s3fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_113(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_open_lock_of_s3fb_info(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_114(struct mutex *ldv_func_arg1 ) { { { ldv_linux_kernel_locking_mutex_mutex_unlock_open_lock_of_s3fb_info(ldv_func_arg1); } return; } } static void ldv_pci_unregister_driver_115(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static int ldv___pci_register_driver_116(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_ldv_post_init_117(int ldv_func_arg1 ) { int tmp ; { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); tmp = ldv_post_init(ldv_func_arg1); } return (tmp); } } static void ldv_ldv_check_final_state_118(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_check_final_state_119(void) { { { ldv_linux_arch_io_check_final_state(); ldv_linux_block_genhd_check_final_state(); ldv_linux_block_queue_check_final_state(); ldv_linux_block_request_check_final_state(); ldv_linux_drivers_base_class_check_final_state(); ldv_linux_fs_char_dev_check_final_state(); ldv_linux_fs_sysfs_check_final_state(); ldv_linux_kernel_locking_rwlock_check_final_state(); ldv_linux_kernel_module_check_final_state(); ldv_linux_kernel_rcu_update_lock_bh_check_final_state(); ldv_linux_kernel_rcu_update_lock_sched_check_final_state(); ldv_linux_kernel_rcu_update_lock_check_final_state(); ldv_linux_kernel_rcu_srcu_check_final_state(); ldv_linux_lib_idr_check_final_state(); ldv_linux_mmc_sdio_func_check_final_state(); ldv_linux_net_rtnetlink_check_final_state(); ldv_linux_net_sock_check_final_state(); ldv_linux_usb_coherent_check_final_state(); ldv_linux_usb_gadget_check_final_state(); ldv_linux_usb_urb_check_final_state(); } return; } } static void ldv_ldv_initialize_120(void) { { { ldv_linux_lib_find_bit_initialize(); } return; } } static void ldv_ldv_pre_probe_121(void) { { { ldv_linux_net_register_reset_error_counter(); ldv_linux_usb_register_reset_error_counter(); ldv_pre_probe(); } return; } } static int ldv_ldv_post_probe_122(int retval ) { int tmp ; { { ldv_linux_net_register_check_return_value_probe(retval); ldv_linux_usb_register_check_return_value_probe(retval); tmp = ldv_post_probe(retval); } return (tmp); } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) ; void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) ; bool ldv_in_interrupt_context(void) ; void ldv_linux_alloc_irq_check_alloc_flags(gfp_t flags ) { bool tmp ; int tmp___0 ; { { tmp = ldv_in_interrupt_context(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } { ldv_assert_linux_alloc_irq__wrong_flags(tmp___0 || flags == 32U); } return; } } void ldv_linux_alloc_irq_check_alloc_nonatomic(void) { bool tmp ; { { tmp = ldv_in_interrupt_context(); } if ((int )tmp) { { ldv_assert_linux_alloc_irq__nonatomic(0); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_linux_alloc_spinlock_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_linux_alloc_spinlock_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) ; int ldv_linux_alloc_usb_lock_lock = 1; void ldv_linux_alloc_usb_lock_check_alloc_flags(gfp_t flags ) { { if (ldv_linux_alloc_usb_lock_lock == 2) { { ldv_assert_linux_alloc_usb_lock__wrong_flags(flags == 16U || flags == 32U); } } else { } return; } } void ldv_linux_alloc_usb_lock_check_alloc_nonatomic(void) { { { ldv_assert_linux_alloc_usb_lock__nonatomic(ldv_linux_alloc_usb_lock_lock == 1); } return; } } void ldv_linux_alloc_usb_lock_usb_lock_device(void) { { ldv_linux_alloc_usb_lock_lock = 2; return; } } int ldv_linux_alloc_usb_lock_usb_trylock_device(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_alloc_usb_lock_usb_lock_device_for_reset(void) { int tmp ; { if (ldv_linux_alloc_usb_lock_lock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_alloc_usb_lock_lock = 2; return (0); } else { return (-1); } } else { return (-1); } } } void ldv_linux_alloc_usb_lock_usb_unlock_device(void) { { ldv_linux_alloc_usb_lock_lock = 1; return; } } void ldv_linux_usb_dev_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_linux_usb_dev_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_linux_usb_dev_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_linux_usb_dev_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_linux_usb_dev_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_linux_usb_dev_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_linux_usb_dev_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_linux_usb_dev_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_linux_usb_dev_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) ; void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) ; int ldv_linux_arch_io_iomem = 0; void *ldv_linux_arch_io_io_mem_remap(size_t size ) { void *ptr ; void *tmp ; { { tmp = ldv_malloc(size); ptr = tmp; } if ((unsigned long )ptr != (unsigned long )((void *)0)) { ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem + 1; return (ptr); } else { } return (ptr); } } void ldv_linux_arch_io_io_mem_unmap(void) { { { ldv_assert_linux_arch_io__less_initial_decrement(ldv_linux_arch_io_iomem > 0); ldv_linux_arch_io_iomem = ldv_linux_arch_io_iomem - 1; } return; } } void ldv_linux_arch_io_check_final_state(void) { { { ldv_assert_linux_arch_io__more_initial_at_exit(ldv_linux_arch_io_iomem == 0); } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) ; void ldv_assert_linux_block_genhd__double_allocation(int expr ) ; void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) ; void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) ; static int ldv_linux_block_genhd_disk_state = 0; void ldv_linux_block_genhd_add_disk(void) { { { ldv_assert_linux_block_genhd__use_before_allocation(ldv_linux_block_genhd_disk_state == 1); ldv_linux_block_genhd_disk_state = 2; } return; } } void ldv_linux_block_genhd_del_gendisk(void) { { { ldv_assert_linux_block_genhd__delete_before_add(ldv_linux_block_genhd_disk_state == 2); ldv_linux_block_genhd_disk_state = 1; } return; } } void ldv_linux_block_genhd_put_disk(struct gendisk *disk ) { { if ((unsigned long )disk != (unsigned long )((struct gendisk *)0)) { { ldv_assert_linux_block_genhd__free_before_allocation(ldv_linux_block_genhd_disk_state > 0); ldv_linux_block_genhd_disk_state = 0; } } else { } return; } } void ldv_linux_block_genhd_check_final_state(void) { { { ldv_assert_linux_block_genhd__more_initial_at_exit(ldv_linux_block_genhd_disk_state == 0); } return; } } void ldv_assert_linux_block_queue__double_allocation(int expr ) ; void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) ; void ldv_assert_linux_block_queue__use_before_allocation(int expr ) ; static int ldv_linux_block_queue_queue_state = 0; void ldv_linux_block_queue_blk_cleanup_queue(void) { { { ldv_assert_linux_block_queue__use_before_allocation(ldv_linux_block_queue_queue_state == 1); ldv_linux_block_queue_queue_state = 0; } return; } } void ldv_linux_block_queue_check_final_state(void) { { { ldv_assert_linux_block_queue__more_initial_at_exit(ldv_linux_block_queue_queue_state == 0); } return; } } void ldv_assert_linux_block_request__double_get(int expr ) ; void ldv_assert_linux_block_request__double_put(int expr ) ; void ldv_assert_linux_block_request__get_at_exit(int expr ) ; long ldv_is_err(void const *ptr ) ; int ldv_linux_block_request_blk_rq = 0; void ldv_linux_block_request_put_blk_rq(void) { { { ldv_assert_linux_block_request__double_put(ldv_linux_block_request_blk_rq == 1); ldv_linux_block_request_blk_rq = 0; } return; } } void ldv_linux_block_request_check_final_state(void) { { { ldv_assert_linux_block_request__get_at_exit(ldv_linux_block_request_blk_rq == 0); } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) ; void ldv_assert_linux_drivers_base_class__double_registration(int expr ) ; void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) ; int ldv_undef_int_nonpositive(void) ; int ldv_linux_drivers_base_class_usb_gadget_class = 0; void *ldv_linux_drivers_base_class_create_class(void) { void *is_got ; long tmp ; { { is_got = ldv_malloc(sizeof(struct class)); assume_abort_if_not((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_got); } } int ldv_linux_drivers_base_class_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_drivers_base_class__double_registration(ldv_linux_drivers_base_class_usb_gadget_class == 0); ldv_linux_drivers_base_class_usb_gadget_class = 1; } } else { } return (is_reg); } } void ldv_linux_drivers_base_class_unregister_class(void) { { { ldv_assert_linux_drivers_base_class__double_deregistration(ldv_linux_drivers_base_class_usb_gadget_class == 1); ldv_linux_drivers_base_class_usb_gadget_class = 0; } return; } } void ldv_linux_drivers_base_class_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_drivers_base_class_unregister_class(); } return; } } void ldv_linux_drivers_base_class_check_final_state(void) { { { ldv_assert_linux_drivers_base_class__registered_at_exit(ldv_linux_drivers_base_class_usb_gadget_class == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2176UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) ; void ldv_assert_linux_fs_char_dev__double_registration(int expr ) ; void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) ; int ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; int ldv_linux_fs_char_dev_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } if (major == 0) { { is_reg = ldv_undef_int(); assume_abort_if_not(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_fs_char_dev_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_fs_char_dev__double_registration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); ldv_linux_fs_char_dev_usb_gadget_chrdev = 1; } } else { } return (is_reg); } } void ldv_linux_fs_char_dev_unregister_chrdev_region(void) { { { ldv_assert_linux_fs_char_dev__double_deregistration(ldv_linux_fs_char_dev_usb_gadget_chrdev == 1); ldv_linux_fs_char_dev_usb_gadget_chrdev = 0; } return; } } void ldv_linux_fs_char_dev_check_final_state(void) { { { ldv_assert_linux_fs_char_dev__registered_at_exit(ldv_linux_fs_char_dev_usb_gadget_chrdev == 0); } return; } } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) ; void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) ; int ldv_linux_fs_sysfs_sysfs = 0; int ldv_linux_fs_sysfs_sysfs_create_group(void) { int res ; int tmp ; { { tmp = ldv_undef_int_nonpositive(); res = tmp; } if (res == 0) { ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs + 1; return (0); } else { } return (res); } } void ldv_linux_fs_sysfs_sysfs_remove_group(void) { { { ldv_assert_linux_fs_sysfs__less_initial_decrement(ldv_linux_fs_sysfs_sysfs > 0); ldv_linux_fs_sysfs_sysfs = ldv_linux_fs_sysfs_sysfs - 1; } return; } } void ldv_linux_fs_sysfs_check_final_state(void) { { { ldv_assert_linux_fs_sysfs__more_initial_at_exit(ldv_linux_fs_sysfs_sysfs == 0); } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) ; void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) ; int ldv_linux_kernel_locking_rwlock_rlock = 1; int ldv_linux_kernel_locking_rwlock_wlock = 1; void ldv_linux_kernel_locking_rwlock_read_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; } return; } } void ldv_linux_kernel_locking_rwlock_read_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(ldv_linux_kernel_locking_rwlock_rlock > 1); ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + -1; } return; } } void ldv_linux_kernel_locking_rwlock_write_lock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_lock(ldv_linux_kernel_locking_rwlock_wlock == 1); ldv_linux_kernel_locking_rwlock_wlock = 2; } return; } } void ldv_linux_kernel_locking_rwlock_write_unlock(void) { { { ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(ldv_linux_kernel_locking_rwlock_wlock != 1); ldv_linux_kernel_locking_rwlock_wlock = 1; } return; } } int ldv_linux_kernel_locking_rwlock_read_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_rlock = ldv_linux_kernel_locking_rwlock_rlock + 1; return (1); } else { return (0); } } else { return (0); } } } int ldv_linux_kernel_locking_rwlock_write_trylock(void) { int tmp ; { if (ldv_linux_kernel_locking_rwlock_wlock == 1) { { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_linux_kernel_locking_rwlock_wlock = 2; return (1); } else { return (0); } } else { return (0); } } } void ldv_linux_kernel_locking_rwlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(ldv_linux_kernel_locking_rwlock_rlock == 1); ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(ldv_linux_kernel_locking_rwlock_wlock == 1); } return; } } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) ; void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) ; int ldv_linux_kernel_module_module_refcounter = 1; void ldv_linux_kernel_module_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; } else { } return; } } int ldv_linux_kernel_module_try_module_get(struct module *module ) { int tmp ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { tmp = ldv_undef_int(); } if (tmp == 1) { ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_linux_kernel_module_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { ldv_assert_linux_kernel_module__less_initial_decrement(ldv_linux_kernel_module_module_refcounter > 1); ldv_linux_kernel_module_module_refcounter = ldv_linux_kernel_module_module_refcounter - 1; } } else { } return; } } void ldv_linux_kernel_module_module_put_and_exit(void) { { { ldv_linux_kernel_module_module_put((struct module *)1); } LDV_LINUX_KERNEL_MODULE_STOP: ; goto LDV_LINUX_KERNEL_MODULE_STOP; } } unsigned int ldv_linux_kernel_module_module_refcount(void) { { return ((unsigned int )(ldv_linux_kernel_module_module_refcounter + -1)); } } void ldv_linux_kernel_module_check_final_state(void) { { { ldv_assert_linux_kernel_module__more_initial_at_exit(ldv_linux_kernel_module_module_refcounter == 1); } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_srcu_srcu_nested = 0; void ldv_linux_kernel_rcu_srcu_srcu_read_lock(void) { { ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested + 1; return; } } void ldv_linux_kernel_rcu_srcu_srcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_srcu__more_unlocks(ldv_linux_kernel_rcu_srcu_srcu_nested > 0); ldv_linux_kernel_rcu_srcu_srcu_nested = ldv_linux_kernel_rcu_srcu_srcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_srcu_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_srcu_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(ldv_linux_kernel_rcu_srcu_srcu_nested == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = 0; void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_lock_bh(void) { { ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh + 1; return; } } void ldv_linux_kernel_rcu_update_lock_bh_rcu_read_unlock_bh(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh > 0); ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh = ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_bh_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(ldv_linux_kernel_rcu_update_lock_bh_rcu_nested_bh == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = 0; void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_lock_sched(void) { { ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched + 1; return; } } void ldv_linux_kernel_rcu_update_lock_sched_rcu_read_unlock_sched(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched > 0); ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched = ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_sched_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(ldv_linux_kernel_rcu_update_lock_sched_rcu_nested_sched == 0); } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) ; void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) ; int ldv_linux_kernel_rcu_update_lock_rcu_nested = 0; void ldv_linux_kernel_rcu_update_lock_rcu_read_lock(void) { { ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested + 1; return; } } void ldv_linux_kernel_rcu_update_lock_rcu_read_unlock(void) { { { ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(ldv_linux_kernel_rcu_update_lock_rcu_nested > 0); ldv_linux_kernel_rcu_update_lock_rcu_nested = ldv_linux_kernel_rcu_update_lock_rcu_nested - 1; } return; } } void ldv_linux_kernel_rcu_update_lock_check_for_read_section(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } void ldv_linux_kernel_rcu_update_lock_check_final_state(void) { { { ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(ldv_linux_kernel_rcu_update_lock_rcu_nested == 0); } return; } } static int ldv_filter_positive_int(int val ) { { { assume_abort_if_not(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void ldv_switch_to_interrupt_context(void) ; void ldv_switch_to_process_context(void) ; static bool __ldv_in_interrupt_context = 0; void ldv_switch_to_interrupt_context(void) { { __ldv_in_interrupt_context = 1; return; } } void ldv_switch_to_process_context(void) { { __ldv_in_interrupt_context = 0; return; } } bool ldv_in_interrupt_context(void) { { return (__ldv_in_interrupt_context); } } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) ; extern int nr_cpu_ids ; unsigned long ldv_undef_ulong(void) ; unsigned long ldv_linux_lib_find_bit_find_next_bit(unsigned long size , unsigned long offset ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; ldv_assert_linux_lib_find_bit__offset_out_of_range(offset <= size); assume_abort_if_not(nondet <= size); assume_abort_if_not(1); } return (nondet); } } unsigned long ldv_linux_lib_find_bit_find_first_bit(unsigned long size ) { unsigned long nondet ; unsigned long tmp ; { { tmp = ldv_undef_ulong(); nondet = tmp; assume_abort_if_not(nondet <= size); assume_abort_if_not(1); } return (nondet); } } void ldv_linux_lib_find_bit_initialize(void) { { { assume_abort_if_not(nr_cpu_ids > 0); } return; } } extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) ; void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) ; void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) ; unsigned short ldv_linux_mmc_sdio_func_sdio_element = 0U; void ldv_linux_mmc_sdio_func_check_context(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__wrong_params((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); } return; } } void ldv_linux_mmc_sdio_func_sdio_claim_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__double_claim((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); ldv_linux_mmc_sdio_func_sdio_element = (unsigned short )((func->card)->host)->index; } return; } } void ldv_linux_mmc_sdio_func_sdio_release_host(struct sdio_func *func ) { { { ldv_assert_linux_mmc_sdio_func__release_without_claim((int )ldv_linux_mmc_sdio_func_sdio_element == ((func->card)->host)->index); ldv_linux_mmc_sdio_func_sdio_element = 0U; } return; } } void ldv_linux_mmc_sdio_func_check_final_state(void) { { { ldv_assert_linux_mmc_sdio_func__unreleased_at_exit((unsigned int )ldv_linux_mmc_sdio_func_sdio_element == 0U); } return; } } void ldv_assert_linux_net_register__wrong_return_value(int expr ) ; int ldv_pre_register_netdev(void) ; int ldv_linux_net_register_probe_state = 0; int ldv_pre_register_netdev(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_net_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_net_register_reset_error_counter(void) { { ldv_linux_net_register_probe_state = 0; return; } } void ldv_linux_net_register_check_return_value_probe(int retval ) { { if (ldv_linux_net_register_probe_state == 1) { { ldv_assert_linux_net_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_net_register_reset_error_counter(); } return; } } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) ; void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) ; void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) ; int rtnllocknumber = 0; void ldv_linux_net_rtnetlink_past_rtnl_unlock(void) { { { ldv_assert_linux_net_rtnetlink__double_unlock(rtnllocknumber == 1); rtnllocknumber = 0; } return; } } void ldv_linux_net_rtnetlink_past_rtnl_lock(void) { { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); rtnllocknumber = 1; } return; } } void ldv_linux_net_rtnetlink_before_ieee80211_unregister_hw(void) { { { ldv_linux_net_rtnetlink_past_rtnl_lock(); ldv_linux_net_rtnetlink_past_rtnl_unlock(); } return; } } int ldv_linux_net_rtnetlink_rtnl_is_locked(void) { int tmp ; { if (rtnllocknumber != 0) { return (rtnllocknumber); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_net_rtnetlink_rtnl_trylock(void) { int tmp ; { { ldv_assert_linux_net_rtnetlink__double_lock(rtnllocknumber == 0); tmp = ldv_linux_net_rtnetlink_rtnl_is_locked(); } if (tmp == 0) { rtnllocknumber = 1; return (1); } else { return (0); } } } void ldv_linux_net_rtnetlink_check_final_state(void) { { { ldv_assert_linux_net_rtnetlink__lock_on_exit(rtnllocknumber == 0); } return; } } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) ; void ldv_assert_linux_net_sock__double_release(int expr ) ; int locksocknumber = 0; void ldv_linux_net_sock_past_lock_sock_nested(void) { { locksocknumber = locksocknumber + 1; return; } } bool ldv_linux_net_sock_lock_sock_fast(void) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { locksocknumber = locksocknumber + 1; return (1); } else { } return (0); } } void ldv_linux_net_sock_unlock_sock_fast(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_before_release_sock(void) { { { ldv_assert_linux_net_sock__double_release(locksocknumber > 0); locksocknumber = locksocknumber - 1; } return; } } void ldv_linux_net_sock_check_final_state(void) { { { ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(locksocknumber == 0); } return; } } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) ; int ldv_linux_usb_coherent_coherent_state = 0; void *ldv_linux_usb_coherent_usb_alloc_coherent(size_t size ) { void *arbitrary_memory ; void *tmp ; { { tmp = ldv_malloc(size); arbitrary_memory = tmp; } if ((unsigned long )arbitrary_memory == (unsigned long )((void *)0)) { return (arbitrary_memory); } else { } ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + 1; return (arbitrary_memory); } } void ldv_linux_usb_coherent_usb_free_coherent(void *addr ) { { if ((unsigned long )addr != (unsigned long )((void *)0)) { { ldv_assert_linux_usb_coherent__less_initial_decrement(ldv_linux_usb_coherent_coherent_state > 0); ldv_linux_usb_coherent_coherent_state = ldv_linux_usb_coherent_coherent_state + -1; } } else { } return; } } void ldv_linux_usb_coherent_check_final_state(void) { { { ldv_assert_linux_usb_coherent__more_initial_at_exit(ldv_linux_usb_coherent_coherent_state == 0); } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_linux_usb_dev_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0 ? LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_linux_usb_dev_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 0); } if (LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS > 1) { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS + -1; } else { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_linux_usb_dev_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_linux_usb_dev_initialize(void) { { LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_linux_usb_dev_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_LINUX_USB_DEV_USB_DEV_REF_COUNTS == 0); } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) ; void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) ; void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) ; int ldv_linux_usb_gadget_usb_gadget = 0; void *ldv_linux_usb_gadget_create_class(void *is_got ) { long tmp ; { { assume_abort_if_not((int )((long )is_got)); tmp = ldv_is_err((void const *)is_got); } if (tmp == 0L) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_got); } } int ldv_linux_usb_gadget_register_class(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_class(void) { { { ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_linux_usb_gadget_destroy_class(struct class *cls ) { long tmp ; { if ((unsigned long )cls == (unsigned long )((struct class *)0)) { return; } else { { tmp = ldv_is_err((void const *)cls); } if (tmp != 0L) { return; } else { } } { ldv_linux_usb_gadget_unregister_class(); } return; } } int ldv_linux_usb_gadget_register_chrdev(int major ) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } if (major == 0) { { is_reg = ldv_undef_int(); assume_abort_if_not(is_reg > 0); } } else { } } else { } return (is_reg); } } int ldv_linux_usb_gadget_register_chrdev_region(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_chrdev_region(void) { { { ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } int ldv_linux_usb_gadget_register_usb_gadget(void) { int is_reg ; { { is_reg = ldv_undef_int_nonpositive(); } if (is_reg == 0) { { ldv_assert_linux_usb_gadget__double_usb_gadget_registration(ldv_linux_usb_gadget_usb_gadget == 0); ldv_linux_usb_gadget_usb_gadget = 1; } } else { } return (is_reg); } } void ldv_linux_usb_gadget_unregister_usb_gadget(void) { { { ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(ldv_linux_usb_gadget_usb_gadget == 1); ldv_linux_usb_gadget_usb_gadget = 0; } return; } } void ldv_linux_usb_gadget_check_final_state(void) { { { ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(ldv_linux_usb_gadget_usb_gadget == 0); } return; } } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) ; int ldv_pre_usb_register_driver(void) ; int ldv_linux_usb_register_probe_state = 0; int ldv_pre_usb_register_driver(void) { int nondet ; int tmp ; { { tmp = ldv_undef_int(); nondet = tmp; } if (nondet < 0) { ldv_linux_usb_register_probe_state = 1; return (nondet); } else { return (0); } } } void ldv_linux_usb_register_reset_error_counter(void) { { ldv_linux_usb_register_probe_state = 0; return; } } void ldv_linux_usb_register_check_return_value_probe(int retval ) { { if (ldv_linux_usb_register_probe_state == 1) { { ldv_assert_linux_usb_register__wrong_return_value(retval != 0); } } else { } { ldv_linux_usb_register_reset_error_counter(); } return; } } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) ; int ldv_linux_usb_urb_urb_state = 0; void ldv_linux_usb_urb_usb_free_urb(struct urb *urb ) { { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { { ldv_assert_linux_usb_urb__less_initial_decrement(ldv_linux_usb_urb_urb_state > 0); ldv_linux_usb_urb_urb_state = ldv_linux_usb_urb_urb_state + -1; } } else { } return; } } void ldv_linux_usb_urb_check_final_state(void) { { { ldv_assert_linux_usb_urb__more_initial_at_exit(ldv_linux_usb_urb_urb_state == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; extern void *memset(void * , int , size_t ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; assume_abort_if_not((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); assume_abort_if_not(tmp___0 == 0L); } return (res); } } int ldv_undef_int_negative(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; assume_abort_if_not(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; assume_abort_if_not(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode ; void ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info ; void ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_fb_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_lock_of_fb_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_lock_of_fb_info(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_lock_of_fb_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_lock_of_fb_info(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_lock_of_fb_info(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_lock_of_fb_info(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_lock_of_fb_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_open_lock_of_s3fb_info ; void ldv_linux_kernel_locking_mutex_mutex_lock_open_lock_of_s3fb_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_open_lock_of_s3fb_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_open_lock_of_s3fb_info = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_open_lock_of_s3fb_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_open_lock_of_s3fb_info); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_open_lock_of_s3fb_info = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_open_lock_of_s3fb_info(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_open_lock_of_s3fb_info) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_open_lock_of_s3fb_info(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_open_lock_of_s3fb_info); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_open_lock_of_s3fb_info(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_open_lock_of_s3fb_info = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_open_lock_of_s3fb_info(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_open_lock_of_s3fb_info(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_open_lock_of_s3fb_info(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_open_lock_of_s3fb_info); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_open_lock_of_s3fb_info = 0; } return; } } ldv_set LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device ; void ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_backlight_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 1; } return; } } int ldv_linux_kernel_locking_mutex_mutex_lock_interruptible_or_killable_update_lock_of_backlight_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 1; return (0); } else { return (-4); } } } int ldv_linux_kernel_locking_mutex_mutex_is_locked_update_lock_of_backlight_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_linux_kernel_locking_mutex_mutex_trylock_update_lock_of_backlight_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); tmp = ldv_linux_kernel_locking_mutex_mutex_is_locked_update_lock_of_backlight_device(lock); } if (tmp != 0) { return (0); } else { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 1; return (1); } } } int ldv_linux_kernel_locking_mutex_atomic_dec_and_mutex_lock_update_lock_of_backlight_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_linux_kernel_locking_mutex_mutex_lock_update_lock_of_backlight_device(lock); } return (1); } } } void ldv_linux_kernel_locking_mutex_mutex_unlock_update_lock_of_backlight_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 0; } return; } } void ldv_linux_kernel_locking_mutex_initialize(void) { { LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_open_lock_of_s3fb_info = 0; LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device = 0; return; } } void ldv_linux_kernel_locking_mutex_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_lock_of_fb_info); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_mutex_of_device); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_open_lock_of_s3fb_info); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_LINUX_KERNEL_LOCKING_MUTEX_MUTEXES_update_lock_of_backlight_device); } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2); ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2); ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_linux_kernel_locking_spinlock_spin_lock = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 2); ldv_linux_kernel_locking_spinlock_spin_lock = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2); ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2); ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_ptl = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_linux_kernel_locking_spinlock_spin_ptl = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 2); ldv_linux_kernel_locking_spinlock_spin_ptl = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; void ldv_linux_kernel_locking_spinlock_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_linux_kernel_locking_spinlock_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2); ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_linux_kernel_locking_spinlock_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_linux_kernel_locking_spinlock_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_linux_kernel_locking_spinlock_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_linux_kernel_locking_spinlock_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_linux_kernel_locking_spinlock_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); assume_abort_if_not(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_linux_kernel_locking_spinlock_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_linux_kernel_locking_spinlock_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_ptl == 2) { return (1); } else { } if (ldv_linux_kernel_locking_spinlock_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) ; void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) ; static int ldv_linux_kernel_sched_completion_completion = 0; void ldv_linux_kernel_sched_completion_init_completion(void) { { ldv_linux_kernel_sched_completion_completion = 1; return; } } void ldv_linux_kernel_sched_completion_init_completion_macro(void) { { { ldv_assert_linux_kernel_sched_completion__double_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 1; } return; } } void ldv_linux_kernel_sched_completion_wait_for_completion(void) { { { ldv_assert_linux_kernel_sched_completion__wait_without_init(ldv_linux_kernel_sched_completion_completion != 0); ldv_linux_kernel_sched_completion_completion = 2; } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) ; void ldv_assert_linux_lib_idr__double_init(int expr ) ; void ldv_assert_linux_lib_idr__more_at_exit(int expr ) ; void ldv_assert_linux_lib_idr__not_initialized(int expr ) ; static int ldv_linux_lib_idr_idr = 0; void ldv_linux_lib_idr_idr_init(void) { { { ldv_assert_linux_lib_idr__double_init(ldv_linux_lib_idr_idr == 0); ldv_linux_lib_idr_idr = 1; } return; } } void ldv_linux_lib_idr_idr_alloc(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_find(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_remove(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 2; } return; } } void ldv_linux_lib_idr_idr_destroy(void) { { { ldv_assert_linux_lib_idr__not_initialized(ldv_linux_lib_idr_idr != 0); ldv_assert_linux_lib_idr__destroyed_before_usage(ldv_linux_lib_idr_idr != 3); ldv_linux_lib_idr_idr = 3; } return; } } void ldv_linux_lib_idr_check_final_state(void) { { { ldv_assert_linux_lib_idr__more_at_exit(ldv_linux_lib_idr_idr == 0 || ldv_linux_lib_idr_idr == 3); } return; } } void reach_error_linux_net_rtnetlink(void) { reach_error(); } void ldv_assert_linux_net_rtnetlink__double_lock(int expr ) { { if (! expr) { { reach_error_linux_net_rtnetlink(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__lock_on_exit(int expr ) { { if (! expr) { { reach_error_linux_net_rtnetlink(); } } else { } return; } } void ldv_assert_linux_net_rtnetlink__double_unlock(int expr ) { { if (! expr) { { reach_error_linux_net_rtnetlink(); } } else { } return; } } void reach_error_linux_kernel_locking_rwlock(void) { reach_error(); } void ldv_assert_linux_kernel_locking_rwlock__read_lock_on_write_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__more_read_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__read_lock_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__double_write_unlock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_rwlock__write_lock_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_rwlock(); } } else { } return; } } void reach_error_linux_lib_idr(void) { reach_error(); } void ldv_assert_linux_lib_idr__double_init(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void ldv_assert_linux_lib_idr__not_initialized(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void ldv_assert_linux_lib_idr__destroyed_before_usage(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void ldv_assert_linux_lib_idr__more_at_exit(int expr ) { { if (! expr) { { reach_error_linux_lib_idr(); } } else { } return; } } void reach_error_linux_kernel_sched_completion(void) { reach_error(); } void ldv_assert_linux_kernel_sched_completion__double_init(int expr ) { { if (! expr) { { reach_error_linux_kernel_sched_completion(); } } else { } return; } } void ldv_assert_linux_kernel_sched_completion__wait_without_init(int expr ) { { if (! expr) { { reach_error_linux_kernel_sched_completion(); } } else { } return; } } void reach_error_linux_net_register(void) { reach_error(); } void ldv_assert_linux_net_register__wrong_return_value(int expr ) { { if (! expr) { { reach_error_linux_net_register(); } } else { } return; } } void reach_error_linux_fs_char_dev(void) { reach_error(); } void ldv_assert_linux_fs_char_dev__double_registration(int expr ) { { if (! expr) { { reach_error_linux_fs_char_dev(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__double_deregistration(int expr ) { { if (! expr) { { reach_error_linux_fs_char_dev(); } } else { } return; } } void ldv_assert_linux_fs_char_dev__registered_at_exit(int expr ) { { if (! expr) { { reach_error_linux_fs_char_dev(); } } else { } return; } } void reach_error_linux_kernel_rcu_srcu(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_srcu__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_srcu(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_srcu(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_srcu__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_srcu(); } } else { } return; } } void reach_error_linux_kernel_module(void) { reach_error(); } void ldv_assert_linux_kernel_module__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_kernel_module(); } } else { } return; } } void ldv_assert_linux_kernel_module__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_module(); } } else { } return; } } void reach_error_linux_alloc_spinlock(void) { reach_error(); } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { reach_error_linux_alloc_spinlock(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { reach_error_linux_alloc_spinlock(); } } else { } return; } } void reach_error_linux_lib_find_bit(void) { reach_error(); } void ldv_assert_linux_lib_find_bit__offset_out_of_range(int expr ) { { if (! expr) { { reach_error_linux_lib_find_bit(); } } else { } return; } } void reach_error_linux_mmc_sdio_func(void) { reach_error(); } void ldv_assert_linux_mmc_sdio_func__wrong_params(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__double_claim(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__release_without_claim(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void ldv_assert_linux_mmc_sdio_func__unreleased_at_exit(int expr ) { { if (! expr) { { reach_error_linux_mmc_sdio_func(); } } else { } return; } } void reach_error_linux_usb_coherent(void) { reach_error(); } void ldv_assert_linux_usb_coherent__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_coherent(); } } else { } return; } } void ldv_assert_linux_usb_coherent__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_coherent(); } } else { } return; } } void reach_error_linux_kernel_rcu_update_lock(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_update_lock__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock(); } } else { } return; } } void reach_error_linux_net_sock(void) { reach_error(); } void ldv_assert_linux_net_sock__all_locked_sockets_must_be_released(int expr ) { { if (! expr) { { reach_error_linux_net_sock(); } } else { } return; } } void ldv_assert_linux_net_sock__double_release(int expr ) { { if (! expr) { { reach_error_linux_net_sock(); } } else { } return; } } void reach_error_linux_kernel_rcu_update_lock_bh(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_update_lock_bh__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_bh(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_bh(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_bh__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_bh(); } } else { } return; } } void reach_error_linux_usb_dev(void) { reach_error(); } void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { reach_error_linux_usb_dev(); } } else { } return; } } void reach_error_linux_kernel_locking_mutex(void) { reach_error(); } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_mutex(); } } else { } return; } } void reach_error_linux_usb_gadget(void) { reach_error(); } void ldv_assert_linux_usb_gadget__class_registration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__class_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_registration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__chrdev_deregistration_with_usb_gadget(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_registration(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__double_usb_gadget_deregistration(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void ldv_assert_linux_usb_gadget__usb_gadget_registered_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_gadget(); } } else { } return; } } void reach_error_linux_alloc_usb_lock(void) { reach_error(); } void ldv_assert_linux_alloc_usb_lock__wrong_flags(int expr ) { { if (! expr) { { reach_error_linux_alloc_usb_lock(); } } else { } return; } } void ldv_assert_linux_alloc_usb_lock__nonatomic(int expr ) { { if (! expr) { { reach_error_linux_alloc_usb_lock(); } } else { } return; } } void reach_error_linux_block_request(void) { reach_error(); } void ldv_assert_linux_block_request__double_get(int expr ) { { if (! expr) { { reach_error_linux_block_request(); } } else { } return; } } void ldv_assert_linux_block_request__double_put(int expr ) { { if (! expr) { { reach_error_linux_block_request(); } } else { } return; } } void ldv_assert_linux_block_request__get_at_exit(int expr ) { { if (! expr) { { reach_error_linux_block_request(); } } else { } return; } } void reach_error_linux_alloc_irq(void) { reach_error(); } void ldv_assert_linux_alloc_irq__wrong_flags(int expr ) { { if (! expr) { { reach_error_linux_alloc_irq(); } } else { } return; } } void ldv_assert_linux_alloc_irq__nonatomic(int expr ) { { if (! expr) { { reach_error_linux_alloc_irq(); } } else { } return; } } void reach_error_linux_drivers_base_class(void) { reach_error(); } void ldv_assert_linux_drivers_base_class__double_registration(int expr ) { { if (! expr) { { reach_error_linux_drivers_base_class(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__double_deregistration(int expr ) { { if (! expr) { { reach_error_linux_drivers_base_class(); } } else { } return; } } void ldv_assert_linux_drivers_base_class__registered_at_exit(int expr ) { { if (! expr) { { reach_error_linux_drivers_base_class(); } } else { } return; } } void reach_error_linux_block_queue(void) { reach_error(); } void ldv_assert_linux_block_queue__double_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_queue(); } } else { } return; } } void ldv_assert_linux_block_queue__use_before_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_queue(); } } else { } return; } } void ldv_assert_linux_block_queue__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_block_queue(); } } else { } return; } } void reach_error_linux_block_genhd(void) { reach_error(); } void ldv_assert_linux_block_genhd__double_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__use_before_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__delete_before_add(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__free_before_allocation(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void ldv_assert_linux_block_genhd__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_block_genhd(); } } else { } return; } } void reach_error_linux_arch_io(void) { reach_error(); } void ldv_assert_linux_arch_io__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_arch_io(); } } else { } return; } } void ldv_assert_linux_arch_io__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_arch_io(); } } else { } return; } } void reach_error_linux_usb_register(void) { reach_error(); } void ldv_assert_linux_usb_register__wrong_return_value(int expr ) { { if (! expr) { { reach_error_linux_usb_register(); } } else { } return; } } void reach_error_linux_fs_sysfs(void) { reach_error(); } void ldv_assert_linux_fs_sysfs__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_fs_sysfs(); } } else { } return; } } void ldv_assert_linux_fs_sysfs__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_fs_sysfs(); } } else { } return; } } void reach_error_linux_kernel_locking_spinlock(void) { reach_error(); } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_locking_spinlock(); } } else { } return; } } void reach_error_linux_usb_urb(void) { reach_error(); } void ldv_assert_linux_usb_urb__less_initial_decrement(int expr ) { { if (! expr) { { reach_error_linux_usb_urb(); } } else { } return; } } void ldv_assert_linux_usb_urb__more_initial_at_exit(int expr ) { { if (! expr) { { reach_error_linux_usb_urb(); } } else { } return; } } void reach_error_linux_kernel_rcu_update_lock_sched(void) { reach_error(); } void ldv_assert_linux_kernel_rcu_update_lock_sched__more_unlocks(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_sched(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_read_section(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_sched(); } } else { } return; } } void ldv_assert_linux_kernel_rcu_update_lock_sched__locked_at_exit(int expr ) { { if (! expr) { { reach_error_linux_kernel_rcu_update_lock_sched(); } } else { } return; } }