extern void abort(void); #include void reach_error() { assert(0); } /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef long long __s64; typedef unsigned long long __u64; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef unsigned short umode_t; typedef u64 dma_addr_t; typedef unsigned int __kernel_mode_t; typedef unsigned long __kernel_nlink_t; typedef long __kernel_off_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid_t; typedef unsigned int __kernel_gid_t; typedef unsigned long __kernel_size_t; typedef long __kernel_ssize_t; typedef long __kernel_time_t; typedef long __kernel_suseconds_t; typedef long __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef long long __kernel_loff_t; typedef __kernel_uid_t __kernel_uid32_t; typedef __kernel_gid_t __kernel_gid32_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef __kernel_mode_t mode_t; typedef __kernel_nlink_t nlink_t; typedef __kernel_off_t off_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct module; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct completion; struct pt_regs; struct pid; struct task_struct; struct mm_struct; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; typedef void (*ctor_fn_t)(void); struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion_ldv_1853_8 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion_ldv_1853_8 ldv_1853 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_11 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_11 pgd_t; struct page; struct file; struct seq_file; struct __anonstruct_ldv_2072_15 { unsigned int a ; unsigned int b ; }; struct __anonstruct_ldv_2087_16 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion_ldv_2088_14 { struct __anonstruct_ldv_2072_15 ldv_2072 ; struct __anonstruct_ldv_2087_16 ldv_2087 ; }; struct desc_struct { union __anonunion_ldv_2088_14 ldv_2088 ; }; enum km_type { KM_BOUNCE_READ = 0, KM_SKB_SUNRPC_DATA = 1, KM_SKB_DATA_SOFTIRQ = 2, KM_USER0 = 3, KM_USER1 = 4, KM_BIO_SRC_IRQ = 5, KM_BIO_DST_IRQ = 6, KM_PTE0 = 7, KM_PTE1 = 8, KM_IRQ0 = 9, KM_IRQ1 = 10, KM_SOFTIRQ0 = 11, KM_SOFTIRQ1 = 12, KM_SYNC_ICACHE = 13, KM_SYNC_DCACHE = 14, KM_UML_USERCOPY = 15, KM_IRQ_PTE = 16, KM_NMI = 17, KM_NMI_PTE = 18, KM_KDB = 19, KM_TYPE_NR = 20 } ; struct thread_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; struct arch_spinlock; struct cpumask { unsigned long bits[64U] ; }; typedef struct cpumask cpumask_t; struct exec_domain; struct map_segment; struct exec_domain { char const *name ; void (*handler)(int , struct pt_regs * ) ; unsigned char pers_low ; unsigned char pers_high ; unsigned long *signal_map ; unsigned long *signal_invmap ; struct map_segment *err_map ; struct map_segment *socktype_map ; struct map_segment *sockopt_map ; struct map_segment *af_map ; struct module *module ; struct exec_domain *next ; }; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct_ldv_4675_20 { u64 rip ; u64 rdp ; }; struct __anonstruct_ldv_4681_21 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion_ldv_4682_19 { struct __anonstruct_ldv_4675_20 ldv_4675 ; struct __anonstruct_ldv_4681_21 ldv_4681 ; }; union __anonunion_ldv_4691_22 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion_ldv_4682_19 ldv_4682 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion_ldv_4691_22 ldv_4691 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_no ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; struct __anonstruct_mm_segment_t_24 { unsigned long seg ; }; typedef struct __anonstruct_mm_segment_t_24 mm_segment_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct timespec; struct compat_timespec; struct __anonstruct_ldv_5162_26 { unsigned long arg0 ; unsigned long arg1 ; unsigned long arg2 ; unsigned long arg3 ; }; struct __anonstruct_futex_27 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_28 { clockid_t index ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_29 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion_ldv_5185_25 { struct __anonstruct_ldv_5162_26 ldv_5162 ; struct __anonstruct_futex_27 futex ; struct __anonstruct_nanosleep_28 nanosleep ; struct __anonstruct_poll_29 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion_ldv_5185_25 ldv_5185 ; }; typedef atomic64_t atomic_long_t; struct thread_info { struct task_struct *task ; struct exec_domain *exec_domain ; __u32 flags ; __u32 status ; __u32 cpu ; int preempt_count ; mm_segment_t addr_limit ; struct restart_block restart_block ; void *sysenter_return ; int uaccess_err ; }; struct arch_spinlock { unsigned int slock ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct_arch_rwlock_t_30 { unsigned int lock ; }; typedef struct __anonstruct_arch_rwlock_t_30 arch_rwlock_t; struct lockdep_map; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 2 ; unsigned char hardirqs_off : 1 ; unsigned short references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct_ldv_5749_32 { u8 __padding[1U] ; struct lockdep_map dep_map ; }; union __anonunion_ldv_5750_31 { struct raw_spinlock rlock ; struct __anonstruct_ldv_5749_32 ldv_5749 ; }; struct spinlock { union __anonunion_ldv_5750_31 ldv_5750 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_33 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_33 rwlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct timeval { __kernel_time_t tv_sec ; __kernel_suseconds_t tv_usec ; }; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; uid_t uid ; gid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct __anonstruct_nodemask_t_35 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_35 nodemask_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct thread_info *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct rw_semaphore; typedef long rwsem_count_t; struct rw_semaphore { rwsem_count_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; struct device; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; void *start_site ; char start_comm[16U] ; int start_pid ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; }; struct execute_work { struct work_struct work ; }; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum dpm_state { DPM_INVALID = 0, DPM_ON = 1, DPM_PREPARING = 2, DPM_RESUMING = 3, DPM_SUSPENDING = 4, DPM_OFF = 5, DPM_OFF_IRQ = 6 } ; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_RESUME = 3 } ; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char should_wakeup : 1 ; unsigned char async_suspend : 1 ; enum dpm_state status ; struct list_head entry ; struct completion completion ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; spinlock_t lock ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char ignore_children : 1 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; }; struct __anonstruct_mm_context_t_100 { void *ldt ; int size ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_100 mm_context_t; struct call_single_data { struct list_head list ; void (*func)(void * ) ; void *info ; u16 flags ; u16 priv ; }; struct pci_bus; struct vm_area_struct; struct key; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kobject; enum kobj_ns_type; enum kobj_ns_type; struct attribute { char const *name ; struct module *owner ; mode_t mode ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; mode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct sysfs_dirent; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct sysfs_dirent *sd ; struct kref kref ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_ns_type_operations; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct sock; struct kobj_ns_type_operations { enum kobj_ns_type type ; void const *(*current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kernel_param; struct kparam_string; struct kparam_array; union __anonunion_ldv_10844_110 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; u16 perm ; u16 flags ; int (*set)(char const * , struct kernel_param * ) ; int (*get)(char * , struct kernel_param * ) ; union __anonunion_ldv_10844_110 ldv_10844 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int *num ; int (*set)(char const * , struct kernel_param * ) ; int (*get)(char * , struct kernel_param * ) ; unsigned int elemsize ; void *elem ; }; struct rcu_head { struct rcu_head *next ; void (*func)(struct rcu_head * ) ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; int state ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2 } ; struct module_ref { unsigned int incs ; unsigned int decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; void *percpu ; unsigned int percpu_size ; char *args ; struct tracepoint *tracepoints ; unsigned int num_tracepoints ; char const **trace_bprintk_fmt_start ; unsigned int num_trace_bprintk_fmt ; struct ftrace_event_call *trace_events ; unsigned int num_trace_events ; struct list_head source_list ; struct list_head target_list ; struct task_struct *waiter ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct kmem_cache_cpu { void **freelist ; struct page *page ; int node ; unsigned int stat[18U] ; }; struct kmem_cache_node { spinlock_t list_lock ; unsigned long nr_partial ; struct list_head partial ; atomic_long_t nr_slabs ; atomic_long_t total_objects ; struct list_head full ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; int size ; int objsize ; int offset ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; unsigned long min_partial ; char const *name ; struct list_head list ; struct kobject kobj ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct Scsi_Host; struct inode; struct scsi_cmnd; struct scsi_device; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct dma_map_ops; struct dev_archdata { void *acpi_handle ; struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct class_private; struct bus_type; struct bus_type_private; struct bus_attribute { struct attribute attr ; ssize_t (*show)(struct bus_type * , char * ) ; ssize_t (*store)(struct bus_type * , char const * , size_t ) ; }; struct device_attribute; struct driver_attribute; struct bus_type { char const *name ; struct bus_attribute *bus_attrs ; struct device_attribute *dev_attrs ; struct driver_attribute *drv_attrs ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct bus_type_private *p ; }; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct driver_attribute { struct attribute attr ; ssize_t (*show)(struct device_driver * , char * ) ; ssize_t (*store)(struct device_driver * , char const * , size_t ) ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct device_attribute *dev_attrs ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , mode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct class_private *p ; }; struct device_type; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , mode_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; dev_t devt ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion_ldv_14044_112 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 pcie_type ; u8 rom_base_reg ; u8 pin ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; int pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char wakeup_prepared : 1 ; unsigned int d3_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[18U] ; resource_size_t fw_addr[18U] ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char block_ucfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char is_pcie : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[18U] ; struct bin_attribute *res_attr_wc[18U] ; struct list_head msi_list ; struct pci_vpd *vpd ; union __anonunion_ldv_14044_112 ldv_14044 ; struct pci_ats *ats ; }; struct pci_ops; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct pci_ops *ops ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char secondary ; unsigned char subordinate ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; struct pci_error_handlers *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct rb_node { unsigned long rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct prio_tree_node; struct raw_prio_tree_node { struct prio_tree_node *left ; struct prio_tree_node *right ; struct prio_tree_node *parent ; }; struct prio_tree_node { struct prio_tree_node *left ; struct prio_tree_node *right ; struct prio_tree_node *parent ; unsigned long start ; unsigned long last ; }; struct prio_tree_root { struct prio_tree_node *prio_tree_node ; unsigned short index_bits ; unsigned short raw ; }; struct address_space; struct __anonstruct_ldv_14872_114 { u16 inuse ; u16 objects ; }; union __anonunion_ldv_14873_113 { atomic_t _mapcount ; struct __anonstruct_ldv_14872_114 ldv_14872 ; }; struct __anonstruct_ldv_14878_116 { unsigned long private ; struct address_space *mapping ; }; union __anonunion_ldv_14881_115 { struct __anonstruct_ldv_14878_116 ldv_14878 ; struct kmem_cache *slab ; struct page *first_page ; }; union __anonunion_ldv_14885_117 { unsigned long index ; void *freelist ; }; struct page { unsigned long flags ; atomic_t _count ; union __anonunion_ldv_14873_113 ldv_14873 ; union __anonunion_ldv_14881_115 ldv_14881 ; union __anonunion_ldv_14885_117 ldv_14885 ; struct list_head lru ; }; struct __anonstruct_vm_set_119 { struct list_head list ; void *parent ; struct vm_area_struct *head ; }; union __anonunion_shared_118 { struct __anonstruct_vm_set_119 vm_set ; struct raw_prio_tree_node prio_tree_node ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { struct mm_struct *vm_mm ; unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct rb_node vm_rb ; union __anonunion_shared_118 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; unsigned long vm_truncate_count ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct mm_rss_stat { unsigned long count[3U] ; }; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; void (*unmap_area)(struct mm_struct * , unsigned long ) ; unsigned long mmap_base ; unsigned long task_size ; unsigned long cached_hole_size ; unsigned long free_area_cache ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; int map_count ; struct rw_semaphore mmap_sem ; spinlock_t page_table_lock ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long reserved_vm ; unsigned long def_flags ; unsigned long nr_ptes ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[44U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_t cpu_vm_mask ; mm_context_t context ; unsigned int faultstamp ; unsigned int token_priority ; unsigned int last_interval ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct hlist_head ioctx_list ; struct task_struct *owner ; struct file *exe_file ; unsigned long num_exe_file_vmas ; struct mmu_notifier_mm *mmu_notifier_mm ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; }; struct dma_attrs { unsigned long flags[1U] ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc_coherent)(struct device * , size_t , dma_addr_t * , gfp_t ) ; void (*free_coherent)(struct device * , size_t , void * , dma_addr_t ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct timer_rand_state; struct irqaction; struct exception_table_entry { unsigned long insn ; unsigned long fixup ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct rb_node node ; ktime_t _expires ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; clockid_t index ; struct rb_root active ; struct rb_node *first ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; struct hrtimer_clock_base clock_base[2U] ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; }; struct irqaction { irqreturn_t (*handler)(int , void * ) ; unsigned long flags ; char const *name ; void *dev_id ; struct irqaction *next ; int irq ; struct proc_dir_entry *dir ; irqreturn_t (*thread_fn)(int , void * ) ; struct task_struct *thread ; unsigned long thread_flags ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct nameidata; struct path; struct vfsmount; struct qstr { unsigned int hash ; unsigned int len ; unsigned char const *name ; }; union __anonunion_d_u_121 { struct list_head d_child ; struct rcu_head d_rcu ; }; struct dentry_operations; struct super_block; struct dentry { atomic_t d_count ; unsigned int d_flags ; spinlock_t d_lock ; int d_mounted ; struct inode *d_inode ; struct hlist_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct list_head d_lru ; union __anonunion_d_u_121 d_u ; struct list_head d_subdirs ; struct list_head d_alias ; unsigned long d_time ; struct dentry_operations const *d_op ; struct super_block *d_sb ; void *d_fsdata ; unsigned char d_iname[32U] ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , struct nameidata * ) ; int (*d_hash)(struct dentry * , struct qstr * ) ; int (*d_compare)(struct dentry * , struct qstr * , struct qstr * ) ; int (*d_delete)(struct dentry * ) ; void (*d_release)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct rcu_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; struct export_operations; struct hd_geometry; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct cred; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; uid_t ia_uid ; gid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; struct percpu_counter { spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct dquot; typedef __kernel_uid32_t qid_t; typedef long long qsize_t; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; unsigned int dq_id ; loff_t dq_off ; unsigned long dq_flags ; short dq_type ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , char * ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , int , qid_t , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , int , qid_t , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_124 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_123 { size_t written ; size_t count ; union __anonunion_arg_124 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_123 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; void (*sync_page)(struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned long ) ; int (*releasepage)(struct page * , gfp_t ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct prio_tree_root i_mmap ; struct list_head i_mmap_nonlinear ; spinlock_t i_mmap_lock ; unsigned int truncate_count ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; struct address_space *assoc_mapping ; }; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; struct inode *bd_inode ; struct super_block *bd_super ; int bd_openers ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; struct list_head bd_holder_list ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; struct file_operations; struct file_lock; struct cdev; union __anonunion_ldv_20801_125 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { struct hlist_node i_hash ; struct list_head i_list ; struct list_head i_sb_list ; struct list_head i_dentry ; unsigned long i_ino ; atomic_t i_count ; unsigned int i_nlink ; uid_t i_uid ; gid_t i_gid ; dev_t i_rdev ; unsigned int i_blkbits ; u64 i_version ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; blkcnt_t i_blocks ; unsigned short i_bytes ; umode_t i_mode ; spinlock_t i_lock ; struct mutex i_mutex ; struct rw_semaphore i_alloc_sem ; struct inode_operations const *i_op ; struct file_operations const *i_fop ; struct super_block *i_sb ; struct file_lock *i_flock ; struct address_space *i_mapping ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion_ldv_20801_125 ldv_20801 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_mark_entries ; struct list_head inotify_watches ; struct mutex inotify_mutex ; unsigned long i_state ; unsigned long dirtied_when ; unsigned int i_flags ; atomic_t i_writecount ; void *i_security ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; uid_t uid ; uid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_126 { struct list_head fu_list ; struct rcu_head fu_rcuhead ; }; struct file { union __anonunion_f_u_126 f_u ; struct path f_path ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*fl_compare_owner)(struct file_lock * , struct file_lock * ) ; void (*fl_notify)(struct file_lock * ) ; int (*fl_grant)(struct file_lock * , struct file_lock * , int ) ; void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; void (*fl_break)(struct file_lock * ) ; int (*fl_mylease)(struct file_lock * , struct file_lock * ) ; int (*fl_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_128 { struct list_head link ; int state ; }; union __anonunion_fl_u_127 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_128 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned char fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_127 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct rcu_head fa_rcu ; }; struct file_system_type; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_dirt ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; struct mutex s_lock ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_head s_anon ; struct list_head s_files ; struct list_head s_dentry_lru ; int s_nr_dentry_unused ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct list_head s_instances ; struct quota_info s_dquot ; int s_frozen ; wait_queue_head_t s_wait_unfrozen ; char s_id[32U] ; void *s_fs_info ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct block_device_operations; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*readdir)(struct file * , void * , int (*)(void * , char const * , int , loff_t , u64 , unsigned int ) ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; int (*ioctl)(struct inode * , struct file * , unsigned int , unsigned long ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; }; struct inode_operations { int (*create)(struct inode * , struct dentry * , int , struct nameidata * ) ; struct dentry *(*lookup)(struct inode * , struct dentry * , struct nameidata * ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , int ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , int , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*readlink)(struct dentry * , char * , int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; void (*truncate)(struct inode * ) ; int (*permission)(struct inode * , int ) ; int (*check_acl)(struct inode * , int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; void (*truncate_range)(struct inode * , loff_t , loff_t ) ; long (*fallocate)(struct inode * , int , loff_t , loff_t ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; void (*drop_inode)(struct inode * ) ; void (*delete_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; void (*write_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*clear_inode)(struct inode * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct vfsmount * ) ; int (*show_stats)(struct seq_file * , struct vfsmount * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; }; struct file_system_type { char const *name ; int fs_flags ; int (*get_sb)(struct file_system_type * , int , char const * , void * , struct vfsmount * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct list_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; struct lock_class_key i_alloc_sem_key ; }; struct bio; typedef int read_proc_t(char * , char ** , off_t , int , int * , void * ); typedef int write_proc_t(struct file * , char const * , unsigned long , void * ); struct proc_dir_entry { unsigned int low_ino ; unsigned short namelen ; char const *name ; mode_t mode ; nlink_t nlink ; uid_t uid ; gid_t gid ; loff_t size ; struct inode_operations const *proc_iops ; struct file_operations const *proc_fops ; struct proc_dir_entry *next ; struct proc_dir_entry *parent ; struct proc_dir_entry *subdir ; void *data ; read_proc_t *read_proc ; write_proc_t *write_proc ; atomic_t count ; int pde_users ; spinlock_t pde_unload_lock ; struct completion *pde_unload_completion ; struct list_head pde_openers ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sem_undo_list { atomic_t refcnt ; spinlock_t lock ; struct list_head list_proc ; }; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct siginfo; struct __anonstruct_sigset_t_129 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_129 sigset_t; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_131 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_132 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_133 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_134 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_135 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_136 { long _band ; int _fd ; }; union __anonunion__sifields_130 { int _pad[28U] ; struct __anonstruct__kill_131 _kill ; struct __anonstruct__timer_132 _timer ; struct __anonstruct__rt_133 _rt ; struct __anonstruct__sigchld_134 _sigchld ; struct __anonstruct__sigfault_135 _sigfault ; struct __anonstruct__sigpoll_136 _sigpoll ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_130 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct prop_local_percpu { struct percpu_counter events ; int shift ; unsigned long period ; spinlock_t lock ; }; struct prop_local_single { unsigned long events ; unsigned long period ; int shift ; spinlock_t lock ; }; struct __anonstruct_seccomp_t_139 { int mode ; }; typedef struct __anonstruct_seccomp_t_139 seccomp_t; struct plist_head { struct list_head prio_list ; struct list_head node_list ; raw_spinlock_t *rawlock ; spinlock_t *spinlock ; }; struct plist_node { int prio ; struct plist_head plist ; }; struct rt_mutex_waiter; struct rlimit { unsigned long rlim_cur ; unsigned long rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct signal_struct; struct key_type; struct keyring_list; struct key_user; union __anonunion_ldv_24486_140 { time_t expiry ; time_t revoked_at ; }; union __anonunion_type_data_141 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; }; union __anonunion_payload_142 { unsigned long value ; void *data ; struct keyring_list *subscriptions ; }; struct key { atomic_t usage ; key_serial_t serial ; struct rb_node serial_node ; struct key_type *type ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion_ldv_24486_140 ldv_24486 ; uid_t uid ; gid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; char *description ; union __anonunion_type_data_141 type_data ; union __anonunion_payload_142 payload ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; gid_t small_block[32U] ; gid_t *blocks[0U] ; }; struct thread_group_cred { atomic_t usage ; pid_t tgid ; spinlock_t lock ; struct key *session_keyring ; struct key *process_keyring ; struct rcu_head rcu ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; uid_t uid ; gid_t gid ; uid_t suid ; gid_t sgid ; uid_t euid ; gid_t egid ; uid_t fsuid ; gid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; struct thread_group_cred *tgcred ; void *security ; struct user_struct *user ; struct group_info *group_info ; struct rcu_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct cfs_rq; struct user_namespace; struct io_event { __u64 data ; __u64 obj ; __s64 res ; __s64 res2 ; }; struct kioctx; union __anonunion_ki_obj_143 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct list_head ki_run_list ; unsigned long ki_flags ; int ki_users ; unsigned int ki_key ; struct file *ki_filp ; struct kioctx *ki_ctx ; int (*ki_cancel)(struct kiocb * , struct io_event * ) ; ssize_t (*ki_retry)(struct kiocb * ) ; void (*ki_dtor)(struct kiocb * ) ; union __anonunion_ki_obj_143 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; void *private ; unsigned short ki_opcode ; size_t ki_nbytes ; char *ki_buf ; size_t ki_left ; struct iovec ki_inline_vec ; struct iovec *ki_iovec ; unsigned long ki_nr_segs ; unsigned long ki_cur_seg ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct aio_ring_info { unsigned long mmap_base ; unsigned long mmap_size ; struct page **ring_pages ; spinlock_t ring_lock ; long nr_pages ; unsigned int nr ; unsigned int tail ; struct page *internal_pages[8U] ; }; struct kioctx { atomic_t users ; int dead ; struct mm_struct *mm ; unsigned long user_id ; struct hlist_node list ; wait_queue_head_t wait ; spinlock_t ctx_lock ; int reqs_active ; struct list_head active_reqs ; struct list_head run_list ; unsigned int max_reqs ; struct aio_ring_info ring_info ; struct delayed_work wq ; struct rcu_head rcu_head ; }; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; spinlock_t lock ; }; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; cputime_t prev_utime ; cputime_t prev_stime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; struct tty_audit_buf *tty_audit_buf ; int oom_adj ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; uid_t uid ; struct user_namespace *user_ns ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; unsigned int bkl_count ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct rq; struct sched_class { struct sched_class const *next ; void (*enqueue_task)(struct rq * , struct task_struct * , int ) ; void (*dequeue_task)(struct rq * , struct task_struct * , int ) ; void (*yield_task)(struct rq * ) ; void (*check_preempt_curr)(struct rq * , struct task_struct * , int ) ; struct task_struct *(*pick_next_task)(struct rq * ) ; void (*put_prev_task)(struct rq * , struct task_struct * ) ; int (*select_task_rq)(struct rq * , struct task_struct * , int , int ) ; void (*pre_schedule)(struct rq * , struct task_struct * ) ; void (*post_schedule)(struct rq * ) ; void (*task_waking)(struct rq * , struct task_struct * ) ; void (*task_woken)(struct rq * , struct task_struct * ) ; void (*set_cpus_allowed)(struct task_struct * , struct cpumask const * ) ; void (*rq_online)(struct rq * ) ; void (*rq_offline)(struct rq * ) ; void (*set_curr_task)(struct rq * ) ; void (*task_tick)(struct rq * , struct task_struct * , int ) ; void (*task_fork)(struct task_struct * ) ; void (*switched_from)(struct rq * , struct task_struct * , int ) ; void (*switched_to)(struct rq * , struct task_struct * , int ) ; void (*prio_changed)(struct rq * , struct task_struct * , int , int ) ; unsigned int (*get_rr_interval)(struct rq * , struct task_struct * ) ; void (*moved_group)(struct task_struct * , int ) ; }; struct load_weight { unsigned long weight ; unsigned long inv_weight ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned int time_slice ; int nr_cpus_allowed ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long bytes ; unsigned long memsw_bytes ; }; struct css_set; struct compat_robust_list_head; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; int lock_depth ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct hlist_head preempt_notifiers ; unsigned char fpu_counter ; unsigned int policy ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int personality ; unsigned char did_exec : 1 ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; pid_t pid ; pid_t tgid ; unsigned long stack_canary ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; cputime_t prev_utime ; cputime_t prev_stime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; struct mutex cred_guard_mutex ; struct cred *replacement_session_keyring ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct audit_context *audit_context ; uid_t loginuid ; unsigned int sessionid ; seccomp_t seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; struct irqaction *irqaction ; raw_spinlock_t pi_lock ; struct plist_head pi_waiters ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; int mems_allowed_change_disable ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; atomic_t fs_excl ; struct rcu_head rcu ; struct pipe_inode_info *splice_pipe ; struct task_delay_info *delays ; int make_it_fail ; struct prop_local_single dirties ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; struct list_head *scm_work_list ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; }; struct disk_stats { unsigned long sectors[2U] ; unsigned long ios[2U] ; unsigned long merges[2U] ; unsigned long ticks[2U] ; unsigned long io_ticks ; unsigned long time_in_queue ; }; struct hd_struct { sector_t start_sect ; sector_t nr_sects ; sector_t alignment_offset ; unsigned int discard_alignment ; struct device __dev ; struct kobject *holder_dir ; int policy ; int partno ; int make_it_fail ; unsigned long stamp ; int in_flight[2U] ; struct disk_stats *dkstats ; struct rcu_head rcu_head ; }; struct disk_part_tbl { struct rcu_head rcu_head ; int len ; struct hd_struct *last_lookup ; struct hd_struct *part[] ; }; struct request_queue; struct blk_integrity; struct gendisk { int major ; int first_minor ; int minors ; char disk_name[32U] ; char *(*devnode)(struct gendisk * , mode_t * ) ; struct disk_part_tbl *part_tbl ; struct hd_struct part0 ; struct block_device_operations const *fops ; struct request_queue *queue ; void *private_data ; int flags ; struct device *driverfs_dev ; struct kobject *slave_dir ; struct timer_rand_state *random ; atomic_t sync_io ; struct work_struct async_notify ; struct blk_integrity *integrity ; int node_id ; }; enum writeback_sync_modes { WB_SYNC_NONE = 0, WB_SYNC_ALL = 1 } ; struct writeback_control { enum writeback_sync_modes sync_mode ; unsigned long *older_than_this ; unsigned long wb_start ; long nr_to_write ; long pages_skipped ; loff_t range_start ; loff_t range_end ; unsigned char nonblocking : 1 ; unsigned char encountered_congestion : 1 ; unsigned char for_kupdate : 1 ; unsigned char for_background : 1 ; unsigned char for_reclaim : 1 ; unsigned char range_cyclic : 1 ; unsigned char more_io : 1 ; }; struct bdi_writeback; typedef int congested_fn(void * , int ); struct bdi_writeback { struct list_head list ; struct backing_dev_info *bdi ; unsigned int nr ; unsigned long last_old_flush ; struct task_struct *task ; struct list_head b_dirty ; struct list_head b_io ; struct list_head b_more_io ; }; struct backing_dev_info { struct list_head bdi_list ; struct rcu_head rcu_head ; unsigned long ra_pages ; unsigned long state ; unsigned int capabilities ; congested_fn *congested_fn ; void *congested_data ; void (*unplug_io_fn)(struct backing_dev_info * , struct page * ) ; void *unplug_io_data ; char *name ; struct percpu_counter bdi_stat[2U] ; struct prop_local_percpu completions ; int dirty_exceeded ; unsigned int min_ratio ; unsigned int max_ratio ; unsigned int max_prop_frac ; struct bdi_writeback wb ; spinlock_t wb_lock ; struct list_head wb_list ; struct list_head work_list ; struct device *dev ; struct timer_list laptop_mode_wb_timer ; struct dentry *debug_dir ; struct dentry *debug_stats ; }; typedef void *mempool_alloc_t(gfp_t , void * ); typedef void mempool_free_t(void * , void * ); struct mempool_s { spinlock_t lock ; int min_nr ; int curr_nr ; void **elements ; void *pool_data ; mempool_alloc_t *alloc ; mempool_free_t *free ; wait_queue_head_t wait ; }; typedef struct mempool_s mempool_t; struct io_context { atomic_long_t refcount ; atomic_t nr_tasks ; spinlock_t lock ; unsigned short ioprio ; unsigned short ioprio_changed ; unsigned short cgroup_changed ; int nr_batch_requests ; unsigned long last_waited ; struct radix_tree_root radix_root ; struct hlist_head cic_list ; void *ioc_data ; }; struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct bio_integrity_payload; typedef void bio_end_io_t(struct bio * , int ); typedef void bio_destructor_t(struct bio * ); struct bio { sector_t bi_sector ; struct bio *bi_next ; struct block_device *bi_bdev ; unsigned long bi_flags ; unsigned long bi_rw ; unsigned short bi_vcnt ; unsigned short bi_idx ; unsigned int bi_phys_segments ; unsigned int bi_size ; unsigned int bi_seg_front_size ; unsigned int bi_seg_back_size ; unsigned int bi_max_vecs ; unsigned int bi_comp_cpu ; atomic_t bi_cnt ; struct bio_vec *bi_io_vec ; bio_end_io_t *bi_end_io ; void *bi_private ; struct bio_integrity_payload *bi_integrity ; bio_destructor_t *bi_destructor ; struct bio_vec bi_inline_vecs[0U] ; }; struct bio_integrity_payload { struct bio *bip_bio ; sector_t bip_sector ; void *bip_buf ; bio_end_io_t *bip_end_io ; unsigned int bip_size ; unsigned short bip_slab ; unsigned short bip_vcnt ; unsigned short bip_idx ; struct work_struct bip_work ; struct bio_vec bip_vec[0U] ; }; struct bio_list { struct bio *head ; struct bio *tail ; }; struct bsg_class_device { struct device *class_dev ; struct device *parent ; int minor ; struct request_queue *queue ; struct kref ref ; void (*release)(struct device * ) ; }; struct elevator_queue; struct request; typedef void rq_end_io_fn(struct request * , int ); struct request_list { int count[2U] ; int starved[2U] ; int elvpriv ; mempool_t *rq_pool ; wait_queue_head_t wait[2U] ; }; enum rq_cmd_type_bits { REQ_TYPE_FS = 1, REQ_TYPE_BLOCK_PC = 2, REQ_TYPE_SENSE = 3, REQ_TYPE_PM_SUSPEND = 4, REQ_TYPE_PM_RESUME = 5, REQ_TYPE_PM_SHUTDOWN = 6, REQ_TYPE_SPECIAL = 7, REQ_TYPE_LINUX_BLOCK = 8, REQ_TYPE_ATA_TASKFILE = 9, REQ_TYPE_ATA_PC = 10 } ; union __anonunion_ldv_28097_144 { struct rb_node rb_node ; void *completion_data ; }; struct request { struct list_head queuelist ; struct call_single_data csd ; struct request_queue *q ; unsigned int cmd_flags ; enum rq_cmd_type_bits cmd_type ; unsigned long atomic_flags ; int cpu ; unsigned int __data_len ; sector_t __sector ; struct bio *bio ; struct bio *biotail ; struct hlist_node hash ; union __anonunion_ldv_28097_144 ldv_28097 ; void *elevator_private ; void *elevator_private2 ; void *elevator_private3 ; struct gendisk *rq_disk ; unsigned long start_time ; unsigned short nr_phys_segments ; unsigned short ioprio ; int ref_count ; void *special ; char *buffer ; int tag ; int errors ; unsigned char __cmd[16U] ; unsigned char *cmd ; unsigned short cmd_len ; unsigned int extra_len ; unsigned int sense_len ; unsigned int resid_len ; void *sense ; unsigned long deadline ; struct list_head timeout_list ; unsigned int timeout ; int retries ; rq_end_io_fn *end_io ; void *end_io_data ; struct request *next_rq ; }; typedef int elevator_merge_fn(struct request_queue * , struct request ** , struct bio * ); typedef void elevator_merge_req_fn(struct request_queue * , struct request * , struct request * ); typedef void elevator_merged_fn(struct request_queue * , struct request * , int ); typedef int elevator_allow_merge_fn(struct request_queue * , struct request * , struct bio * ); typedef void elevator_bio_merged_fn(struct request_queue * , struct request * , struct bio * ); typedef int elevator_dispatch_fn(struct request_queue * , int ); typedef void elevator_add_req_fn(struct request_queue * , struct request * ); typedef int elevator_queue_empty_fn(struct request_queue * ); typedef struct request *elevator_request_list_fn(struct request_queue * , struct request * ); typedef void elevator_completed_req_fn(struct request_queue * , struct request * ); typedef int elevator_may_queue_fn(struct request_queue * , int ); typedef int elevator_set_req_fn(struct request_queue * , struct request * , gfp_t ); typedef void elevator_put_req_fn(struct request * ); typedef void elevator_activate_req_fn(struct request_queue * , struct request * ); typedef void elevator_deactivate_req_fn(struct request_queue * , struct request * ); typedef void *elevator_init_fn(struct request_queue * ); typedef void elevator_exit_fn(struct elevator_queue * ); struct elevator_ops { elevator_merge_fn *elevator_merge_fn ; elevator_merged_fn *elevator_merged_fn ; elevator_merge_req_fn *elevator_merge_req_fn ; elevator_allow_merge_fn *elevator_allow_merge_fn ; elevator_bio_merged_fn *elevator_bio_merged_fn ; elevator_dispatch_fn *elevator_dispatch_fn ; elevator_add_req_fn *elevator_add_req_fn ; elevator_activate_req_fn *elevator_activate_req_fn ; elevator_deactivate_req_fn *elevator_deactivate_req_fn ; elevator_queue_empty_fn *elevator_queue_empty_fn ; elevator_completed_req_fn *elevator_completed_req_fn ; elevator_request_list_fn *elevator_former_req_fn ; elevator_request_list_fn *elevator_latter_req_fn ; elevator_set_req_fn *elevator_set_req_fn ; elevator_put_req_fn *elevator_put_req_fn ; elevator_may_queue_fn *elevator_may_queue_fn ; elevator_init_fn *elevator_init_fn ; elevator_exit_fn *elevator_exit_fn ; void (*trim)(struct io_context * ) ; }; struct elv_fs_entry { struct attribute attr ; ssize_t (*show)(struct elevator_queue * , char * ) ; ssize_t (*store)(struct elevator_queue * , char const * , size_t ) ; }; struct elevator_type { struct list_head list ; struct elevator_ops ops ; struct elv_fs_entry *elevator_attrs ; char elevator_name[16U] ; struct module *elevator_owner ; }; struct elevator_queue { struct elevator_ops *ops ; void *elevator_data ; struct kobject kobj ; struct elevator_type *elevator_type ; struct mutex sysfs_lock ; struct hlist_head *hash ; }; typedef void request_fn_proc(struct request_queue * ); typedef int make_request_fn(struct request_queue * , struct bio * ); typedef int prep_rq_fn(struct request_queue * , struct request * ); typedef void unplug_fn(struct request_queue * ); struct bvec_merge_data { struct block_device *bi_bdev ; sector_t bi_sector ; unsigned int bi_size ; unsigned long bi_rw ; }; typedef int merge_bvec_fn(struct request_queue * , struct bvec_merge_data * , struct bio_vec * ); typedef void prepare_flush_fn(struct request_queue * , struct request * ); typedef void softirq_done_fn(struct request * ); typedef int dma_drain_needed_fn(struct request * ); typedef int lld_busy_fn(struct request_queue * ); enum blk_eh_timer_return { BLK_EH_NOT_HANDLED = 0, BLK_EH_HANDLED = 1, BLK_EH_RESET_TIMER = 2 } ; typedef enum blk_eh_timer_return rq_timed_out_fn(struct request * ); struct blk_queue_tag { struct request **tag_index ; unsigned long *tag_map ; int busy ; int max_depth ; int real_max_depth ; atomic_t refcnt ; }; struct queue_limits { unsigned long bounce_pfn ; unsigned long seg_boundary_mask ; unsigned int max_hw_sectors ; unsigned int max_sectors ; unsigned int max_segment_size ; unsigned int physical_block_size ; unsigned int alignment_offset ; unsigned int io_min ; unsigned int io_opt ; unsigned int max_discard_sectors ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned short logical_block_size ; unsigned short max_segments ; unsigned char misaligned ; unsigned char discard_misaligned ; unsigned char no_cluster ; signed char discard_zeroes_data ; }; struct request_queue { struct list_head queue_head ; struct request *last_merge ; struct elevator_queue *elevator ; struct request_list rq ; request_fn_proc *request_fn ; make_request_fn *make_request_fn ; prep_rq_fn *prep_rq_fn ; unplug_fn *unplug_fn ; merge_bvec_fn *merge_bvec_fn ; prepare_flush_fn *prepare_flush_fn ; softirq_done_fn *softirq_done_fn ; rq_timed_out_fn *rq_timed_out_fn ; dma_drain_needed_fn *dma_drain_needed ; lld_busy_fn *lld_busy_fn ; sector_t end_sector ; struct request *boundary_rq ; struct timer_list unplug_timer ; int unplug_thresh ; unsigned long unplug_delay ; struct work_struct unplug_work ; struct backing_dev_info backing_dev_info ; void *queuedata ; gfp_t bounce_gfp ; unsigned long queue_flags ; spinlock_t __queue_lock ; spinlock_t *queue_lock ; struct kobject kobj ; unsigned long nr_requests ; unsigned int nr_congestion_on ; unsigned int nr_congestion_off ; unsigned int nr_batching ; void *dma_drain_buffer ; unsigned int dma_drain_size ; unsigned int dma_pad_mask ; unsigned int dma_alignment ; struct blk_queue_tag *queue_tags ; struct list_head tag_busy_list ; unsigned int nr_sorted ; unsigned int in_flight[2U] ; unsigned int rq_timeout ; struct timer_list timeout ; struct list_head timeout_list ; struct queue_limits limits ; unsigned int sg_timeout ; unsigned int sg_reserved_size ; int node ; unsigned int ordered ; unsigned int next_ordered ; unsigned int ordseq ; int orderr ; int ordcolor ; struct request pre_flush_rq ; struct request bar_rq ; struct request post_flush_rq ; struct request *orig_bar_rq ; struct mutex sysfs_lock ; struct bsg_class_device bsg_dev ; }; struct blk_integrity_exchg { void *prot_buf ; void *data_buf ; sector_t sector ; unsigned int data_size ; unsigned short sector_size ; char const *disk_name ; }; typedef void integrity_gen_fn(struct blk_integrity_exchg * ); typedef int integrity_vrfy_fn(struct blk_integrity_exchg * ); typedef void integrity_set_tag_fn(void * , void * , unsigned int ); typedef void integrity_get_tag_fn(void * , void * , unsigned int ); struct blk_integrity { integrity_gen_fn *generate_fn ; integrity_vrfy_fn *verify_fn ; integrity_set_tag_fn *set_tag_fn ; integrity_get_tag_fn *get_tag_fn ; unsigned short flags ; unsigned short tuple_size ; unsigned short sector_size ; unsigned short tag_size ; char const *name ; struct kobject kobj ; }; struct block_device_operations { int (*open)(struct block_device * , fmode_t ) ; int (*release)(struct gendisk * , fmode_t ) ; int (*locked_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*direct_access)(struct block_device * , sector_t , void ** , unsigned long * ) ; int (*media_changed)(struct gendisk * ) ; void (*unlock_native_capacity)(struct gendisk * ) ; int (*revalidate_disk)(struct gendisk * ) ; int (*getgeo)(struct block_device * , struct hd_geometry * ) ; void (*swap_slot_free_notify)(struct block_device * , unsigned long ) ; struct module *owner ; }; struct scsi_data_buffer { struct sg_table table ; unsigned int length ; int resid ; }; struct scsi_pointer { char *ptr ; int this_residual ; struct scatterlist *buffer ; int buffers_residual ; dma_addr_t dma_handle ; int volatile Status ; int volatile Message ; int volatile have_data_in ; int volatile sent_command ; int volatile phase ; }; struct scsi_cmnd { struct scsi_device *device ; struct list_head list ; struct list_head eh_entry ; int eh_eflags ; unsigned long serial_number ; unsigned long jiffies_at_alloc ; int retries ; int allowed ; unsigned char prot_op ; unsigned char prot_type ; unsigned short cmd_len ; enum dma_data_direction sc_data_direction ; unsigned char *cmnd ; struct scsi_data_buffer sdb ; struct scsi_data_buffer *prot_sdb ; unsigned int underflow ; unsigned int transfersize ; struct request *request ; unsigned char *sense_buffer ; void (*scsi_done)(struct scsi_cmnd * ) ; struct scsi_pointer SCp ; unsigned char *host_scribble ; int result ; unsigned char tag ; }; struct scsi_sense_hdr; enum scsi_device_state { SDEV_CREATED = 1, SDEV_RUNNING = 2, SDEV_CANCEL = 3, SDEV_DEL = 4, SDEV_QUIESCE = 5, SDEV_OFFLINE = 6, SDEV_BLOCK = 7, SDEV_CREATED_BLOCK = 8 } ; struct scsi_target; struct scsi_dh_data; struct scsi_device { struct Scsi_Host *host ; struct request_queue *request_queue ; struct list_head siblings ; struct list_head same_target_siblings ; unsigned int device_busy ; spinlock_t list_lock ; struct list_head cmd_list ; struct list_head starved_entry ; struct scsi_cmnd *current_cmnd ; unsigned short queue_depth ; unsigned short max_queue_depth ; unsigned short last_queue_full_depth ; unsigned short last_queue_full_count ; unsigned long last_queue_full_time ; unsigned long queue_ramp_up_period ; unsigned long last_queue_ramp_up ; unsigned int id ; unsigned int lun ; unsigned int channel ; unsigned int manufacturer ; unsigned int sector_size ; void *hostdata ; char type ; char scsi_level ; char inq_periph_qual ; unsigned char inquiry_len ; unsigned char *inquiry ; char const *vendor ; char const *model ; char const *rev ; unsigned char current_tag ; struct scsi_target *sdev_target ; unsigned int sdev_bflags ; unsigned char writeable : 1 ; unsigned char removable : 1 ; unsigned char changed : 1 ; unsigned char busy : 1 ; unsigned char lockable : 1 ; unsigned char locked : 1 ; unsigned char borken : 1 ; unsigned char disconnect : 1 ; unsigned char soft_reset : 1 ; unsigned char sdtr : 1 ; unsigned char wdtr : 1 ; unsigned char ppr : 1 ; unsigned char tagged_supported : 1 ; unsigned char simple_tags : 1 ; unsigned char ordered_tags : 1 ; unsigned char was_reset : 1 ; unsigned char expecting_cc_ua : 1 ; unsigned char use_10_for_rw : 1 ; unsigned char use_10_for_ms : 1 ; unsigned char skip_ms_page_8 : 1 ; unsigned char skip_ms_page_3f : 1 ; unsigned char use_192_bytes_for_3f : 1 ; unsigned char no_start_on_add : 1 ; unsigned char allow_restart : 1 ; unsigned char manage_start_stop : 1 ; unsigned char start_stop_pwr_cond : 1 ; unsigned char no_uld_attach : 1 ; unsigned char select_no_atn : 1 ; unsigned char fix_capacity : 1 ; unsigned char guess_capacity : 1 ; unsigned char retry_hwerror : 1 ; unsigned char last_sector_bug : 1 ; unsigned char is_visible : 1 ; unsigned long supported_events[1U] ; struct list_head event_list ; struct work_struct event_work ; unsigned int device_blocked ; unsigned int max_device_blocked ; atomic_t iorequest_cnt ; atomic_t iodone_cnt ; atomic_t ioerr_cnt ; struct device sdev_gendev ; struct device sdev_dev ; struct execute_work ew ; struct scsi_dh_data *scsi_dh_data ; enum scsi_device_state sdev_state ; unsigned long sdev_data[0U] ; }; struct scsi_dh_devlist { char *vendor ; char *model ; }; struct scsi_device_handler { struct list_head list ; struct module *module ; char const *name ; struct scsi_dh_devlist const *devlist ; int (*check_sense)(struct scsi_device * , struct scsi_sense_hdr * ) ; int (*attach)(struct scsi_device * ) ; void (*detach)(struct scsi_device * ) ; int (*activate)(struct scsi_device * , void (*)(void * , int ) , void * ) ; int (*prep_fn)(struct scsi_device * , struct request * ) ; int (*set_params)(struct scsi_device * , char const * ) ; }; struct scsi_dh_data { struct scsi_device_handler *scsi_dh ; struct scsi_device *sdev ; struct kref kref ; char buf[0U] ; }; enum scsi_target_state { STARGET_CREATED = 1, STARGET_RUNNING = 2, STARGET_DEL = 3 } ; struct scsi_target { struct scsi_device *starget_sdev_user ; struct list_head siblings ; struct list_head devices ; struct device dev ; unsigned int reap_ref ; unsigned int channel ; unsigned int id ; unsigned char create : 1 ; unsigned char single_lun : 1 ; unsigned int pdt_1f_for_no_lun ; unsigned int target_busy ; unsigned int can_queue ; unsigned int target_blocked ; unsigned int max_target_blocked ; char scsi_level ; struct execute_work ew ; enum scsi_target_state state ; void *hostdata ; unsigned long starget_data[0U] ; }; struct scsi_sense_hdr { u8 response_code ; u8 sense_key ; u8 asc ; u8 ascq ; u8 byte4 ; u8 byte5 ; u8 byte6 ; u8 additional_length ; }; struct scsi_host_cmd_pool; struct scsi_transport_template; struct scsi_host_template { struct module *module ; char const *name ; int (*detect)(struct scsi_host_template * ) ; int (*release)(struct Scsi_Host * ) ; char const *(*info)(struct Scsi_Host * ) ; int (*ioctl)(struct scsi_device * , int , void * ) ; int (*compat_ioctl)(struct scsi_device * , int , void * ) ; int (*queuecommand)(struct scsi_cmnd * , void (*)(struct scsi_cmnd * ) ) ; int (*transfer_response)(struct scsi_cmnd * , void (*)(struct scsi_cmnd * ) ) ; int (*eh_abort_handler)(struct scsi_cmnd * ) ; int (*eh_device_reset_handler)(struct scsi_cmnd * ) ; int (*eh_target_reset_handler)(struct scsi_cmnd * ) ; int (*eh_bus_reset_handler)(struct scsi_cmnd * ) ; int (*eh_host_reset_handler)(struct scsi_cmnd * ) ; int (*slave_alloc)(struct scsi_device * ) ; int (*slave_configure)(struct scsi_device * ) ; void (*slave_destroy)(struct scsi_device * ) ; int (*target_alloc)(struct scsi_target * ) ; void (*target_destroy)(struct scsi_target * ) ; int (*scan_finished)(struct Scsi_Host * , unsigned long ) ; void (*scan_start)(struct Scsi_Host * ) ; int (*change_queue_depth)(struct scsi_device * , int , int ) ; int (*change_queue_type)(struct scsi_device * , int ) ; int (*bios_param)(struct scsi_device * , struct block_device * , sector_t , int * ) ; void (*unlock_native_capacity)(struct scsi_device * ) ; int (*proc_info)(struct Scsi_Host * , char * , char ** , off_t , int , int ) ; enum blk_eh_timer_return (*eh_timed_out)(struct scsi_cmnd * ) ; char const *proc_name ; struct proc_dir_entry *proc_dir ; int can_queue ; int this_id ; unsigned short sg_tablesize ; unsigned short max_sectors ; unsigned long dma_boundary ; short cmd_per_lun ; unsigned char present ; unsigned char supported_mode : 2 ; unsigned char unchecked_isa_dma : 1 ; unsigned char use_clustering : 1 ; unsigned char emulated : 1 ; unsigned char skip_settle_delay : 1 ; unsigned char ordered_tag : 1 ; unsigned int max_host_blocked ; struct device_attribute **shost_attrs ; struct device_attribute **sdev_attrs ; struct list_head legacy_hosts ; u64 vendor_id ; }; enum scsi_host_state { SHOST_CREATED = 1, SHOST_RUNNING = 2, SHOST_CANCEL = 3, SHOST_DEL = 4, SHOST_RECOVERY = 5, SHOST_CANCEL_RECOVERY = 6, SHOST_DEL_RECOVERY = 7 } ; struct Scsi_Host { struct list_head __devices ; struct list_head __targets ; struct scsi_host_cmd_pool *cmd_pool ; spinlock_t free_list_lock ; struct list_head free_list ; struct list_head starved_list ; spinlock_t default_lock ; spinlock_t *host_lock ; struct mutex scan_mutex ; struct list_head eh_cmd_q ; struct task_struct *ehandler ; struct completion *eh_action ; wait_queue_head_t host_wait ; struct scsi_host_template *hostt ; struct scsi_transport_template *transportt ; struct blk_queue_tag *bqt ; unsigned int host_busy ; unsigned int host_failed ; unsigned int host_eh_scheduled ; unsigned int host_no ; int resetting ; unsigned long last_reset ; unsigned int max_id ; unsigned int max_lun ; unsigned int max_channel ; unsigned int unique_id ; unsigned short max_cmd_len ; int this_id ; int can_queue ; short cmd_per_lun ; unsigned short sg_tablesize ; unsigned short max_sectors ; unsigned long dma_boundary ; unsigned long cmd_serial_number ; unsigned char active_mode : 2 ; unsigned char unchecked_isa_dma : 1 ; unsigned char use_clustering : 1 ; unsigned char use_blk_tcq : 1 ; unsigned char host_self_blocked : 1 ; unsigned char reverse_ordering : 1 ; unsigned char ordered_tag : 1 ; unsigned char tmf_in_progress : 1 ; unsigned char async_scan : 1 ; char work_q_name[20U] ; struct workqueue_struct *work_q ; unsigned int host_blocked ; unsigned int max_host_blocked ; unsigned int prot_capabilities ; unsigned char prot_guard_type ; struct request_queue *uspace_req_q ; unsigned long base ; unsigned long io_port ; unsigned char n_io_port ; unsigned char dma_channel ; unsigned int irq ; enum scsi_host_state shost_state ; struct device shost_gendev ; struct device shost_dev ; struct list_head sht_legacy_list ; void *shost_data ; struct device *dma_dev ; unsigned long hostdata[0U] ; }; typedef struct scsi_cmnd Scsi_Cmnd; struct __anonstruct_gdth_sg_str_146 { u32 sg_ptr ; u32 sg_len ; }; typedef struct __anonstruct_gdth_sg_str_146 gdth_sg_str; struct __anonstruct_gdth_sg64_str_147 { u64 sg_ptr ; u32 sg_len ; }; typedef struct __anonstruct_gdth_sg64_str_147 gdth_sg64_str; struct __anonstruct_cache_150 { u16 DeviceNo ; u32 BlockNo ; u32 BlockCnt ; u32 DestAddr ; u32 sg_canz ; gdth_sg_str sg_lst[32U] ; }; struct __anonstruct_cache64_151 { u16 DeviceNo ; u64 BlockNo ; u32 BlockCnt ; u64 DestAddr ; u32 sg_canz ; gdth_sg64_str sg_lst[32U] ; }; struct __anonstruct_ioctl_152 { u16 param_size ; u32 subfunc ; u32 channel ; u64 p_param ; }; struct __anonstruct_msg_155 { u32 msg_handle ; u64 msg_addr ; }; union __anonunion_su_154 { struct __anonstruct_msg_155 msg ; u8 data[12U] ; }; struct __anonstruct_screen_153 { u16 reserved ; union __anonunion_su_154 su ; }; struct __anonstruct_raw_156 { u16 reserved ; u32 direction ; u32 mdisc_time ; u32 mcon_time ; u32 sdata ; u32 sdlen ; u32 clen ; u8 cmd[12U] ; u8 target ; u8 lun ; u8 bus ; u8 priority ; u32 sense_len ; u32 sense_data ; u32 link_p ; u32 sg_ranz ; gdth_sg_str sg_lst[32U] ; }; struct __anonstruct_raw64_157 { u16 reserved ; u32 direction ; u32 mdisc_time ; u32 mcon_time ; u64 sdata ; u32 sdlen ; u32 clen ; u8 cmd[16U] ; u8 target ; u8 lun ; u8 bus ; u8 priority ; u32 sense_len ; u64 sense_data ; u32 sg_ranz ; gdth_sg64_str sg_lst[32U] ; }; union __anonunion_u_149 { struct __anonstruct_cache_150 cache ; struct __anonstruct_cache64_151 cache64 ; struct __anonstruct_ioctl_152 ioctl ; struct __anonstruct_screen_153 screen ; struct __anonstruct_raw_156 raw ; struct __anonstruct_raw64_157 raw64 ; }; struct __anonstruct_gdth_cmd_str_148 { u32 BoardNode ; u32 CommandIndex ; u16 OpCode ; union __anonunion_u_149 u ; u8 Service ; u8 reserved ; u16 Status ; u32 Info ; void *RequestBuffer ; }; typedef struct __anonstruct_gdth_cmd_str_148 gdth_cmd_str; struct __anonstruct_driver_160 { u16 ionode ; u16 service ; u32 index ; }; struct __anonstruct_async_161 { u16 ionode ; u16 service ; u16 status ; u32 info ; u8 scsi_coord[3U] ; }; struct __anonstruct_sync_162 { u16 ionode ; u16 service ; u16 status ; u32 info ; u16 hostdrive ; u8 scsi_coord[3U] ; u8 sense_key ; }; struct __anonstruct_test_163 { u32 l1 ; u32 l2 ; u32 l3 ; u32 l4 ; }; union __anonunion_eu_159 { char stream[16U] ; struct __anonstruct_driver_160 driver ; struct __anonstruct_async_161 async ; struct __anonstruct_sync_162 sync ; struct __anonstruct_test_163 test ; }; struct __anonstruct_gdth_evt_data_158 { u16 size ; union __anonunion_eu_159 eu ; u32 severity ; u8 event_string[256U] ; }; typedef struct __anonstruct_gdth_evt_data_158 gdth_evt_data; struct __anonstruct_gdth_evt_str_164 { u32 first_stamp ; u32 last_stamp ; u16 same_count ; u16 event_source ; u16 event_idx ; u8 application ; u8 reserved ; gdth_evt_data event_data ; }; typedef struct __anonstruct_gdth_evt_str_164 gdth_evt_str; struct __anonstruct_gdth_ioctl_general_165 { u16 ionode ; u16 timeout ; u32 info ; u16 status ; unsigned long data_len ; unsigned long sense_len ; gdth_cmd_str command ; }; typedef struct __anonstruct_gdth_ioctl_general_165 gdth_ioctl_general; struct __anonstruct_gdth_ioctl_lockdrv_166 { u16 ionode ; u8 lock ; u8 drive_cnt ; u16 drives[255U] ; }; typedef struct __anonstruct_gdth_ioctl_lockdrv_166 gdth_ioctl_lockdrv; struct __anonstruct_gdth_ioctl_lockchn_167 { u16 ionode ; u8 lock ; u8 channel ; }; typedef struct __anonstruct_gdth_ioctl_lockchn_167 gdth_ioctl_lockchn; struct __anonstruct_gdth_ioctl_osvers_168 { u8 version ; u8 subversion ; u16 revision ; }; typedef struct __anonstruct_gdth_ioctl_osvers_168 gdth_ioctl_osvers; struct __anonstruct_gdth_ioctl_ctrtype_169 { u16 ionode ; u8 type ; u16 info ; u16 oem_id ; u16 bios_ver ; u16 access ; u16 ext_type ; u16 device_id ; u16 sub_device_id ; }; typedef struct __anonstruct_gdth_ioctl_ctrtype_169 gdth_ioctl_ctrtype; struct __anonstruct_gdth_ioctl_event_170 { u16 ionode ; int erase ; int handle ; gdth_evt_str event ; }; typedef struct __anonstruct_gdth_ioctl_event_170 gdth_ioctl_event; struct __anonstruct_hdr_list_172 { u8 bus ; u8 target ; u8 lun ; u8 cluster_type ; }; struct __anonstruct_gdth_ioctl_rescan_171 { u16 ionode ; u8 flag ; u16 hdr_no ; struct __anonstruct_hdr_list_172 hdr_list[255U] ; }; typedef struct __anonstruct_gdth_ioctl_rescan_171 gdth_ioctl_rescan; struct __anonstruct_gdth_ioctl_reset_173 { u16 ionode ; u16 number ; u16 status ; }; typedef struct __anonstruct_gdth_ioctl_reset_173 gdth_ioctl_reset; struct __anonstruct_gdth_msg_str_174 { u32 msg_handle ; u32 msg_len ; u32 msg_alen ; u8 msg_answer ; u8 msg_ext ; u8 msg_reserved[2U] ; char msg_text[18U] ; }; typedef struct __anonstruct_gdth_msg_str_174 gdth_msg_str; struct __anonstruct_gdth_diskinfo_str_177 { u8 vendor[8U] ; u8 product[16U] ; u8 revision[4U] ; u32 sy_rate ; u32 sy_max_rate ; u32 no_ldrive ; u32 blkcnt ; u16 blksize ; u8 available ; u8 init ; u8 devtype ; u8 rm_medium ; u8 wp_medium ; u8 ansi ; u8 protocol ; u8 sync ; u8 disc ; u8 queueing ; u8 cached ; u8 target_id ; u8 lun ; u8 orphan ; u32 last_error ; u32 last_result ; u32 check_errors ; u8 percent ; u8 last_check ; u8 res[2U] ; u32 flags ; u8 multi_bus ; u8 mb_status ; u8 res2[2U] ; u8 mb_alt_status ; u8 mb_alt_bid ; u8 mb_alt_tid ; u8 res3 ; u8 fc_flag ; u8 res4 ; u16 fc_frame_size ; char wwn[8U] ; }; typedef struct __anonstruct_gdth_diskinfo_str_177 gdth_diskinfo_str; struct __anonstruct_gdth_getch_str_178 { u32 channel_no ; u32 drive_cnt ; u8 siop_id ; u8 siop_state ; }; typedef struct __anonstruct_gdth_getch_str_178 gdth_getch_str; struct __anonstruct_gdth_drlist_str_179 { u32 sc_no ; u32 sc_cnt ; u32 sc_list[127U] ; }; typedef struct __anonstruct_gdth_drlist_str_179 gdth_drlist_str; struct __anonstruct_gdth_defcnt_str_180 { u8 sddc_type ; u8 sddc_format ; u8 sddc_len ; u8 sddc_res ; u32 sddc_cnt ; }; typedef struct __anonstruct_gdth_defcnt_str_180 gdth_defcnt_str; struct __anonstruct_list_182 { u8 tid ; u8 lun ; u8 res[2U] ; u32 blk_size ; u32 rd_count ; u32 wr_count ; u32 rd_blk_count ; u32 wr_blk_count ; u32 retries ; u32 reassigns ; }; struct __anonstruct_gdth_dskstat_str_181 { u32 bid ; u32 first ; u32 entries ; u32 count ; u32 mon_time ; struct __anonstruct_list_182 list[1U] ; }; typedef struct __anonstruct_gdth_dskstat_str_181 gdth_dskstat_str; struct __anonstruct_gdth_iochan_header_183 { u32 version ; u8 list_entries ; u8 first_chan ; u8 last_chan ; u8 chan_count ; u32 list_offset ; }; typedef struct __anonstruct_gdth_iochan_header_183 gdth_iochan_header; struct __anonstruct_list_185 { u32 address ; u8 type ; u8 local_no ; u16 features ; }; struct __anonstruct_gdth_iochan_str_184 { gdth_iochan_header hdr ; struct __anonstruct_list_185 list[6U] ; }; typedef struct __anonstruct_gdth_iochan_str_184 gdth_iochan_str; struct __anonstruct_list_187 { u8 proc_id ; u8 proc_defect ; u8 reserved[2U] ; }; struct __anonstruct_gdth_raw_iochan_str_186 { gdth_iochan_header hdr ; struct __anonstruct_list_187 list[6U] ; }; typedef struct __anonstruct_gdth_raw_iochan_str_186 gdth_raw_iochan_str; struct __anonstruct_gdth_arraycomp_str_188 { u32 al_controller ; u8 al_cache_drive ; u8 al_status ; u8 al_res[2U] ; }; typedef struct __anonstruct_gdth_arraycomp_str_188 gdth_arraycomp_str; struct __anonstruct_gdth_arrayinf_str_189 { u8 ai_type ; u8 ai_cache_drive_cnt ; u8 ai_state ; u8 ai_master_cd ; u32 ai_master_controller ; u32 ai_size ; u32 ai_striping_size ; u32 ai_secsize ; u32 ai_err_info ; u8 ai_name[8U] ; u8 ai_controller_cnt ; u8 ai_removable ; u8 ai_write_protected ; u8 ai_devtype ; gdth_arraycomp_str ai_drives[35U] ; u8 ai_drive_entries ; u8 ai_protected ; u8 ai_verify_state ; u8 ai_ext_state ; u8 ai_expand_state ; u8 ai_reserved[3U] ; }; typedef struct __anonstruct_gdth_arrayinf_str_189 gdth_arrayinf_str; struct __anonstruct_gdth_alist_str_190 { u32 controller_no ; u8 cd_handle ; u8 is_arrayd ; u8 is_master ; u8 is_parity ; u8 is_hotfix ; u8 res[3U] ; }; typedef struct __anonstruct_gdth_alist_str_190 gdth_alist_str; struct __anonstruct_gdth_arcdl_str_191 { u32 entries_avail ; u32 entries_init ; u32 first_entry ; u32 list_offset ; gdth_alist_str list[1U] ; }; typedef struct __anonstruct_gdth_arcdl_str_191 gdth_arcdl_str; struct __anonstruct_gdth_cpar_str_192 { u32 version ; u16 state ; u16 strategy ; u16 write_back ; u16 block_size ; }; typedef struct __anonstruct_gdth_cpar_str_192 gdth_cpar_str; struct __anonstruct_gdth_cstat_str_193 { u32 csize ; u32 read_cnt ; u32 write_cnt ; u32 tr_hits ; u32 sec_hits ; u32 sec_miss ; }; typedef struct __anonstruct_gdth_cstat_str_193 gdth_cstat_str; struct __anonstruct_gdth_cinfo_str_194 { gdth_cpar_str cpar ; gdth_cstat_str cstat ; }; typedef struct __anonstruct_gdth_cinfo_str_194 gdth_cinfo_str; struct __anonstruct_gdth_cdrinfo_str_195 { u8 cd_name[8U] ; u32 cd_devtype ; u32 cd_ldcnt ; u32 cd_last_error ; u8 cd_initialized ; u8 cd_removable ; u8 cd_write_protected ; u8 cd_flags ; u32 ld_blkcnt ; u32 ld_blksize ; u32 ld_dcnt ; u32 ld_slave ; u32 ld_dtype ; u32 ld_last_error ; u8 ld_name[8U] ; u8 ld_error ; }; typedef struct __anonstruct_gdth_cdrinfo_str_195 gdth_cdrinfo_str; struct __anonstruct_gdth_oem_str_params_196 { u32 ctl_version ; u32 file_major_version ; u32 file_minor_version ; u32 buffer_size ; u32 cpy_count ; u32 ext_error ; u32 oem_id ; u32 board_id ; }; typedef struct __anonstruct_gdth_oem_str_params_196 gdth_oem_str_params; struct __anonstruct_gdth_oem_str_197 { u8 product_0_1_name[16U] ; u8 product_4_5_name[16U] ; u8 product_cluster_name[16U] ; u8 product_reserved[16U] ; u8 scsi_cluster_target_vendor_id[16U] ; u8 cluster_raid_fw_name[16U] ; u8 oem_brand_name[16U] ; u8 oem_raid_type[16U] ; u8 bios_type[13U] ; u8 bios_title[50U] ; u8 oem_company_name[37U] ; u32 pci_id_1 ; u32 pci_id_2 ; u8 validation_status[80U] ; u8 reserved_1[4U] ; u8 scsi_host_drive_inquiry_vendor_id[16U] ; u8 library_file_template[16U] ; u8 reserved_2[16U] ; u8 tool_name_1[32U] ; u8 tool_name_2[32U] ; u8 tool_name_3[32U] ; u8 oem_contact_1[84U] ; u8 oem_contact_2[84U] ; u8 oem_contact_3[84U] ; }; typedef struct __anonstruct_gdth_oem_str_197 gdth_oem_str; struct __anonstruct_gdth_oem_str_ioctl_198 { gdth_oem_str_params params ; gdth_oem_str text ; }; typedef struct __anonstruct_gdth_oem_str_ioctl_198 gdth_oem_str_ioctl; struct __anonstruct_gdth_bfeat_str_199 { u8 chaining ; u8 striping ; u8 mirroring ; u8 raid ; }; typedef struct __anonstruct_gdth_bfeat_str_199 gdth_bfeat_str; struct __anonstruct_gdth_binfo_str_200 { u32 ser_no ; u8 oem_id[2U] ; u16 ep_flags ; u32 proc_id ; u32 memsize ; u8 mem_banks ; u8 chan_type ; u8 chan_count ; u8 rdongle_pres ; u32 epr_fw_ver ; u32 upd_fw_ver ; u32 upd_revision ; char type_string[16U] ; char raid_string[16U] ; u8 update_pres ; u8 xor_pres ; u8 prom_type ; u8 prom_count ; u32 dup_pres ; u32 chan_pres ; u32 mem_pres ; u8 ft_bus_system ; u8 subtype_valid ; u8 board_subtype ; u8 ramparity_pres ; }; typedef struct __anonstruct_gdth_binfo_str_200 gdth_binfo_str; struct __anonstruct_gdth_hentry_str_201 { char name[8U] ; u32 size ; u8 host_drive ; u8 log_drive ; u8 reserved ; u8 rw_attribs ; u32 start_sec ; }; typedef struct __anonstruct_gdth_hentry_str_201 gdth_hentry_str; struct __anonstruct_gdth_hget_str_202 { u32 entries ; u32 offset ; u8 secs_p_head ; u8 heads_p_cyl ; u8 reserved ; u8 clust_drvtype ; u32 location ; gdth_hentry_str entry[255U] ; }; typedef struct __anonstruct_gdth_hget_str_202 gdth_hget_str; struct __anonstruct_comm_queue_204 { u16 offset ; u16 serv_id ; }; struct __anonstruct_gdt_dpr_if_203 { u8 S_Cmd_Indx ; u8 volatile S_Status ; u16 reserved1 ; u32 S_Info[4U] ; u8 volatile Sema0 ; u8 reserved2[3U] ; u8 Cmd_Index ; u8 reserved3[3U] ; u16 volatile Status ; u16 Service ; u32 Info[2U] ; struct __anonstruct_comm_queue_204 comm_queue[128U] ; u32 bios_reserved[2U] ; u8 gdt_dpr_cmd[1U] ; }; typedef struct __anonstruct_gdt_dpr_if_203 gdt_dpr_if; struct __anonstruct_gdt_pci_sram_205 { u32 magic ; u16 need_deinit ; u8 switch_support ; u8 padding[9U] ; u8 os_used[16U] ; u8 unused[28U] ; u8 fw_magic ; }; typedef struct __anonstruct_gdt_pci_sram_205 gdt_pci_sram; struct __anonstruct_dp_sram_209 { u8 bios_used[15328U] ; u32 magic ; u16 need_deinit ; u8 switch_support ; u8 padding[9U] ; u8 os_used[16U] ; }; union __anonunion_bu_208 { struct __anonstruct_dp_sram_209 dp_sram ; u8 bios_area[16384U] ; }; union __anonunion_u_210 { gdt_dpr_if ic ; u8 if_area[12288U] ; }; struct __anonstruct_io_211 { u8 memlock ; u8 event ; u8 irqen ; u8 irqdel ; u8 volatile Sema1 ; u8 rq ; }; struct __anonstruct_gdt2_dpram_str_207 { union __anonunion_bu_208 bu ; union __anonunion_u_210 u ; struct __anonstruct_io_211 io ; }; typedef struct __anonstruct_gdt2_dpram_str_207 gdt2_dpram_str; union __anonunion_u_213 { gdt_dpr_if ic ; u8 if_area[4019U] ; }; struct __anonstruct_io_214 { u8 unused0[1U] ; u8 volatile Sema1 ; u8 unused1[3U] ; u8 irqen ; u8 unused2[2U] ; u8 event ; u8 unused3[3U] ; u8 irqdel ; u8 unused4[3U] ; }; struct __anonstruct_gdt6_dpram_str_212 { union __anonunion_u_213 u ; gdt_pci_sram gdt6sr ; struct __anonstruct_io_214 io ; }; typedef struct __anonstruct_gdt6_dpram_str_212 gdt6_dpram_str; struct __anonstruct_gdt6c_plx_regs_215 { u8 cfg_reg ; u8 unused1[63U] ; u8 volatile sema0_reg ; u8 volatile sema1_reg ; u8 unused2[2U] ; u16 volatile status ; u16 service ; u32 info[2U] ; u8 unused3[16U] ; u8 ldoor_reg ; u8 unused4[3U] ; u8 volatile edoor_reg ; u8 unused5[3U] ; u8 control0 ; u8 control1 ; u8 unused6[22U] ; }; typedef struct __anonstruct_gdt6c_plx_regs_215 gdt6c_plx_regs; union __anonunion_u_217 { gdt_dpr_if ic ; u8 if_area[16323U] ; }; struct __anonstruct_gdt6c_dpram_str_216 { union __anonunion_u_217 u ; gdt_pci_sram gdt6sr ; }; typedef struct __anonstruct_gdt6c_dpram_str_216 gdt6c_dpram_str; struct __anonstruct_gdt6m_i960_regs_218 { u8 unused1[16U] ; u8 volatile sema0_reg ; u8 unused2 ; u8 volatile sema1_reg ; u8 unused3 ; u16 volatile status ; u16 service ; u32 info[2U] ; u8 ldoor_reg ; u8 unused4[11U] ; u8 volatile edoor_reg ; u8 unused5[7U] ; u8 edoor_en_reg ; u8 unused6[27U] ; u32 unused7[939U] ; u32 severity ; char evt_str[256U] ; }; typedef struct __anonstruct_gdt6m_i960_regs_218 gdt6m_i960_regs; union __anonunion_u_220 { gdt_dpr_if ic ; u8 if_area[12227U] ; }; struct __anonstruct_gdt6m_dpram_str_219 { gdt6m_i960_regs i960r ; union __anonunion_u_220 u ; gdt_pci_sram gdt6sr ; }; typedef struct __anonstruct_gdt6m_dpram_str_219 gdt6m_dpram_str; struct __anonstruct_gdth_pci_str_221 { struct pci_dev *pdev ; unsigned long dpmem ; unsigned long io ; }; typedef struct __anonstruct_gdth_pci_str_221 gdth_pci_str; struct gdth_cmndinfo { int index ; int internal_command ; gdth_cmd_str *internal_cmd_str ; dma_addr_t sense_paddr ; u8 priority ; int timeout_count ; int volatile wait_for_completion ; u16 status ; u32 info ; enum dma_data_direction dma_dir ; int phase ; int OpCode ; }; struct __anonstruct_hdr_223 { u8 present ; u8 is_logdrv ; u8 is_arraydrv ; u8 is_master ; u8 is_parity ; u8 is_hotfix ; u8 master_no ; u8 lock ; u8 heads ; u8 secs ; u16 devtype ; u64 size ; u8 ldr_no ; u8 rw_attribs ; u8 cluster_type ; u8 media_changed ; u32 start_sec ; }; struct __anonstruct_raw_224 { u8 lock ; u8 pdev_cnt ; u8 local_no ; u8 io_cnt[127U] ; u32 address ; u32 id_list[127U] ; }; struct __anonstruct_cmd_tab_225 { Scsi_Cmnd *cmnd ; u16 service ; }; struct __anonstruct_gdth_ha_str_222 { struct Scsi_Host *shost ; struct list_head list ; u16 hanum ; u16 oem_id ; u16 type ; u32 stype ; u16 fw_vers ; u16 cache_feat ; u16 raw_feat ; u16 screen_feat ; u16 bmic ; void *brd ; u32 brd_phys ; gdt6c_plx_regs *plx ; gdth_cmd_str cmdext ; gdth_cmd_str *pccb ; u32 ccb_phys ; char *pscratch ; u64 scratch_phys ; u8 scratch_busy ; u8 dma64_support ; gdth_msg_str *pmsg ; u64 msg_phys ; u8 scan_mode ; u8 irq ; u8 drq ; u16 status ; u16 service ; u32 info ; u32 info2 ; Scsi_Cmnd *req_first ; struct __anonstruct_hdr_223 hdr[255U] ; struct __anonstruct_raw_224 raw[6U] ; struct __anonstruct_cmd_tab_225 cmd_tab[120U] ; struct gdth_cmndinfo cmndinfo[120U] ; u8 bus_cnt ; u8 tid_cnt ; u8 bus_id[6U] ; u8 virt_bus ; u8 more_proc ; u16 cmd_cnt ; u16 cmd_len ; u16 cmd_offs_dpmem ; u16 ic_all_size ; gdth_cpar_str cpar ; gdth_bfeat_str bfeat ; gdth_binfo_str binfo ; gdth_evt_data dvr ; spinlock_t smp_lock ; struct pci_dev *pdev ; char oem_name[8U] ; struct scsi_device *sdev ; }; typedef struct __anonstruct_gdth_ha_str_222 gdth_ha_str; struct __anonstruct_gdth_inq_data_226 { u8 type_qual ; u8 modif_rmb ; u8 version ; u8 resp_aenc ; u8 add_length ; u8 reserved1 ; u8 reserved2 ; u8 misc ; u8 vendor[8U] ; u8 product[16U] ; u8 revision[4U] ; }; typedef struct __anonstruct_gdth_inq_data_226 gdth_inq_data; struct __anonstruct_gdth_rdcap_data_227 { u32 last_block_no ; u32 block_length ; }; typedef struct __anonstruct_gdth_rdcap_data_227 gdth_rdcap_data; struct __anonstruct_gdth_rdcap16_data_228 { u64 last_block_no ; u32 block_length ; }; typedef struct __anonstruct_gdth_rdcap16_data_228 gdth_rdcap16_data; struct __anonstruct_gdth_sense_data_229 { u8 errorcode ; u8 segno ; u8 key ; u32 info ; u8 add_length ; u32 cmd_info ; u8 adsc ; u8 adsq ; u8 fruc ; u8 key_spec[3U] ; }; typedef struct __anonstruct_gdth_sense_data_229 gdth_sense_data; struct __anonstruct_hd_231 { u8 data_length ; u8 med_type ; u8 dev_par ; u8 bd_length ; }; struct __anonstruct_bd_232 { u8 dens_code ; u8 block_count[3U] ; u8 reserved ; u8 block_length[3U] ; }; struct __anonstruct_gdth_modep_data_230 { struct __anonstruct_hd_231 hd ; struct __anonstruct_bd_232 bd ; }; typedef struct __anonstruct_gdth_modep_data_230 gdth_modep_data; struct __anonstruct_gdth_stackframe_233 { unsigned long b[10U] ; }; typedef struct __anonstruct_gdth_stackframe_233 gdth_stackframe; typedef int ldv_func_ret_type; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef struct Scsi_Host *ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; void __builtin_prefetch(void const * , ...) ; long ldv__builtin_expect(long exp , long c ) ; __inline static __u32 __arch_swab32(__u32 val ) { { __asm__ ("bswapl %0": "=r" (val): "0" (val)); return (val); } } __inline static __u64 __arch_swab64(__u64 val ) { { __asm__ ("bswapq %0": "=r" (val): "0" (val)); return (val); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u32 __fswab32(__u32 val ) { __u32 tmp ; { tmp = __arch_swab32(val); return (tmp); } } __inline static __u64 __fswab64(__u64 val ) { __u64 tmp ; { tmp = __arch_swab64(val); return (tmp); } } extern void warn_slowpath_fmt(char const * , int const , char const * , ...) ; extern void warn_slowpath_null(char const * , int const ) ; extern void might_fault(void) ; extern unsigned long simple_strtoul(char const * , char ** , unsigned int ) ; extern int sprintf(char * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; extern int printk(char const * , ...) ; extern unsigned long __phys_addr(unsigned long ) ; extern void __bad_percpu_size(void) ; extern void trace_hardirqs_on(void) ; extern void trace_hardirqs_off(void) ; extern struct pv_irq_ops pv_irq_ops ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern int memcmp(void const * , void const * , size_t ) ; extern char *strcpy(char * , char const * ) ; extern char *strcat(char * , char const * ) ; extern int strcmp(char const * , char const * ) ; extern char *strncpy(char * , char const * , __kernel_size_t ) ; extern size_t strlcpy(char * , char const * , size_t ) ; extern int strncmp(char const * , char const * , __kernel_size_t ) ; extern char *strchr(char const * , int ) ; __inline static unsigned long __raw_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/ldvuser/gratinskiy/commit-tester-runs/6-cpa-svcomp-newdeg/commit-tester-work/task-021--linux-stable--dir/inst/current/envs/linux-stable-5934df9-1/linux-stable-5934df9-1/arch/x86/include/asm/paravirt.h"), "i" (834), "i" (12UL)); ldv_4208: ; goto ldv_4208; } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (46UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static void raw_local_irq_restore(unsigned long f ) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.restore_fl.func == (unsigned long )((void *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/ldvuser/gratinskiy/commit-tester-runs/6-cpa-svcomp-newdeg/commit-tester-work/task-021--linux-stable--dir/inst/current/envs/linux-stable-5934df9-1/linux-stable-5934df9-1/arch/x86/include/asm/paravirt.h"), "i" (839), "i" (12UL)); ldv_4218: ; goto ldv_4218; } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (47UL), [paravirt_opptr] "i" (& pv_irq_ops.restore_fl.func), [paravirt_clobber] "i" (1), "D" (f): "memory", "cc"); return; } } __inline static void raw_local_irq_disable(void) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.irq_disable.func == (unsigned long )((void *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/ldvuser/gratinskiy/commit-tester-runs/6-cpa-svcomp-newdeg/commit-tester-work/task-021--linux-stable--dir/inst/current/envs/linux-stable-5934df9-1/linux-stable-5934df9-1/arch/x86/include/asm/paravirt.h"), "i" (844), "i" (12UL)); ldv_4227: ; goto ldv_4227; } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (48UL), [paravirt_opptr] "i" (& pv_irq_ops.irq_disable.func), [paravirt_clobber] "i" (1): "memory", "cc"); return; } } __inline static unsigned long __raw_local_irq_save(void) { unsigned long f ; { f = __raw_local_save_flags(); raw_local_irq_disable(); return (f); } } __inline static int raw_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static int get_order(unsigned long size ) { int order ; { size = (size - 1UL) >> 11; order = -1; ldv_4350: size = size >> 1; order = order + 1; if (size != 0UL) { goto ldv_4350; } else { } return (order); } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { __list_add(new, head->prev, head); return; } } extern void list_del(struct list_head * ) ; __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern unsigned long kernel_stack ; __inline static struct thread_info *current_thread_info(void) { struct thread_info *ti ; unsigned long pfo_ret__ ; { switch (8UL) { case 1UL: __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& kernel_stack)); goto ldv_5468; case 2UL: __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_5468; case 4UL: __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_5468; case 8UL: __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_5468; default: __bad_percpu_size(); } ldv_5468: ti = (struct thread_info *)(pfo_ret__ - 8152UL); return (ti); } } extern void lockdep_rcu_dereference(char const * , int const ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern unsigned long _raw_spin_lock_irqsave(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->ldv_5750.rlock); } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { _raw_spin_unlock_irqrestore(& lock->ldv_5750.rlock, flags); return; } } extern void do_gettimeofday(struct timeval * ) ; extern void __init_waitqueue_head(wait_queue_head_t * , struct lock_class_key * ) ; extern void __const_udelay(unsigned long ) ; extern unsigned long volatile jiffies ; extern int del_timer(struct timer_list * ) ; int ldv_del_timer_2(struct timer_list *ldv_func_arg1 ) ; extern void add_timer(struct timer_list * ) ; extern int del_timer_sync(struct timer_list * ) ; int ldv_del_timer_sync_1(struct timer_list *ldv_func_arg1 ) ; int ldv_del_timer_sync_25(struct timer_list *ldv_func_arg1 ) ; __inline static void init_completion(struct completion *x ) { struct lock_class_key __key ; { x->done = 0U; __init_waitqueue_head(& x->wait, & __key); return; } } extern void wait_for_completion(struct completion * ) ; extern void complete(struct completion * ) ; extern unsigned long __get_free_pages(gfp_t , unsigned int ) ; extern int param_set_int(char const * , struct kernel_param * ) ; extern int param_get_int(char * , struct kernel_param * ) ; extern int param_array_set(char const * , struct kernel_param * ) ; extern int param_array_get(char * , struct kernel_param * ) ; extern int debug_lockdep_rcu_enabled(void) ; __inline static int rcu_read_lock_sched_held(void) { { return (1); } } __inline static void rcu_read_lock_sched_notrace(void) { { return; } } extern struct module __this_module ; void ldv_check_len(long n ) ; extern void kfree(void const * ) ; extern struct tracepoint __tracepoint_kmalloc ; __inline static void trace_kmalloc(unsigned long call_site , void const *ptr , size_t bytes_req , size_t bytes_alloc , gfp_t gfp_flags ) { struct tracepoint_func *it_func_ptr ; void *it_func ; void *__data ; bool __warned ; int tmp ; int tmp___0 ; struct tracepoint_func *_________p1 ; long tmp___1 ; { tmp___1 = ldv__builtin_expect(__tracepoint_kmalloc.state != 0, 0L); if (tmp___1 != 0L) { rcu_read_lock_sched_notrace(); tmp = debug_lockdep_rcu_enabled(); if (tmp != 0 && ! __warned) { tmp___0 = rcu_read_lock_sched_held(); if (tmp___0 == 0) { __warned = 1; lockdep_rcu_dereference("include/trace/events/kmem.h", 87); } else { } } else { } _________p1 = *((struct tracepoint_func * volatile *)(& __tracepoint_kmalloc.funcs)); it_func_ptr = _________p1; if ((unsigned long )it_func_ptr != (unsigned long )((struct tracepoint_func *)0)) { ldv_11734: it_func = it_func_ptr->func; __data = it_func_ptr->data; (*((void (*)(void * , unsigned long , void const * , size_t , size_t , gfp_t ))it_func))(__data, call_site, ptr, bytes_req, bytes_alloc, gfp_flags); it_func_ptr = it_func_ptr + 1; if ((unsigned long )it_func_ptr->func != (unsigned long )((void *)0)) { goto ldv_11734; } else { } } else { } rcu_read_lock_sched_notrace(); } else { } return; } } __inline static void kmemleak_alloc(void const *ptr , size_t size , int min_count , gfp_t gfp ) { { return; } } extern struct kmem_cache kmalloc_caches[28U] ; __inline static int kmalloc_index(size_t size ) { { if (size == 0UL) { return (0); } else { } if (size <= 8UL) { return (3); } else { } if (size > 64UL && size <= 96UL) { return (1); } else { } if (size > 128UL && size <= 192UL) { return (2); } else { } if (size <= 8UL) { return (3); } else { } if (size <= 16UL) { return (4); } else { } if (size <= 32UL) { return (5); } else { } if (size <= 64UL) { return (6); } else { } if (size <= 128UL) { return (7); } else { } if (size <= 256UL) { return (8); } else { } if (size <= 512UL) { return (9); } else { } if (size <= 1024UL) { return (10); } else { } if (size <= 2048UL) { return (11); } else { } if (size <= 4096UL) { return (12); } else { } if (size <= 8192UL) { return (13); } else { } if (size <= 16384UL) { return (14); } else { } if (size <= 32768UL) { return (15); } else { } if (size <= 65536UL) { return (16); } else { } if (size <= 131072UL) { return (17); } else { } if (size <= 262144UL) { return (18); } else { } if (size <= 524288UL) { return (19); } else { } if (size <= 1048576UL) { return (20); } else { } if (size <= 2097152UL) { return (21); } else { } return (-1); } } __inline static struct kmem_cache *kmalloc_slab(size_t size ) { int index ; int tmp ; { tmp = kmalloc_index(size); index = tmp; if (index == 0) { return ((struct kmem_cache *)0); } else { } return ((struct kmem_cache *)(& kmalloc_caches) + (unsigned long )index); } } extern void *ldv_malloc(size_t); void *__kmalloc(size_t size, gfp_t t) { return ldv_malloc(size); } extern void *kmem_cache_alloc_notrace(struct kmem_cache * , gfp_t ) ; __inline static void *kmalloc_large(size_t size , gfp_t flags ) { unsigned int order ; int tmp ; void *ret ; unsigned long tmp___0 ; { tmp = get_order(size); order = (unsigned int )tmp; tmp___0 = __get_free_pages(flags | 16384U, order); ret = (void *)tmp___0; kmemleak_alloc((void const *)ret, size, 1, flags); trace_kmalloc((unsigned long )((void *)0), (void const *)ret, size, 4096UL << (int )order, flags); return (ret); } } void *ldv_malloc(size_t size ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *ret ; void *tmp ; struct kmem_cache *s ; struct kmem_cache *tmp___0 ; void *tmp___1 ; { if (0) { if (size > 8192UL) { tmp = kmalloc_large(size, flags); return (tmp); } else { } if ((flags & 1U) == 0U) { tmp___0 = kmalloc_slab(size); s = tmp___0; if ((unsigned long )s == (unsigned long )((struct kmem_cache *)0)) { return ((void *)16); } else { } ret = kmem_cache_alloc_notrace(s, flags); trace_kmalloc((unsigned long )((void *)0), (void const *)ret, size, (size_t )s->size, flags); return (ret); } else { } } else { } tmp___1 = __kmalloc(size, flags); return (tmp___1); } } void *ldv_zalloc(size_t size ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } extern void *malloc(size_t size ) ; extern void *calloc(size_t nmemb , size_t size ) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned int __VERIFIER_nondet_uint(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void abort(void); void assume_abort_if_not(int cond) { if(!cond) {abort();} } void *ldv_malloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = malloc(size); p = tmp; assume_abort_if_not((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } void *ldv_zalloc(size_t size ) { void *p ; void *tmp ; int tmp___0 ; { tmp___0 = __VERIFIER_nondet_int(); if (tmp___0 != 0) { return ((void *)0); } else { tmp = calloc(1UL, size); p = tmp; assume_abort_if_not((unsigned long )p != (unsigned long )((void *)0)); return (p); } } } int ldv_undef_int(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { tmp = __VERIFIER_nondet_ulong(); return (tmp); } } __inline static void ldv_error(void) { { ERROR: ; {reach_error();} } } __inline static void ldv_stop(void) { { LDV_STOP: ; goto LDV_STOP; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { ldv_error(); return; } } int ldv_state_variable_8 ; int ldv_state_variable_15 ; struct Scsi_Host *gdth_template_group1 ; int ldv_state_variable_0 ; int ldv_state_variable_5 ; int ldv_state_variable_13 ; int ldv_state_variable_12 ; int ldv_state_variable_14 ; struct kernel_param *__param_hdr_channel_group0 ; struct kernel_param *__param_reserve_mode_group0 ; int ldv_state_variable_17 ; struct pci_dev *gdth_pci_driver_group0 ; struct kernel_param *__param_rescan_group0 ; int ldv_state_variable_19 ; int ldv_state_variable_9 ; struct kernel_param *__param_disable_group0 ; int ref_cnt ; int ldv_irq_line_1_1 ; struct kernel_param *__param_arr_reserve_list_group0 ; int ldv_state_variable_1 ; int ldv_state_variable_7 ; int ldv_irq_line_1_2 ; int ldv_irq_1_3 = 0; void *ldv_irq_data_1_1 ; struct kernel_param *__param_reserve_list_group0 ; struct kernel_param *__param_force_dma32_group0 ; int ldv_state_variable_10 ; int ldv_irq_1_0 = 0; struct kernel_param *__param_max_ids_group0 ; void *ldv_irq_data_1_0 ; int ldv_state_variable_6 ; int ldv_state_variable_16 ; void *ldv_irq_data_1_3 ; int ldv_state_variable_2 ; struct kernel_param *__param_shared_access_group0 ; void *ldv_irq_data_1_2 ; int ldv_state_variable_11 ; struct kernel_param *__param_reverse_scan_group0 ; int ldv_irq_1_2 = 0; int LDV_IN_INTERRUPT = 1; int ldv_irq_1_1 = 0; struct inode *gdth_fops_group1 ; int ldv_state_variable_18 ; struct kernel_param *__param_irq_group0 ; struct kernel_param *__param_probe_eisa_isa_group0 ; int ldv_timer_state_2 = 0; int ldv_irq_line_1_3 ; struct scsi_cmnd *gdth_template_group0 ; struct scsi_device *gdth_template_group2 ; int ldv_state_variable_3 ; struct kernel_param *__param_arr_irq_group0 ; struct timer_list *ldv_timer_list_2 ; int ldv_irq_line_1_0 ; struct file *gdth_fops_group2 ; int ldv_state_variable_4 ; void ldv_initialize_kernel_param_8(void) ; void ldv_file_operations_6(void) ; void ldv_initialize_kernel_param_10(void) ; void ldv_initialize_scsi_host_template_4(void) ; void choose_timer_2(struct timer_list *timer ) ; int reg_timer_2(struct timer_list *timer ) ; void ldv_initialize_pci_driver_5(void) ; void activate_pending_timer_2(struct timer_list *timer , unsigned long data , int pending_flag ) ; void ldv_initialize_kernel_param_9(void) ; int reg_check_1(irqreturn_t (*handler)(int , void * ) ) ; void ldv_initialize_kernel_param_16(void) ; void ldv_initialize_kernel_param_7(void) ; void ldv_initialize_kernel_param_18(void) ; void ldv_initialize_kernel_param_17(void) ; void ldv_initialize_kernel_param_14(void) ; void choose_interrupt_1(void) ; void ldv_initialize_kparam_array_19(void) ; void ldv_initialize_kparam_array_15(void) ; void ldv_initialize_kernel_param_12(void) ; void ldv_initialize_kernel_param_11(void) ; void disable_suitable_timer_2(struct timer_list *timer ) ; void disable_suitable_irq_1(int line , void *data ) ; int ldv_irq_1(int state , int line , void *data ) ; void activate_suitable_irq_1(int line , void *data ) ; void ldv_initialize_kernel_param_13(void) ; extern void *dev_get_drvdata(struct device const * ) ; extern void dev_set_drvdata(struct device * , void * ) ; __inline static unsigned char readb(void const volatile *addr ) { unsigned char ret ; { __asm__ volatile ("movb %1,%0": "=q" (ret): "m" (*((unsigned char volatile *)addr)): "memory"); return (ret); } } __inline static unsigned short readw(void const volatile *addr ) { unsigned short ret ; { __asm__ volatile ("movw %1,%0": "=r" (ret): "m" (*((unsigned short volatile *)addr)): "memory"); return (ret); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writeb(unsigned char val , void volatile *addr ) { { __asm__ volatile ("movb %0,%1": : "q" (val), "m" (*((unsigned char volatile *)addr)): "memory"); return; } } __inline static void writew(unsigned short val , void volatile *addr ) { { __asm__ volatile ("movw %0,%1": : "r" (val), "m" (*((unsigned short volatile *)addr)): "memory"); return; } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void *ioremap_nocache(resource_size_t , unsigned long ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { tmp = ioremap_nocache(offset, size); return (tmp); } } extern void iounmap(void volatile * ) ; __inline static void memset_io(void volatile *addr , unsigned char val , size_t count ) { { memset((void *)addr, (int )val, count); return; } } __inline static void memcpy_toio(void volatile *dst , void const *src , size_t count ) { size_t __len ; void *__ret ; { __len = count; __ret = memcpy((void *)dst, src, __len); return; } } __inline static void outb(unsigned char value , int port ) { { __asm__ volatile ("outb %b0, %w1": : "a" (value), "Nd" (port)); return; } } __inline static unsigned char inb(int port ) { unsigned char value ; { __asm__ volatile ("inb %w1, %b0": "=a" (value): "Nd" (port)); return (value); } } __inline static unsigned short inw(int port ) { unsigned short value ; { __asm__ volatile ("inw %w1, %w0": "=a" (value): "Nd" (port)); return (value); } } __inline static void outl(unsigned int value , int port ) { { __asm__ volatile ("outl %0, %w1": : "a" (value), "Nd" (port)); return; } } __inline static unsigned int inl(int port ) { unsigned int value ; { __asm__ volatile ("inl %w1, %0": "=a" (value): "Nd" (port)); return (value); } } extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; extern int pci_bus_write_config_word(struct pci_bus * , unsigned int , int , u16 ) ; extern int pci_bus_write_config_dword(struct pci_bus * , unsigned int , int , u32 ) ; __inline static int pci_read_config_word(struct pci_dev *dev , int where , u16 *val ) { int tmp ; { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); return (tmp); } } __inline static int pci_write_config_word(struct pci_dev *dev , int where , u16 val ) { int tmp ; { tmp = pci_bus_write_config_word(dev->bus, dev->devfn, where, (int )val); return (tmp); } } __inline static int pci_write_config_dword(struct pci_dev *dev , int where , u32 val ) { int tmp ; { tmp = pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; extern void pci_unregister_driver(struct pci_driver * ) ; __inline static void *lowmem_page_address(struct page *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 56L) << 12) + 0xffff880000000000UL)); } } __inline static struct page *sg_page(struct scatterlist *sg ) { long tmp ; long tmp___0 ; { tmp = ldv__builtin_expect(sg->sg_magic != 2271560481UL, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (96), "i" (12UL)); ldv_17131: ; goto ldv_17131; } else { } tmp___0 = ldv__builtin_expect((long )((int )sg->page_link) & 1L, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/scatterlist.h"), "i" (97), "i" (12UL)); ldv_17132: ; goto ldv_17132; } else { } return ((struct page *)(sg->page_link & 0xfffffffffffffffcUL)); } } __inline static void *sg_virt(struct scatterlist *sg ) { struct page *tmp ; void *tmp___0 ; { tmp = sg_page(sg); tmp___0 = lowmem_page_address(tmp); return (tmp___0 + (unsigned long )sg->offset); } } extern struct scatterlist *sg_next(struct scatterlist * ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((dma_direction == 0 || dma_direction == 1) || dma_direction == 2); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_map_sg(struct device * , struct scatterlist * , int , int , int ) ; extern void debug_dma_unmap_sg(struct device * , struct scatterlist * , int , int ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (35), "i" (12UL)); ldv_17540: ; goto ldv_17540; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } else { } debug_dma_unmap_page(dev, addr, size, (int )dir, 1); return; } } __inline static int dma_map_sg_attrs(struct device *dev , struct scatterlist *sg , int nents , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int i ; int ents ; struct scatterlist *s ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { tmp = get_dma_ops(dev); ops = tmp; i = 0; s = sg; goto ldv_17553; ldv_17552: tmp___0 = sg_virt(s); kmemcheck_mark_initialized(tmp___0, s->length); i = i + 1; s = sg_next(s); ldv_17553: ; if (i < nents) { goto ldv_17552; } else { } tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); if (tmp___2 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (51), "i" (12UL)); ldv_17555: ; goto ldv_17555; } else { } ents = (*(ops->map_sg))(dev, sg, nents, dir, attrs); debug_dma_map_sg(dev, sg, nents, ents, (int )dir); return (ents); } } __inline static void dma_unmap_sg_attrs(struct device *dev , struct scatterlist *sg , int nents , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (64), "i" (12UL)); ldv_17564: ; goto ldv_17564; } else { } debug_dma_unmap_sg(dev, sg, nents, (int )dir); if ((unsigned long )ops->unmap_sg != (unsigned long )((void (*)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ))0)) { (*(ops->unmap_sg))(dev, sg, nents, dir, attrs); } else { } return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address(page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); if (tmp___2 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (78), "i" (12UL)); ldv_17574: ; goto ldv_17574; } else { } addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (90), "i" (12UL)); ldv_17582: ; goto ldv_17582; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } else { } debug_dma_unmap_page(dev, addr, size, (int )dir, 0); return; } } extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } tmp___0 = is_device_dma_capable(dev); if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc_coherent == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t ))0)) { return ((void *)0); } else { } tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc_coherent))(dev, size, dma_handle, tmp___1); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); return (memory); } } __inline static void dma_free_coherent(struct device *dev , size_t size , void *vaddr , dma_addr_t bus ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { tmp = get_dma_ops(dev); ops = tmp; _flags = __raw_local_save_flags(); tmp___0 = raw_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___1 != 0L) { warn_slowpath_null("/home/ldvuser/gratinskiy/commit-tester-runs/6-cpa-svcomp-newdeg/commit-tester-work/task-021--linux-stable--dir/inst/current/envs/linux-stable-5934df9-1/linux-stable-5934df9-1/arch/x86/include/asm/dma-mapping.h", 155); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); if ((unsigned long )ops->free_coherent != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t ))0)) { (*(ops->free_coherent))(dev, size, vaddr, bus); } else { } return; } } __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { tmp = dma_alloc_coherent((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U); return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { dma_free_coherent((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle); return; } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); return; } } __inline static dma_addr_t pci_map_page(struct pci_dev *hwdev , struct page *page , unsigned long offset , size_t size , int direction ) { dma_addr_t tmp ; { tmp = dma_map_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, page, offset, size, (enum dma_data_direction )direction); return (tmp); } } __inline static void pci_unmap_page(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) { { dma_unmap_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_address, size, (enum dma_data_direction )direction); return; } } __inline static int pci_map_sg(struct pci_dev *hwdev , struct scatterlist *sg , int nents , int direction ) { int tmp ; { tmp = dma_map_sg_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, sg, nents, (enum dma_data_direction )direction, (struct dma_attrs *)0); return (tmp); } } __inline static void pci_unmap_sg(struct pci_dev *hwdev , struct scatterlist *sg , int nents , int direction ) { { dma_unmap_sg_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, sg, nents, (enum dma_data_direction )direction, (struct dma_attrs *)0); return; } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { tmp = dma_set_mask(& dev->dev, mask); return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { dev_set_drvdata(& pdev->dev, data); return; } } extern unsigned char const _ctype[] ; extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; unsigned long ldv__copy_to_user_4(void *ldv_func_arg1 , void const *ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; unsigned long ldv__copy_from_user_3(void *ldv_func_arg1 , void const *ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; unsigned long tmp ; int __ret_warn_on ; long tmp___0 ; long tmp___1 ; long tmp___2 ; { tmp = __builtin_object_size((void const *)to, 0); sz = (int )tmp; might_fault(); tmp___1 = ldv__builtin_expect(sz == -1, 1L); if (tmp___1 != 0L) { n = ldv__copy_from_user_3(to, from, (unsigned int )n); } else { tmp___2 = ldv__builtin_expect((unsigned long )sz >= n, 1L); if (tmp___2 != 0L) { n = ldv__copy_from_user_3(to, from, (unsigned int )n); } else { __ret_warn_on = 1; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___0 != 0L) { warn_slowpath_fmt("/home/ldvuser/gratinskiy/commit-tester-runs/6-cpa-svcomp-newdeg/commit-tester-work/task-021--linux-stable--dir/inst/current/envs/linux-stable-5934df9-1/linux-stable-5934df9-1/arch/x86/include/asm/uaccess_64.h", 58, "Buffer overflow detected!\n"); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); } } return (n); } } __inline static unsigned long ldv_copy_from_user_8(void *to , void const *from , unsigned long n ) ; __inline static unsigned long ldv_copy_from_user_8(void *to , void const *from , unsigned long n ) ; __inline static unsigned long ldv_copy_from_user_8(void *to , void const *from , unsigned long n ) ; __inline static unsigned long ldv_copy_from_user_8(void *to , void const *from , unsigned long n ) ; __inline static unsigned long ldv_copy_from_user_8(void *to , void const *from , unsigned long n ) ; __inline static unsigned long ldv_copy_from_user_8(void *to , void const *from , unsigned long n ) ; __inline static unsigned long ldv_copy_from_user_8(void *to , void const *from , unsigned long n ) ; __inline static unsigned long ldv_copy_from_user_8(void *to , void const *from , unsigned long n ) ; __inline static unsigned long ldv_copy_from_user_8(void *to , void const *from , unsigned long n ) ; __inline static unsigned long ldv_copy_from_user_8(void *to , void const *from , unsigned long n ) ; __inline static int copy_to_user(void *dst , void const *src , unsigned int size ) { unsigned long tmp ; { might_fault(); tmp = ldv__copy_to_user_4(dst, src, size); return ((int )tmp); } } extern long __copy_user_nocache(void * , void const * , unsigned int , int ) ; long ldv___copy_user_nocache_5(void *ldv_func_arg1 , void const *ldv_func_arg2 , unsigned int ldv_func_arg3 , int ldv_func_arg4 ) ; long ldv___copy_user_nocache_6(void *ldv_func_arg1 , void const *ldv_func_arg2 , unsigned int ldv_func_arg3 , int ldv_func_arg4 ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq___0 , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { tmp = request_threaded_irq(irq___0, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); return (tmp); } } __inline static int ldv_request_irq_19(unsigned int irq___0 , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; void ldv_free_irq_20(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; void ldv_free_irq_22(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern int __register_chrdev(unsigned int , unsigned int , unsigned int , char const * , struct file_operations const * ) ; extern void __unregister_chrdev(unsigned int , unsigned int , unsigned int , char const * ) ; __inline static int register_chrdev(unsigned int major___0 , char const *name , struct file_operations const *fops ) { int tmp ; { tmp = __register_chrdev(major___0, 0U, 256U, name, fops); return (tmp); } } __inline static int ldv_register_chrdev_23(unsigned int major___0 , char const *name , struct file_operations const *fops ) ; __inline static void unregister_chrdev(unsigned int major___0 , char const *name ) { { __unregister_chrdev(major___0, 0U, 256U, name); return; } } __inline static void ldv_unregister_chrdev_24(unsigned int major___0 , char const *name ) ; extern void _lock_kernel(char const * , char const * , int ) ; extern void _unlock_kernel(char const * , char const * , int ) ; extern int register_reboot_notifier(struct notifier_block * ) ; extern int unregister_reboot_notifier(struct notifier_block * ) ; __inline static void pagefault_disable(void) { struct thread_info *tmp ; { tmp = current_thread_info(); tmp->preempt_count = tmp->preempt_count + 1; __asm__ volatile ("": : : "memory"); return; } } __inline static void pagefault_enable(void) { struct thread_info *tmp ; { __asm__ volatile ("": : : "memory"); tmp = current_thread_info(); tmp->preempt_count = tmp->preempt_count + -1; __asm__ volatile ("": : : "memory"); return; } } __inline static void flush_dcache_page(struct page *page ) { { return; } } __inline static void *kmap_atomic(struct page *page , enum km_type idx ) { void *tmp ; { pagefault_disable(); tmp = lowmem_page_address(page); return (tmp); } } __inline static unsigned int scsi_sg_count(struct scsi_cmnd *cmd ) { { return (cmd->sdb.table.nents); } } __inline static struct scatterlist *scsi_sglist(struct scsi_cmnd *cmd ) { { return (cmd->sdb.table.sgl); } } __inline static unsigned int scsi_bufflen(struct scsi_cmnd *cmd ) { { return (cmd->sdb.length); } } extern void scsi_adjust_queue_depth(struct scsi_device * , int , int ) ; __inline static void *shost_priv(struct Scsi_Host *shost ) { { return ((void *)(& shost->hostdata)); } } extern struct Scsi_Host *scsi_host_alloc(struct scsi_host_template * , int ) ; struct Scsi_Host *ldv_scsi_host_alloc_18(struct scsi_host_template *sht , int privsize ) ; extern int scsi_add_host_with_dma(struct Scsi_Host * , struct device * , struct device * ) ; int ldv_scsi_add_host_with_dma_7(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) ; extern void scsi_scan_host(struct Scsi_Host * ) ; extern void scsi_remove_host(struct Scsi_Host * ) ; void ldv_scsi_remove_host_21(struct Scsi_Host *shost ) ; extern void scsi_host_put(struct Scsi_Host * ) ; __inline static int scsi_add_host(struct Scsi_Host *host , struct device *dev ) { int tmp ; { tmp = ldv_scsi_add_host_with_dma_7(host, dev, dev); return (tmp); } } extern void scsi_free_host_dev(struct scsi_device * ) ; extern struct scsi_device *scsi_get_host_dev(struct Scsi_Host * ) ; __inline static struct gdth_cmndinfo *gdth_cmnd_priv(struct scsi_cmnd *cmd ) { { return ((struct gdth_cmndinfo *)cmd->host_scribble); } } int gdth_proc_info(struct Scsi_Host *host , char *buffer , char **start , off_t offset , int length , int inout ) ; static void gdth_delay(int milliseconds ) ; static void gdth_eval_mapping(u32 size , u32 *cyls , int *heads , int *secs ) ; static irqreturn_t gdth_interrupt(int irq___0 , void *dev_id ) ; static irqreturn_t __gdth_interrupt(gdth_ha_str *ha , int gdth_from_wait , int *pIndex ) ; static int gdth_sync_event(gdth_ha_str *ha , int service , u8 index , Scsi_Cmnd *scp ) ; static int gdth_async_event(gdth_ha_str *ha ) ; static void gdth_log_event(gdth_evt_data *dvr , char *buffer ) ; static void gdth_putq(gdth_ha_str *ha , Scsi_Cmnd *scp , u8 priority ) ; static void gdth_next(gdth_ha_str *ha ) ; static int gdth_fill_raw_cmd(gdth_ha_str *ha , Scsi_Cmnd *scp , u8 b ) ; static int gdth_special_cmd(gdth_ha_str *ha , Scsi_Cmnd *scp ) ; static gdth_evt_str *gdth_store_event(gdth_ha_str *ha , u16 source , u16 idx , gdth_evt_data *evt ) ; static int gdth_read_event(gdth_ha_str *ha , int handle , gdth_evt_str *estr ) ; static void gdth_readapp_event(gdth_ha_str *ha , u8 application , gdth_evt_str *estr ) ; static void gdth_clear_events(void) ; static void gdth_copy_internal_data(gdth_ha_str *ha , Scsi_Cmnd *scp , char *buffer , u16 count ) ; static int gdth_internal_cache_cmd(gdth_ha_str *ha , Scsi_Cmnd *scp ) ; static int gdth_fill_cache_cmd(gdth_ha_str *ha , Scsi_Cmnd *scp , u16 hdrive ) ; static void gdth_enable_int(gdth_ha_str *ha ) ; static int gdth_test_busy(gdth_ha_str *ha ) ; static int gdth_get_cmd_index(gdth_ha_str *ha ) ; static void gdth_release_event(gdth_ha_str *ha ) ; static int gdth_wait(gdth_ha_str *ha , int index , u32 time ) ; static int gdth_internal_cmd(gdth_ha_str *ha , u8 service , u16 opcode , u32 p1 , u64 p2 , u64 p3 ) ; static int gdth_search_drives(gdth_ha_str *ha ) ; static int gdth_analyse_hdrive(gdth_ha_str *ha , u16 hdrive ) ; static char const *gdth_ctr_name(gdth_ha_str *ha ) ; static int gdth_open(struct inode *inode , struct file *filep ) ; static int gdth_close(struct inode *inode , struct file *filep ) ; static long gdth_unlocked_ioctl(struct file *file , unsigned int cmd , unsigned long arg ) ; static void gdth_flush(gdth_ha_str *ha ) ; static int gdth_queuecommand(struct scsi_cmnd *scp , void (*done)(struct scsi_cmnd * ) ) ; static int __gdth_queuecommand(gdth_ha_str *ha , struct scsi_cmnd *scp , struct gdth_cmndinfo *cmndinfo ) ; static void gdth_scsi_done(struct scsi_cmnd *scp ) ; static u32 max_rq = 0U; static u32 max_index = 0U; static u32 max_sg = 0U; static u32 act_ints = 0U; static u32 act_ios = 0U; static u32 act_stats = 0U; static u32 act_rq = 0U; static struct timer_list gdth_timer ; static u8 gdth_polling ; static int gdth_ctr_count = 0; static struct list_head gdth_instances = {& gdth_instances, & gdth_instances}; static u8 gdth_write_through = 0U; static gdth_evt_str ebuffer[100U] ; static int elastidx ; static int eoldidx ; static int major ; static u8 gdth_direction_tab[256U] = { 1U, 1U, 1U, 1U, 2U, 1U, 1U, 2U, 1U, 1U, 2U, 2U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 2U, 1U, 2U, 1U, 1U, 2U, 1U, 1U, 1U, 1U, 2U, 1U, 1U, 1U, 1U, 1U, 1U, 2U, 1U, 1U, 1U, 1U, 1U, 2U, 1U, 1U, 1U, 2U, 2U, 2U, 2U, 2U, 1U, 1U, 1U, 1U, 1U, 2U, 2U, 2U, 2U, 1U, 2U, 1U, 2U, 2U, 2U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 2U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 2U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 2U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 2U, 1U, 1U, 1U, 2U, 2U, 2U, 2U, 2U, 1U, 1U, 1U, 2U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 2U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 2U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U, 1U}; static int irq[16U] = { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}; static int disable = 0; static int reserve_mode = 1; static int reserve_list[40U] = { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255}; static int reverse_scan = 0; static int hdr_channel = 0; static int max_ids = 127; static int rescan = 0; static int shared_access = 1; static int probe_eisa_isa = 0; static int force_dma32 = 0; static struct file_operations const gdth_fops = {0, 0, 0, 0, 0, 0, 0, 0, 0, & gdth_unlocked_ioctl, 0, 0, & gdth_open, 0, & gdth_close, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int gdth_execute(struct Scsi_Host *shost , gdth_cmd_str *gdtcmd , char *cmnd , int timeout , u32 *info ) ; static int gdth_set_info(char *buffer , int length , struct Scsi_Host *host , gdth_ha_str *ha ) ; static int gdth_get_info(char *buffer , char **start , off_t offset , int length , struct Scsi_Host *host , gdth_ha_str *ha ) ; static int gdth_set_asc_info(struct Scsi_Host *host , char *buffer , int length , gdth_ha_str *ha ) ; static char *gdth_ioctl_alloc(gdth_ha_str *ha , int size , int scratch , u64 *paddr ) ; static void gdth_ioctl_free(gdth_ha_str *ha , int size , char *buf , u64 paddr ) ; static void gdth_wait_completion(gdth_ha_str *ha , int busnum , int id ) ; int gdth_proc_info(struct Scsi_Host *host , char *buffer , char **start , off_t offset , int length , int inout ) { gdth_ha_str *ha ; void *tmp ; int tmp___0 ; int tmp___1 ; { tmp = shost_priv(host); ha = (gdth_ha_str *)tmp; if (inout != 0) { tmp___0 = gdth_set_info(buffer, length, host, ha); return (tmp___0); } else { tmp___1 = gdth_get_info(buffer, start, offset, length, host, ha); return (tmp___1); } } } static int gdth_set_info(char *buffer , int length , struct Scsi_Host *host , gdth_ha_str *ha ) { int ret_val ; int tmp ; { ret_val = -22; if (length > 3) { tmp = strncmp((char const *)buffer, "gdth", 4UL); if (tmp == 0) { buffer = buffer + 5UL; length = length + -5; ret_val = gdth_set_asc_info(host, buffer, length, ha); } else { } } else { } return (ret_val); } } static int gdth_set_asc_info(struct Scsi_Host *host , char *buffer , int length , gdth_ha_str *ha ) { int orig_length ; int drive ; int wb_mode ; int i ; int found ; gdth_cmd_str gdtcmd ; gdth_cpar_str *pcpar ; u64 paddr ; char cmnd[16U] ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; char *tmp___4 ; size_t __len ; void *__ret ; { memset((void *)(& cmnd), 255, 12UL); memset((void *)(& gdtcmd), 0, 476UL); orig_length = length + 5; drive = -1; wb_mode = 0; found = 0; if (length > 4) { tmp = strncmp((char const *)buffer, "flush", 5UL); if (tmp == 0) { buffer = buffer + 6UL; length = length + -6; if ((length != 0 && (int )((signed char )*buffer) > 47) && (int )((signed char )*buffer) <= 57) { drive = (int )*buffer + -48; buffer = buffer + 1; length = length - 1; if ((length != 0 && (int )((signed char )*buffer) > 47) && (int )((signed char )*buffer) <= 57) { drive = drive * 10 + ((int )*buffer + -48); buffer = buffer + 1; length = length - 1; } else { } printk("GDT: Flushing host drive %d .. ", drive); } else { printk("GDT: Flushing all host drives .. "); } i = 0; goto ldv_31292; ldv_31291: ; if ((unsigned int )ha->hdr[i].present != 0U) { if (drive != -1 && i != drive) { goto ldv_31290; } else { } found = 1; gdtcmd.Service = 9U; gdtcmd.OpCode = 4U; if (((int )ha->cache_feat & 512) != 0) { gdtcmd.u.cache64.DeviceNo = (u16 )i; gdtcmd.u.cache64.BlockNo = 1ULL; } else { gdtcmd.u.cache.DeviceNo = (u16 )i; gdtcmd.u.cache.BlockNo = 1U; } gdth_execute(host, & gdtcmd, (char *)(& cmnd), 30, (u32 *)0U); } else { } ldv_31290: i = i + 1; ldv_31292: ; if (i <= 254) { goto ldv_31291; } else { } if (found == 0) { printk("\nNo host drive found !\n"); } else { printk("Done.\n"); } return (orig_length); } else { } } else { } if (length > 6) { tmp___3 = strncmp((char const *)buffer, "wbp_off", 7UL); if (tmp___3 == 0) { buffer = buffer + 8UL; length = length + -8; printk("GDT: Disabling write back permanently .. "); wb_mode = 1; } else { goto _L___1; } } else _L___1: /* CIL Label */ if (length > 5) { tmp___2 = strncmp((char const *)buffer, "wbp_on", 6UL); if (tmp___2 == 0) { buffer = buffer + 7UL; length = length + -7; printk("GDT: Enabling write back permanently .. "); wb_mode = 2; } else { goto _L___0; } } else _L___0: /* CIL Label */ if (length > 5) { tmp___1 = strncmp((char const *)buffer, "wb_off", 6UL); if (tmp___1 == 0) { buffer = buffer + 7UL; length = length + -7; printk("GDT: Disabling write back commands .. "); if (((int )ha->cache_feat & 256) != 0) { gdth_write_through = 1U; printk("Done.\n"); } else { printk("Not supported !\n"); } return (orig_length); } else { goto _L; } } else _L: /* CIL Label */ if (length > 4) { tmp___0 = strncmp((char const *)buffer, "wb_on", 5UL); if (tmp___0 == 0) { buffer = buffer + 6UL; length = length + -6; printk("GDT: Enabling write back commands .. "); gdth_write_through = 0U; printk("Done.\n"); return (orig_length); } else { } } else { } if (wb_mode != 0) { tmp___4 = gdth_ioctl_alloc(ha, 12, 1, & paddr); if ((unsigned long )tmp___4 == (unsigned long )((char *)0)) { return (-16); } else { } pcpar = (gdth_cpar_str *)ha->pscratch; __len = 12UL; if (__len > 63UL) { __ret = memcpy((void *)pcpar, (void const *)(& ha->cpar), __len); } else { __ret = memcpy((void *)pcpar, (void const *)(& ha->cpar), __len); } gdtcmd.Service = 9U; gdtcmd.OpCode = 5U; gdtcmd.u.ioctl.p_param = paddr; gdtcmd.u.ioctl.param_size = 12U; gdtcmd.u.ioctl.subfunc = 5U; gdtcmd.u.ioctl.channel = 65535U; pcpar->write_back = wb_mode != 1; gdth_execute(host, & gdtcmd, (char *)(& cmnd), 30, (u32 *)0U); gdth_ioctl_free(ha, 4096, ha->pscratch, paddr); printk("Done.\n"); return (orig_length); } else { } printk("GDT: Unknown command: %s Length: %d\n", buffer, length); return (-22); } } static int gdth_get_info(char *buffer , char **start , off_t offset , int length , struct Scsi_Host *host , gdth_ha_str *ha ) { int size ; int len ; int hlen ; off_t begin ; off_t pos ; int id ; int i ; int j ; int k ; int sec ; int flag ; int no_mdrv ; int drv_no ; int is_mirr ; u32 cnt ; u64 paddr ; int rc ; gdth_cmd_str *gdtcmd ; gdth_evt_str *estr ; char hrec[161U] ; struct timeval tv ; char *buf ; gdth_dskstat_str *pds ; gdth_diskinfo_str *pdi ; gdth_arrayinf_str *pai ; gdth_defcnt_str *pdef ; gdth_cdrinfo_str *pcdi ; gdth_hget_str *phg ; char cmnd[16U] ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; { size = 0; len = 0; begin = 0L; pos = 0L; no_mdrv = 0; rc = -12; tmp = kmalloc(476UL, 208U); gdtcmd = (gdth_cmd_str *)tmp; tmp___0 = kmalloc(294UL, 208U); estr = (gdth_evt_str *)tmp___0; if ((unsigned long )gdtcmd == (unsigned long )((gdth_cmd_str *)0) || (unsigned long )estr == (unsigned long )((gdth_evt_str *)0)) { goto free_fail; } else { } memset((void *)(& cmnd), 255, 12UL); memset((void *)gdtcmd, 0, 476UL); size = sprintf(buffer + (unsigned long )len, "Driver Parameters:\n"); len = len + size; pos = (off_t )len + begin; if (reserve_list[0] == 255) { strcpy((char *)(& hrec), "--"); } else { hlen = sprintf((char *)(& hrec), "%d", reserve_list[0]); i = 1; goto ldv_31337; ldv_31336: ; if (reserve_list[i] == 255) { goto ldv_31335; } else { } tmp___1 = snprintf((char *)(& hrec) + (unsigned long )hlen, (size_t )(161 - hlen), ",%d", reserve_list[i]); hlen = tmp___1 + hlen; i = i + 1; ldv_31337: ; if (i <= 39) { goto ldv_31336; } else { } ldv_31335: ; } size = sprintf(buffer + (unsigned long )len, " reserve_mode: \t%d \treserve_list: \t%s\n", reserve_mode, (char *)(& hrec)); len = len + size; pos = (off_t )len + begin; size = sprintf(buffer + (unsigned long )len, " max_ids: \t%-3d \thdr_channel: \t%d\n", max_ids, hdr_channel); len = len + size; pos = (off_t )len + begin; size = sprintf(buffer + (unsigned long )len, "\nDisk Array Controller Information:\n"); len = len + size; pos = (off_t )len + begin; strcpy((char *)(& hrec), (char const *)(& ha->binfo.type_string)); size = sprintf(buffer + (unsigned long )len, " Number: \t%d \tName: \t%s\n", (int )ha->hanum, (char *)(& hrec)); len = len + size; pos = (off_t )len + begin; if ((unsigned int )ha->more_proc != 0U) { sprintf((char *)(& hrec), "%d.%02d.%02d-%c%03X", (int )((unsigned char )(ha->binfo.upd_fw_ver >> 24)), (int )((unsigned char )(ha->binfo.upd_fw_ver >> 16)), (int )((unsigned char )ha->binfo.upd_fw_ver), (unsigned int )ha->bfeat.raid != 0U ? 82 : 78, ha->binfo.upd_revision); } else { sprintf((char *)(& hrec), "%d.%02d", (int )((unsigned char )(ha->cpar.version >> 8)), (int )((unsigned char )ha->cpar.version)); } size = sprintf(buffer + (unsigned long )len, " Driver Ver.: \t%-10s\tFirmware Ver.: \t%s\n", (char *)"3.05", (char *)(& hrec)); len = len + size; pos = (off_t )len + begin; if ((unsigned int )ha->more_proc != 0U) { size = sprintf(buffer + (unsigned long )len, " Serial No.: \t0x%8X\tCache RAM size:\t%d KB\n", ha->binfo.ser_no, ha->binfo.memsize / 1024U); len = len + size; pos = (off_t )len + begin; } else { } if (pos < offset) { len = 0; begin = pos; } else { } if ((off_t )length + offset < pos) { goto stop_output; } else { } if ((unsigned int )ha->more_proc != 0U) { size = sprintf(buffer + (unsigned long )len, "\nPhysical Devices:"); len = len + size; pos = (off_t )len + begin; flag = 0; buf = gdth_ioctl_alloc(ha, 4096, 0, & paddr); if ((unsigned long )buf == (unsigned long )((char *)0)) { goto stop_output; } else { } i = 0; goto ldv_31346; ldv_31345: pds = (gdth_dskstat_str *)buf + 1024U; gdtcmd->Service = 9U; gdtcmd->OpCode = 5U; gdtcmd->u.ioctl.p_param = paddr + 1024ULL; gdtcmd->u.ioctl.param_size = 3072U; gdtcmd->u.ioctl.subfunc = 536870987U; gdtcmd->u.ioctl.channel = ha->raw[i].address | 65535U; pds->bid = (u32 )ha->raw[i].local_no; pds->first = 0U; pds->entries = (u32 )ha->raw[i].pdev_cnt; cnt = 95U; if (pds->entries > cnt) { pds->entries = cnt; } else { } tmp___2 = gdth_execute(host, gdtcmd, (char *)(& cmnd), 30, (u32 *)0U); if (tmp___2 != 1) { pds->count = 0U; } else { } j = 0; goto ldv_31343; ldv_31342: pdi = (gdth_diskinfo_str *)buf; gdtcmd->Service = 9U; gdtcmd->OpCode = 5U; gdtcmd->u.ioctl.p_param = paddr; gdtcmd->u.ioctl.param_size = 100U; gdtcmd->u.ioctl.subfunc = 536870912U; gdtcmd->u.ioctl.channel = ha->raw[i].address | ha->raw[i].id_list[j]; tmp___3 = gdth_execute(host, gdtcmd, (char *)(& cmnd), 30, (u32 *)0U); if (tmp___3 == 1) { strncpy((char *)(& hrec), (char const *)(& pdi->vendor), 8UL); strncpy((char *)(& hrec) + 8UL, (char const *)(& pdi->product), 16UL); strncpy((char *)(& hrec) + 24UL, (char const *)(& pdi->revision), 4UL); hrec[28] = 0; size = sprintf(buffer + (unsigned long )len, "\n Chn/ID/LUN: \t%c/%02d/%d \tName: \t%s\n", i + 65, (int )pdi->target_id, (int )pdi->lun, (char *)(& hrec)); len = len + size; pos = (off_t )len + begin; flag = 1; pdi->no_ldrive = pdi->no_ldrive & 65535U; if (pdi->no_ldrive == 65535U) { strcpy((char *)(& hrec), "--"); } else { sprintf((char *)(& hrec), "%d", pdi->no_ldrive); } size = sprintf(buffer + (unsigned long )len, " Capacity [MB]:\t%-6d \tTo Log. Drive: \t%s\n", pdi->blkcnt / (u32 )(1048576 / (int )pdi->blksize), (char *)(& hrec)); len = len + size; pos = (off_t )len + begin; } else { pdi->devtype = 255U; } if ((unsigned int )pdi->devtype == 0U) { k = 0; goto ldv_31341; ldv_31340: ; if ((int )pds->list[k].tid == (int )pdi->target_id && (int )pds->list[k].lun == (int )pdi->lun) { size = sprintf(buffer + (unsigned long )len, " Retries: \t%-6d \tReassigns: \t%d\n", pds->list[k].retries, pds->list[k].reassigns); len = len + size; pos = (off_t )len + begin; goto ldv_31339; } else { } k = k + 1; ldv_31341: ; if ((u32 )k < pds->count) { goto ldv_31340; } else { } ldv_31339: pdef = (gdth_defcnt_str *)buf; gdtcmd->Service = 9U; gdtcmd->OpCode = 5U; gdtcmd->u.ioctl.p_param = paddr; gdtcmd->u.ioctl.param_size = 8U; gdtcmd->u.ioctl.subfunc = 536870933U; gdtcmd->u.ioctl.channel = ha->raw[i].address | ha->raw[i].id_list[j]; pdef->sddc_type = 8U; tmp___4 = gdth_execute(host, gdtcmd, (char *)(& cmnd), 30, (u32 *)0U); if (tmp___4 == 1) { size = sprintf(buffer + (unsigned long )len, " Grown Defects:\t%d\n", pdef->sddc_cnt); len = len + size; pos = (off_t )len + begin; } else { } } else { } if (pos < offset) { len = 0; begin = pos; } else { } if ((off_t )length + offset < pos) { goto stop_output; } else { } j = j + 1; ldv_31343: ; if ((int )ha->raw[i].pdev_cnt > j) { goto ldv_31342; } else { } i = i + 1; ldv_31346: ; if ((int )ha->bus_cnt > i) { goto ldv_31345; } else { } gdth_ioctl_free(ha, 4096, buf, paddr); if (flag == 0) { size = sprintf(buffer + (unsigned long )len, "\n --\n"); len = len + size; pos = (off_t )len + begin; } else { } size = sprintf(buffer + (unsigned long )len, "\nLogical Drives:"); len = len + size; pos = (off_t )len + begin; flag = 0; buf = gdth_ioctl_alloc(ha, 4096, 0, & paddr); if ((unsigned long )buf == (unsigned long )((char *)0)) { goto stop_output; } else { } i = 0; goto ldv_31352; ldv_31351: ; if ((unsigned int )ha->hdr[i].is_logdrv == 0U) { goto ldv_31348; } else { } drv_no = i; k = 0; j = k; is_mirr = 0; ldv_31350: pcdi = (gdth_cdrinfo_str *)buf; gdtcmd->Service = 9U; gdtcmd->OpCode = 5U; gdtcmd->u.ioctl.p_param = paddr; gdtcmd->u.ioctl.param_size = 57U; gdtcmd->u.ioctl.subfunc = 7U; gdtcmd->u.ioctl.channel = (u32 )drv_no; tmp___5 = gdth_execute(host, gdtcmd, (char *)(& cmnd), 30, (u32 *)0U); if (tmp___5 != 1) { goto ldv_31349; } else { } pcdi->ld_dtype = pcdi->ld_dtype >> 16; j = j + 1; if (pcdi->ld_dtype > 2U) { strcpy((char *)(& hrec), "missing"); } else if ((int )pcdi->ld_error & 1) { strcpy((char *)(& hrec), "fault"); } else if (((int )pcdi->ld_error & 2) != 0) { strcpy((char *)(& hrec), "invalid"); k = k + 1; j = j - 1; } else { strcpy((char *)(& hrec), "ok"); } if (drv_no == i) { size = sprintf(buffer + (unsigned long )len, "\n Number: \t%-2d \tStatus: \t%s\n", drv_no, (char *)(& hrec)); len = len + size; pos = (off_t )len + begin; flag = 1; no_mdrv = (int )pcdi->cd_ldcnt; if (no_mdrv > 1 || pcdi->ld_slave != 4294967295U) { is_mirr = 1; strcpy((char *)(& hrec), "RAID-1"); } else if (pcdi->ld_dtype == 0U) { strcpy((char *)(& hrec), "Disk"); } else if (pcdi->ld_dtype == 1U) { strcpy((char *)(& hrec), "RAID-0"); } else if (pcdi->ld_dtype == 2U) { strcpy((char *)(& hrec), "Chain"); } else { strcpy((char *)(& hrec), "???"); } size = sprintf(buffer + (unsigned long )len, " Capacity [MB]:\t%-6d \tType: \t%s\n", pcdi->ld_blkcnt / (1048576U / pcdi->ld_blksize), (char *)(& hrec)); len = len + size; pos = (off_t )len + begin; } else { size = sprintf(buffer + (unsigned long )len, " Slave Number: \t%-2d \tStatus: \t%s\n", drv_no & 32767, (char *)(& hrec)); len = len + size; pos = (off_t )len + begin; } drv_no = (int )pcdi->ld_slave; if (pos < offset) { len = 0; begin = pos; } else { } if ((off_t )length + offset < pos) { goto stop_output; } else { } if (drv_no != -1) { goto ldv_31350; } else { } ldv_31349: ; if (is_mirr != 0) { size = sprintf(buffer + (unsigned long )len, " Missing Drv.: \t%-2d \tInvalid Drv.: \t%d\n", (no_mdrv - j) - k, k); len = len + size; pos = (off_t )len + begin; } else { } if ((unsigned int )ha->hdr[i].is_arraydrv == 0U) { strcpy((char *)(& hrec), "--"); } else { sprintf((char *)(& hrec), "%d", (int )ha->hdr[i].master_no); } size = sprintf(buffer + (unsigned long )len, " To Array Drv.:\t%s\n", (char *)(& hrec)); len = len + size; pos = (off_t )len + begin; if (pos < offset) { len = 0; begin = pos; } else { } if ((off_t )length + offset < pos) { goto stop_output; } else { } ldv_31348: i = i + 1; ldv_31352: ; if (i <= 254) { goto ldv_31351; } else { } gdth_ioctl_free(ha, 4096, buf, paddr); if (flag == 0) { size = sprintf(buffer + (unsigned long )len, "\n --\n"); len = len + size; pos = (off_t )len + begin; } else { } size = sprintf(buffer + (unsigned long )len, "\nArray Drives:"); len = len + size; pos = (off_t )len + begin; flag = 0; buf = gdth_ioctl_alloc(ha, 4096, 0, & paddr); if ((unsigned long )buf == (unsigned long )((char *)0)) { goto stop_output; } else { } i = 0; goto ldv_31356; ldv_31355: ; if ((unsigned int )ha->hdr[i].is_arraydrv == 0U || (unsigned int )ha->hdr[i].is_master == 0U) { goto ldv_31354; } else { } pai = (gdth_arrayinf_str *)buf; gdtcmd->Service = 9U; gdtcmd->OpCode = 5U; gdtcmd->u.ioctl.p_param = paddr; gdtcmd->u.ioctl.param_size = 324U; gdtcmd->u.ioctl.subfunc = 268435474U; gdtcmd->u.ioctl.channel = (u32 )i; tmp___6 = gdth_execute(host, gdtcmd, (char *)(& cmnd), 30, (u32 *)0U); if (tmp___6 == 1) { if ((unsigned int )pai->ai_state == 0U) { strcpy((char *)(& hrec), "idle"); } else if ((unsigned int )pai->ai_state == 2U) { strcpy((char *)(& hrec), "build"); } else if ((unsigned int )pai->ai_state == 4U) { strcpy((char *)(& hrec), "ready"); } else if ((unsigned int )pai->ai_state == 6U) { strcpy((char *)(& hrec), "fail"); } else if ((unsigned int )pai->ai_state == 8U || (unsigned int )pai->ai_state == 10U) { strcpy((char *)(& hrec), "rebuild"); } else { strcpy((char *)(& hrec), "error"); } if (((int )pai->ai_ext_state & 16) != 0) { strcat((char *)(& hrec), "/expand"); } else if ((int )pai->ai_ext_state & 1) { strcat((char *)(& hrec), "/patch"); } else { } size = sprintf(buffer + (unsigned long )len, "\n Number: \t%-2d \tStatus: \t%s\n", i, (char *)(& hrec)); len = len + size; pos = (off_t )len + begin; flag = 1; if ((unsigned int )pai->ai_type == 0U) { strcpy((char *)(& hrec), "RAID-0"); } else if ((unsigned int )pai->ai_type == 4U) { strcpy((char *)(& hrec), "RAID-4"); } else if ((unsigned int )pai->ai_type == 5U) { strcpy((char *)(& hrec), "RAID-5"); } else { strcpy((char *)(& hrec), "RAID-10"); } size = sprintf(buffer + (unsigned long )len, " Capacity [MB]:\t%-6d \tType: \t%s\n", pai->ai_size / (1048576U / pai->ai_secsize), (char *)(& hrec)); len = len + size; pos = (off_t )len + begin; if (pos < offset) { len = 0; begin = pos; } else { } if ((off_t )length + offset < pos) { goto stop_output; } else { } } else { } ldv_31354: i = i + 1; ldv_31356: ; if (i <= 254) { goto ldv_31355; } else { } gdth_ioctl_free(ha, 4096, buf, paddr); if (flag == 0) { size = sprintf(buffer + (unsigned long )len, "\n --\n"); len = len + size; pos = (off_t )len + begin; } else { } size = sprintf(buffer + (unsigned long )len, "\nHost Drives:"); len = len + size; pos = (off_t )len + begin; flag = 0; buf = gdth_ioctl_alloc(ha, 5116, 0, & paddr); if ((unsigned long )buf == (unsigned long )((char *)0)) { goto stop_output; } else { } i = 0; goto ldv_31364; ldv_31363: ; if ((unsigned int )ha->hdr[i].is_logdrv == 0U || ((unsigned int )ha->hdr[i].is_arraydrv != 0U && (unsigned int )ha->hdr[i].is_master == 0U)) { goto ldv_31358; } else { } phg = (gdth_hget_str *)buf; gdtcmd->Service = 9U; gdtcmd->OpCode = 5U; gdtcmd->u.ioctl.p_param = paddr; gdtcmd->u.ioctl.param_size = 5116U; gdtcmd->u.ioctl.subfunc = 268500993U; gdtcmd->u.ioctl.channel = (u32 )i; phg->entries = 255U; phg->offset = 16U; tmp___7 = gdth_execute(host, gdtcmd, (char *)(& cmnd), 30, (u32 *)0U); if (tmp___7 == 1) { ha->hdr[i].ldr_no = (u8 )i; ha->hdr[i].rw_attribs = 0U; ha->hdr[i].start_sec = 0U; } else { j = 0; goto ldv_31361; ldv_31360: k = (int )phg->entry[j].host_drive; if (k > 254) { goto ldv_31359; } else { } ha->hdr[k].ldr_no = phg->entry[j].log_drive; ha->hdr[k].rw_attribs = phg->entry[j].rw_attribs; ha->hdr[k].start_sec = phg->entry[j].start_sec; ldv_31359: j = j + 1; ldv_31361: ; if ((u32 )j < phg->entries) { goto ldv_31360; } else { } } ldv_31358: i = i + 1; ldv_31364: ; if (i <= 254) { goto ldv_31363; } else { } gdth_ioctl_free(ha, 5116, buf, paddr); i = 0; goto ldv_31368; ldv_31367: ; if ((unsigned int )ha->hdr[i].present == 0U) { goto ldv_31366; } else { } size = sprintf(buffer + (unsigned long )len, "\n Number: \t%-2d \tArr/Log. Drive:\t%d\n", i, (int )ha->hdr[i].ldr_no); len = len + size; pos = (off_t )len + begin; flag = 1; size = sprintf(buffer + (unsigned long )len, " Capacity [MB]:\t%-6d \tStart Sector: \t%d\n", (unsigned int )(ha->hdr[i].size / 2048ULL), ha->hdr[i].start_sec); len = len + size; pos = (off_t )len + begin; if (pos < offset) { len = 0; begin = pos; } else { } if ((off_t )length + offset < pos) { goto stop_output; } else { } ldv_31366: i = i + 1; ldv_31368: ; if (i <= 254) { goto ldv_31367; } else { } if (flag == 0) { size = sprintf(buffer + (unsigned long )len, "\n --\n"); len = len + size; pos = (off_t )len + begin; } else { } } else { } size = sprintf(buffer + (unsigned long )len, "\nController Events:\n"); len = len + size; pos = (off_t )len + begin; id = -1; ldv_31371: id = gdth_read_event(ha, id, estr); if ((unsigned int )estr->event_source == 0U) { goto ldv_31370; } else { } if ((int )estr->event_data.eu.driver.ionode == (int )ha->hanum && (unsigned int )estr->event_source == 1U) { gdth_log_event(& estr->event_data, (char *)(& hrec)); do_gettimeofday(& tv); sec = (int )((unsigned int )tv.tv_sec - estr->first_stamp); if (sec < 0) { sec = 0; } else { } size = sprintf(buffer + (unsigned long )len, " date- %02d:%02d:%02d\t%s\n", sec / 3600, (sec % 3600) / 60, sec % 60, (char *)(& hrec)); len = len + size; pos = (off_t )len + begin; if (pos < offset) { len = 0; begin = pos; } else { } if ((off_t )length + offset < pos) { goto stop_output; } else { } } else { } if (id == -1) { goto ldv_31370; } else { } goto ldv_31371; ldv_31370: ; stop_output: *start = buffer + (unsigned long )(offset - begin); len = (int )(((unsigned int )begin - (unsigned int )offset) + (unsigned int )len); if (len > length) { len = length; } else { } rc = len; free_fail: kfree((void const *)gdtcmd); kfree((void const *)estr); return (rc); } } static char *gdth_ioctl_alloc(gdth_ha_str *ha , int size , int scratch , u64 *paddr ) { unsigned long flags ; char *ret_val ; raw_spinlock_t *tmp ; dma_addr_t dma_addr ; void *tmp___0 ; { if (size == 0) { return ((char *)0); } else { } tmp = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp); if ((unsigned int )ha->scratch_busy == 0U && (unsigned int )size <= 4096U) { ha->scratch_busy = 1U; ret_val = ha->pscratch; *paddr = ha->scratch_phys; } else if (scratch != 0) { ret_val = (char *)0; } else { tmp___0 = pci_alloc_consistent(ha->pdev, (size_t )size, & dma_addr); ret_val = (char *)tmp___0; *paddr = dma_addr; } spin_unlock_irqrestore(& ha->smp_lock, flags); return (ret_val); } } static void gdth_ioctl_free(gdth_ha_str *ha , int size , char *buf , u64 paddr ) { unsigned long flags ; raw_spinlock_t *tmp ; { if ((unsigned long )ha->pscratch == (unsigned long )buf) { tmp = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp); ha->scratch_busy = 0U; spin_unlock_irqrestore(& ha->smp_lock, flags); } else { pci_free_consistent(ha->pdev, (size_t )size, (void *)buf, paddr); } return; } } static void gdth_wait_completion(gdth_ha_str *ha , int busnum , int id ) { unsigned long flags ; int i ; Scsi_Cmnd *scp ; struct gdth_cmndinfo *cmndinfo ; u8 b ; u8 t ; raw_spinlock_t *tmp ; raw_spinlock_t *tmp___0 ; { tmp = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp); i = 0; goto ldv_31415; ldv_31414: scp = ha->cmd_tab[i].cmnd; cmndinfo = gdth_cmnd_priv(scp); b = (u8 )(scp->device)->channel; t = (u8 )(scp->device)->id; if (((((unsigned long )scp != (unsigned long )((Scsi_Cmnd *)-1) && (unsigned long )scp != (unsigned long )((Scsi_Cmnd *)-2)) && (unsigned long )scp != (unsigned long )((Scsi_Cmnd *)-3)) && (int )((unsigned char )id) == (int )t) && (int )((unsigned char )busnum) == (int )b) { cmndinfo->wait_for_completion = 0; spin_unlock_irqrestore(& ha->smp_lock, flags); goto ldv_31409; ldv_31408: __asm__ volatile ("": : : "memory"); ldv_31409: ; if ((int )cmndinfo->wait_for_completion == 0) { goto ldv_31408; } else { } tmp___0 = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp___0); } else { } i = i + 1; ldv_31415: ; if (i <= 119) { goto ldv_31414; } else { } spin_unlock_irqrestore(& ha->smp_lock, flags); return; } } static gdth_ha_str *gdth_find_ha(int hanum ) { gdth_ha_str *ha ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { __mptr = (struct list_head const *)gdth_instances.next; ha = (gdth_ha_str *)__mptr + 0xfffffffffffffff8UL; goto ldv_31426; ldv_31425: ; if ((int )ha->hanum == hanum) { return (ha); } else { } __mptr___0 = (struct list_head const *)ha->list.next; ha = (gdth_ha_str *)__mptr___0 + 0xfffffffffffffff8UL; ldv_31426: __builtin_prefetch((void const *)ha->list.next); if ((unsigned long )(& ha->list) != (unsigned long )(& gdth_instances)) { goto ldv_31425; } else { } return ((gdth_ha_str *)0); } } static struct gdth_cmndinfo *gdth_get_cmndinfo(gdth_ha_str *ha ) { struct gdth_cmndinfo *priv ; unsigned long flags ; int i ; raw_spinlock_t *tmp ; { priv = (struct gdth_cmndinfo *)0; tmp = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp); i = 0; goto ldv_31439; ldv_31438: ; if (ha->cmndinfo[i].index == 0) { priv = (struct gdth_cmndinfo *)(& ha->cmndinfo) + (unsigned long )i; memset((void *)priv, 0, 56UL); priv->index = i + 1; goto ldv_31437; } else { } i = i + 1; ldv_31439: ; if (i <= 119) { goto ldv_31438; } else { } ldv_31437: spin_unlock_irqrestore(& ha->smp_lock, flags); return (priv); } } static void gdth_put_cmndinfo(struct gdth_cmndinfo *priv ) { long tmp ; { tmp = ldv__builtin_expect((unsigned long )priv == (unsigned long )((struct gdth_cmndinfo *)0), 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/ldvuser/gratinskiy/commit-tester-runs/6-cpa-svcomp-newdeg/commit-tester-work/task-021--linux-stable--dir/work/current--X--drivers/scsi/gdth.ko--X--defaultlinux-stable-5934df9-1--X--111_1a--X--cpachecker/linux-stable-5934df9-1/csd_deg_dscv/11/dscv_tempdir/dscv/ri/111_1a/drivers/scsi/gdth.o.c.prepared"), "i" (510), "i" (12UL)); ldv_31443: ; goto ldv_31443; } else { } priv->index = 0; return; } } static void gdth_delay(int milliseconds ) { unsigned long __ms ; unsigned long tmp ; { if (milliseconds == 0) { __const_udelay(4295UL); } else { __ms = (unsigned long )milliseconds; goto ldv_31449; ldv_31448: __const_udelay(4295000UL); ldv_31449: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_31448; } else { } } return; } } static void gdth_scsi_done(struct scsi_cmnd *scp ) { struct gdth_cmndinfo *cmndinfo ; struct gdth_cmndinfo *tmp ; int internal_command ; { tmp = gdth_cmnd_priv(scp); cmndinfo = tmp; internal_command = cmndinfo->internal_command; gdth_put_cmndinfo(cmndinfo); scp->host_scribble = (unsigned char *)0U; if (internal_command != 0) { complete((struct completion *)scp->request); } else { (*(scp->scsi_done))(scp); } return; } } int __gdth_execute(struct scsi_device *sdev , gdth_cmd_str *gdtcmd , char *cmnd , int timeout , u32 *info ) { gdth_ha_str *ha ; void *tmp ; Scsi_Cmnd *scp ; struct gdth_cmndinfo cmndinfo ; struct completion wait ; int rval ; void *tmp___0 ; void *tmp___1 ; { tmp = shost_priv(sdev->host); ha = (gdth_ha_str *)tmp; init_completion(& wait); wait = wait; tmp___0 = kzalloc(232UL, 208U); scp = (Scsi_Cmnd *)tmp___0; if ((unsigned long )scp == (unsigned long )((Scsi_Cmnd *)0)) { return (-12); } else { } tmp___1 = kzalloc(96UL, 208U); scp->sense_buffer = (unsigned char *)tmp___1; if ((unsigned long )scp->sense_buffer == (unsigned long )((unsigned char *)0U)) { kfree((void const *)scp); return (-12); } else { } scp->device = sdev; memset((void *)(& cmndinfo), 0, 56UL); scp->request = (struct request *)(& wait); scp->cmd_len = 12U; scp->cmnd = (unsigned char *)cmnd; cmndinfo.priority = 16U; cmndinfo.internal_cmd_str = gdtcmd; cmndinfo.internal_command = 1; __gdth_queuecommand(ha, scp, & cmndinfo); wait_for_completion(& wait); rval = (int )cmndinfo.status; if ((unsigned long )info != (unsigned long )((u32 *)0U)) { *info = cmndinfo.info; } else { } kfree((void const *)scp->sense_buffer); kfree((void const *)scp); return (rval); } } int gdth_execute(struct Scsi_Host *shost , gdth_cmd_str *gdtcmd , char *cmnd , int timeout , u32 *info ) { struct scsi_device *sdev ; struct scsi_device *tmp ; int rval ; int tmp___0 ; { tmp = scsi_get_host_dev(shost); sdev = tmp; tmp___0 = __gdth_execute(sdev, gdtcmd, cmnd, timeout, info); rval = tmp___0; scsi_free_host_dev(sdev); return (rval); } } static void gdth_eval_mapping(u32 size , u32 *cyls , int *heads , int *secs ) { { *cyls = size / 2048U; if (*cyls <= 1024U) { *heads = 64; *secs = 32; } else { *cyls = size / 8001U; if (*cyls <= 1024U) { *heads = 127; *secs = 63; } else { *cyls = size / 16065U; *heads = 255; *secs = 63; } } return; } } static bool gdth_search_vortex(u16 device ) { { if ((unsigned int )device <= 13U) { return (1); } else { } if ((unsigned int )device > 255U && (unsigned int )device <= 767U) { return (1); } else { } if ((unsigned int )device == 768U || (unsigned int )device == 769U) { return (1); } else { } return (0); } } static int gdth_pci_probe_one(gdth_pci_str *pcistr , gdth_ha_str **ha_out ) ; static int gdth_pci_init_one(struct pci_dev *pdev , struct pci_device_id const *ent ) ; static void gdth_pci_remove_one(struct pci_dev *pdev ) ; static void gdth_remove_one(gdth_ha_str *ha ) ; static struct pci_device_id const gdthtable[4U] = { {4377U, 4294967295U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 1536U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 1537U, 4294967295U, 4294967295U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static struct pci_driver gdth_pci_driver = {{0, 0}, (char *)"gdth", (struct pci_device_id const *)(& gdthtable), & gdth_pci_init_one, & gdth_pci_remove_one, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{0U}, 0U, 0U, 0, {0, 0, 0, 0, 0UL}}}}, {0, 0}}}; static void gdth_pci_remove_one(struct pci_dev *pdev ) { gdth_ha_str *ha ; void *tmp ; { tmp = pci_get_drvdata(pdev); ha = (gdth_ha_str *)tmp; pci_set_drvdata(pdev, (void *)0); list_del(& ha->list); gdth_remove_one(ha); pci_disable_device(pdev); return; } } static int gdth_pci_init_one(struct pci_dev *pdev , struct pci_device_id const *ent ) { u16 vendor ; u16 device ; unsigned long base0 ; unsigned long base1 ; unsigned long base2 ; int rc ; gdth_pci_str gdth_pcistr ; gdth_ha_str *ha ; bool tmp ; int tmp___0 ; { vendor = pdev->vendor; device = pdev->device; ha = (gdth_ha_str *)0; memset((void *)(& gdth_pcistr), 0, 24UL); if ((unsigned int )vendor == 4377U) { tmp = gdth_search_vortex((int )device); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-19); } else { } } else { } rc = pci_enable_device(pdev); if (rc != 0) { return (rc); } else { } if (gdth_ctr_count > 15) { return (-16); } else { } gdth_pcistr.pdev = pdev; base0 = pdev->resource[0].flags; base1 = pdev->resource[1].flags; base2 = pdev->resource[2].flags; if ((unsigned int )device <= 1U || (unsigned int )device > 255U) { if ((base0 & 512UL) == 0UL) { return (-19); } else { } gdth_pcistr.dpmem = (unsigned long )pdev->resource[0].start; } else { if (((base0 & 512UL) == 0UL || (base2 & 512UL) == 0UL) || (base1 & 256UL) == 0UL) { return (-19); } else { } gdth_pcistr.dpmem = (unsigned long )pdev->resource[2].start; gdth_pcistr.io = (unsigned long )pdev->resource[1].start; } rc = gdth_pci_probe_one(& gdth_pcistr, & ha); if (rc != 0) { return (rc); } else { } return (0); } } static int gdth_init_pci(struct pci_dev *pdev , gdth_pci_str *pcistr , gdth_ha_str *ha ) { register gdt6_dpram_str *dp6_ptr ; register gdt6c_dpram_str *dp6c_ptr ; register gdt6m_dpram_str *dp6m_ptr ; u32 retries ; u8 prot_ver ; u16 command ; int i ; int found ; unsigned short tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned char tmp___3 ; unsigned int tmp___4 ; unsigned char tmp___5 ; unsigned short tmp___6 ; unsigned int tmp___7 ; unsigned int tmp___8 ; unsigned int tmp___9 ; unsigned char tmp___10 ; unsigned int tmp___11 ; unsigned char tmp___12 ; unsigned char tmp___13 ; unsigned short tmp___14 ; unsigned int tmp___15 ; unsigned int tmp___16 ; unsigned char tmp___17 ; unsigned char tmp___18 ; unsigned int tmp___19 ; unsigned char tmp___20 ; unsigned char tmp___21 ; unsigned int tmp___22 ; { found = 0; if ((unsigned int )pdev->vendor == 32902U) { ha->oem_id = 32768U; } else { ha->oem_id = 37916U; } ha->brd_phys = (unsigned int )((int )(pdev->bus)->number << 8) | (pdev->devfn & 248U); ha->stype = (unsigned int )pdev->device; ha->irq = (u8 )pdev->irq; ha->pdev = pdev; if ((unsigned int )(ha->pdev)->device <= 1U) { ha->brd = ioremap((resource_size_t )pcistr->dpmem, 4096UL); if ((unsigned long )ha->brd == (unsigned long )((void *)0)) { printk("GDT-PCI: Initialization error (DPMEM remap error)\n"); return (0); } else { } dp6_ptr = (gdt6_dpram_str *)ha->brd; writel(3237998097U, (void volatile *)(& dp6_ptr->u)); tmp___1 = readl((void const volatile *)(& dp6_ptr->u)); if (tmp___1 != 3237998097U) { printk("GDT-PCI: Cannot access DPMEM at 0x%lx (shadowed?)\n", pcistr->dpmem); found = 0; i = 819200; goto ldv_31532; ldv_31531: iounmap((void volatile *)ha->brd); ha->brd = ioremap((resource_size_t )i, 2UL); if ((unsigned long )ha->brd == (unsigned long )((void *)0)) { printk("GDT-PCI: Initialization error (DPMEM remap error)\n"); return (0); } else { } tmp = readw((void const volatile *)ha->brd); if ((unsigned int )tmp != 65535U) { goto ldv_31529; } else { } iounmap((void volatile *)ha->brd); pci_write_config_dword(pdev, 16, (u32 )i); ha->brd = ioremap((resource_size_t )i, 4096UL); if ((unsigned long )ha->brd == (unsigned long )((void *)0)) { printk("GDT-PCI: Initialization error (DPMEM remap error)\n"); return (0); } else { } dp6_ptr = (gdt6_dpram_str *)ha->brd; writel(3237998097U, (void volatile *)(& dp6_ptr->u)); tmp___0 = readl((void const volatile *)(& dp6_ptr->u)); if (tmp___0 == 3237998097U) { printk("GDT-PCI: Use free address at 0x%x\n", i); found = 1; goto ldv_31530; } else { } ldv_31529: i = i + 16384; ldv_31532: ; if (i <= 950271) { goto ldv_31531; } else { } ldv_31530: ; if (found == 0) { printk("GDT-PCI: No free address found!\n"); iounmap((void volatile *)ha->brd); return (0); } else { } } else { } memset_io((void volatile *)(& dp6_ptr->u), 0, 4019UL); tmp___2 = readl((void const volatile *)(& dp6_ptr->u)); if (tmp___2 != 0U) { printk("GDT-PCI: Initialization error (DPMEM write error)\n"); iounmap((void volatile *)ha->brd); return (0); } else { } writeb(255, (void volatile *)(& dp6_ptr->io.irqdel)); writeb(0, (void volatile *)(& dp6_ptr->io.irqen)); writeb(0, (void volatile *)(& dp6_ptr->u.ic.S_Status)); writeb(0, (void volatile *)(& dp6_ptr->u.ic.Cmd_Index)); writel((unsigned int )pcistr->dpmem, (void volatile *)(& dp6_ptr->u.ic.S_Info)); writeb(255, (void volatile *)(& dp6_ptr->u.ic.S_Cmd_Indx)); writeb(0, (void volatile *)(& dp6_ptr->io.event)); retries = 100000U; gdth_delay(20); goto ldv_31534; ldv_31533: retries = retries - 1U; if (retries == 0U) { printk("GDT-PCI: Initialization error (DEINIT failed)\n"); iounmap((void volatile *)ha->brd); return (0); } else { } gdth_delay(1); ldv_31534: tmp___3 = readb((void const volatile *)(& dp6_ptr->u.ic.S_Status)); if ((unsigned int )tmp___3 != 255U) { goto ldv_31533; } else { } tmp___4 = readl((void const volatile *)(& dp6_ptr->u.ic.S_Info)); prot_ver = (unsigned char )tmp___4; writeb(0, (void volatile *)(& dp6_ptr->u.ic.S_Status)); writeb(255, (void volatile *)(& dp6_ptr->io.irqdel)); if ((unsigned int )prot_ver != 1U) { printk("GDT-PCI: Illegal protocol version\n"); iounmap((void volatile *)ha->brd); return (0); } else { } ha->type = 3U; ha->ic_all_size = 4019U; writel(0U, (void volatile *)(& dp6_ptr->u.ic.S_Info)); writel(0U, (void volatile *)(& dp6_ptr->u.ic.S_Info) + 1U); writel(0U, (void volatile *)(& dp6_ptr->u.ic.S_Info) + 2U); writel(0U, (void volatile *)(& dp6_ptr->u.ic.S_Info) + 3U); writeb(254, (void volatile *)(& dp6_ptr->u.ic.S_Cmd_Indx)); writeb(0, (void volatile *)(& dp6_ptr->io.event)); retries = 100000U; gdth_delay(20); goto ldv_31537; ldv_31536: retries = retries - 1U; if (retries == 0U) { printk("GDT-PCI: Initialization error\n"); iounmap((void volatile *)ha->brd); return (0); } else { } gdth_delay(1); ldv_31537: tmp___5 = readb((void const volatile *)(& dp6_ptr->u.ic.S_Status)); if ((unsigned int )tmp___5 != 254U) { goto ldv_31536; } else { } writeb(0, (void volatile *)(& dp6_ptr->u.ic.S_Status)); writeb(255, (void volatile *)(& dp6_ptr->io.irqdel)); ha->dma64_support = 0U; } else if ((unsigned int )(ha->pdev)->device <= 13U) { ha->plx = (gdt6c_plx_regs *)pcistr->io; ha->brd = ioremap((resource_size_t )pcistr->dpmem, 16384UL); if ((unsigned long )ha->brd == (unsigned long )((void *)0)) { printk("GDT-PCI: Initialization error (DPMEM remap error)\n"); iounmap((void volatile *)ha->brd); return (0); } else { } dp6c_ptr = (gdt6c_dpram_str *)ha->brd; writel(3237998097U, (void volatile *)(& dp6c_ptr->u)); tmp___8 = readl((void const volatile *)(& dp6c_ptr->u)); if (tmp___8 != 3237998097U) { printk("GDT-PCI: Cannot access DPMEM at 0x%lx (shadowed?)\n", pcistr->dpmem); found = 0; i = 819200; goto ldv_31542; ldv_31541: iounmap((void volatile *)ha->brd); ha->brd = ioremap((resource_size_t )i, 2UL); if ((unsigned long )ha->brd == (unsigned long )((void *)0)) { printk("GDT-PCI: Initialization error (DPMEM remap error)\n"); return (0); } else { } tmp___6 = readw((void const volatile *)ha->brd); if ((unsigned int )tmp___6 != 65535U) { goto ldv_31539; } else { } iounmap((void volatile *)ha->brd); pci_write_config_dword(pdev, 24, (u32 )i); ha->brd = ioremap((resource_size_t )i, 16384UL); if ((unsigned long )ha->brd == (unsigned long )((void *)0)) { printk("GDT-PCI: Initialization error (DPMEM remap error)\n"); return (0); } else { } dp6c_ptr = (gdt6c_dpram_str *)ha->brd; writel(3237998097U, (void volatile *)(& dp6c_ptr->u)); tmp___7 = readl((void const volatile *)(& dp6c_ptr->u)); if (tmp___7 == 3237998097U) { printk("GDT-PCI: Use free address at 0x%x\n", i); found = 1; goto ldv_31540; } else { } ldv_31539: i = i + 16384; ldv_31542: ; if (i <= 950271) { goto ldv_31541; } else { } ldv_31540: ; if (found == 0) { printk("GDT-PCI: No free address found!\n"); iounmap((void volatile *)ha->brd); return (0); } else { } } else { } memset_io((void volatile *)(& dp6c_ptr->u), 0, 16323UL); tmp___9 = readl((void const volatile *)(& dp6c_ptr->u)); if (tmp___9 != 0U) { printk("GDT-PCI: Initialization error (DPMEM write error)\n"); iounmap((void volatile *)ha->brd); return (0); } else { } outb(0, (int )((unsigned short )((long )(& (ha->plx)->control1)))); outb(255, (int )((unsigned short )((long )(& (ha->plx)->edoor_reg)))); writeb(0, (void volatile *)(& dp6c_ptr->u.ic.S_Status)); writeb(0, (void volatile *)(& dp6c_ptr->u.ic.Cmd_Index)); writel((unsigned int )pcistr->dpmem, (void volatile *)(& dp6c_ptr->u.ic.S_Info)); writeb(255, (void volatile *)(& dp6c_ptr->u.ic.S_Cmd_Indx)); outb(1, (int )((unsigned short )((long )(& (ha->plx)->ldoor_reg)))); retries = 100000U; gdth_delay(20); goto ldv_31544; ldv_31543: retries = retries - 1U; if (retries == 0U) { printk("GDT-PCI: Initialization error (DEINIT failed)\n"); iounmap((void volatile *)ha->brd); return (0); } else { } gdth_delay(1); ldv_31544: tmp___10 = readb((void const volatile *)(& dp6c_ptr->u.ic.S_Status)); if ((unsigned int )tmp___10 != 255U) { goto ldv_31543; } else { } tmp___11 = readl((void const volatile *)(& dp6c_ptr->u.ic.S_Info)); prot_ver = (unsigned char )tmp___11; writeb(0, (void volatile *)(& dp6c_ptr->u.ic.Status)); if ((unsigned int )prot_ver != 1U) { printk("GDT-PCI: Illegal protocol version\n"); iounmap((void volatile *)ha->brd); return (0); } else { } ha->type = 4U; ha->ic_all_size = 16323U; writel(0U, (void volatile *)(& dp6c_ptr->u.ic.S_Info)); writel(0U, (void volatile *)(& dp6c_ptr->u.ic.S_Info) + 1U); writel(0U, (void volatile *)(& dp6c_ptr->u.ic.S_Info) + 2U); writel(0U, (void volatile *)(& dp6c_ptr->u.ic.S_Info) + 3U); writeb(254, (void volatile *)(& dp6c_ptr->u.ic.S_Cmd_Indx)); outb(1, (int )((unsigned short )((long )(& (ha->plx)->ldoor_reg)))); retries = 100000U; gdth_delay(20); goto ldv_31547; ldv_31546: retries = retries - 1U; if (retries == 0U) { printk("GDT-PCI: Initialization error\n"); iounmap((void volatile *)ha->brd); return (0); } else { } gdth_delay(1); ldv_31547: tmp___12 = readb((void const volatile *)(& dp6c_ptr->u.ic.S_Status)); if ((unsigned int )tmp___12 != 254U) { goto ldv_31546; } else { } writeb(0, (void volatile *)(& dp6c_ptr->u.ic.S_Status)); ha->dma64_support = 0U; } else { ha->brd = ioremap((resource_size_t )pcistr->dpmem, 16384UL); if ((unsigned long )ha->brd == (unsigned long )((void *)0)) { printk("GDT-PCI: Initialization error (DPMEM remap error)\n"); return (0); } else { } pci_read_config_word(pdev, 4, & command); command = (u16 )((unsigned int )command | 6U); pci_write_config_word(pdev, 4, (int )command); if (pdev->resource[8].start == 1ULL) { pdev->resource[8].start = 0ULL; } else { } i = -16842751; pci_write_config_dword(pdev, 48, (u32 )i); gdth_delay(1); pci_write_config_dword(pdev, 48, (u32 )pdev->resource[8].start); dp6m_ptr = (gdt6m_dpram_str *)ha->brd; goto ldv_31550; ldv_31549: gdth_delay(1); ldv_31550: tmp___13 = readb((void const volatile *)(& dp6m_ptr->i960r.sema0_reg)); if (((int )tmp___13 & 3) != 0) { goto ldv_31549; } else { } writel(3237998097U, (void volatile *)(& dp6m_ptr->u)); tmp___16 = readl((void const volatile *)(& dp6m_ptr->u)); if (tmp___16 != 3237998097U) { printk("GDT-PCI: Cannot access DPMEM at 0x%lx (shadowed?)\n", pcistr->dpmem); found = 0; i = 819200; goto ldv_31555; ldv_31554: iounmap((void volatile *)ha->brd); ha->brd = ioremap((resource_size_t )i, 2UL); if ((unsigned long )ha->brd == (unsigned long )((void *)0)) { printk("GDT-PCI: Initialization error (DPMEM remap error)\n"); return (0); } else { } tmp___14 = readw((void const volatile *)ha->brd); if ((unsigned int )tmp___14 != 65535U) { goto ldv_31552; } else { } iounmap((void volatile *)ha->brd); pci_write_config_dword(pdev, 16, (u32 )i); ha->brd = ioremap((resource_size_t )i, 16384UL); if ((unsigned long )ha->brd == (unsigned long )((void *)0)) { printk("GDT-PCI: Initialization error (DPMEM remap error)\n"); return (0); } else { } dp6m_ptr = (gdt6m_dpram_str *)ha->brd; writel(3237998097U, (void volatile *)(& dp6m_ptr->u)); tmp___15 = readl((void const volatile *)(& dp6m_ptr->u)); if (tmp___15 == 3237998097U) { printk("GDT-PCI: Use free address at 0x%x\n", i); found = 1; goto ldv_31553; } else { } ldv_31552: i = i + 16384; ldv_31555: ; if (i <= 950271) { goto ldv_31554; } else { } ldv_31553: ; if (found == 0) { printk("GDT-PCI: No free address found!\n"); iounmap((void volatile *)ha->brd); return (0); } else { } } else { } memset_io((void volatile *)(& dp6m_ptr->u), 0, 12227UL); tmp___17 = readb((void const volatile *)(& dp6m_ptr->i960r.edoor_en_reg)); writeb((int )((unsigned int )tmp___17 | 4U), (void volatile *)(& dp6m_ptr->i960r.edoor_en_reg)); writeb(255, (void volatile *)(& dp6m_ptr->i960r.edoor_reg)); writeb(0, (void volatile *)(& dp6m_ptr->u.ic.S_Status)); writeb(0, (void volatile *)(& dp6m_ptr->u.ic.Cmd_Index)); writel((unsigned int )pcistr->dpmem, (void volatile *)(& dp6m_ptr->u.ic.S_Info)); writeb(255, (void volatile *)(& dp6m_ptr->u.ic.S_Cmd_Indx)); writeb(1, (void volatile *)(& dp6m_ptr->i960r.ldoor_reg)); retries = 100000U; gdth_delay(20); goto ldv_31557; ldv_31556: retries = retries - 1U; if (retries == 0U) { printk("GDT-PCI: Initialization error (DEINIT failed)\n"); iounmap((void volatile *)ha->brd); return (0); } else { } gdth_delay(1); ldv_31557: tmp___18 = readb((void const volatile *)(& dp6m_ptr->u.ic.S_Status)); if ((unsigned int )tmp___18 != 255U) { goto ldv_31556; } else { } tmp___19 = readl((void const volatile *)(& dp6m_ptr->u.ic.S_Info)); prot_ver = (unsigned char )tmp___19; writeb(0, (void volatile *)(& dp6m_ptr->u.ic.S_Status)); if ((unsigned int )prot_ver != 1U) { printk("GDT-PCI: Illegal protocol version\n"); iounmap((void volatile *)ha->brd); return (0); } else { } ha->type = 5U; ha->ic_all_size = 12227U; writel(0U, (void volatile *)(& dp6m_ptr->u.ic.S_Info)); writel(0U, (void volatile *)(& dp6m_ptr->u.ic.S_Info) + 1U); writel(0U, (void volatile *)(& dp6m_ptr->u.ic.S_Info) + 2U); writel(0U, (void volatile *)(& dp6m_ptr->u.ic.S_Info) + 3U); writeb(254, (void volatile *)(& dp6m_ptr->u.ic.S_Cmd_Indx)); writeb(1, (void volatile *)(& dp6m_ptr->i960r.ldoor_reg)); retries = 100000U; gdth_delay(20); goto ldv_31560; ldv_31559: retries = retries - 1U; if (retries == 0U) { printk("GDT-PCI: Initialization error\n"); iounmap((void volatile *)ha->brd); return (0); } else { } gdth_delay(1); ldv_31560: tmp___20 = readb((void const volatile *)(& dp6m_ptr->u.ic.S_Status)); if ((unsigned int )tmp___20 != 254U) { goto ldv_31559; } else { } writeb(0, (void volatile *)(& dp6m_ptr->u.ic.S_Status)); writeb(253, (void volatile *)(& dp6m_ptr->u.ic.S_Cmd_Indx)); writeb(1, (void volatile *)(& dp6m_ptr->i960r.ldoor_reg)); retries = 100000U; gdth_delay(20); goto ldv_31563; ldv_31562: retries = retries - 1U; if (retries == 0U) { printk("GDT-PCI: Initialization error (DEINIT failed)\n"); iounmap((void volatile *)ha->brd); return (0); } else { } gdth_delay(1); ldv_31563: tmp___21 = readb((void const volatile *)(& dp6m_ptr->u.ic.S_Status)); if ((unsigned int )tmp___21 != 253U) { goto ldv_31562; } else { } tmp___22 = readl((void const volatile *)(& dp6m_ptr->u.ic.S_Info)); prot_ver = (unsigned char )(tmp___22 >> 16); writeb(0, (void volatile *)(& dp6m_ptr->u.ic.S_Status)); if ((unsigned int )prot_ver <= 42U) { ha->dma64_support = 0U; } else { ha->dma64_support = 1U; } } return (1); } } static void gdth_enable_int(gdth_ha_str *ha ) { unsigned long flags ; gdt2_dpram_str *dp2_ptr ; gdt6_dpram_str *dp6_ptr ; gdt6m_dpram_str *dp6m_ptr ; raw_spinlock_t *tmp ; unsigned char tmp___0 ; { tmp = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp); if ((unsigned int )ha->type == 2U) { outb(255, (int )ha->bmic + 3215); outb(255, (int )ha->bmic + 3214); outb(1, (int )ha->bmic + 3209); } else if ((unsigned int )ha->type == 1U) { dp2_ptr = (gdt2_dpram_str *)ha->brd; writeb(1, (void volatile *)(& dp2_ptr->io.irqdel)); writeb(0, (void volatile *)(& dp2_ptr->u.ic.Cmd_Index)); writeb(1, (void volatile *)(& dp2_ptr->io.irqen)); } else if ((unsigned int )ha->type == 3U) { dp6_ptr = (gdt6_dpram_str *)ha->brd; writeb(1, (void volatile *)(& dp6_ptr->io.irqdel)); writeb(0, (void volatile *)(& dp6_ptr->u.ic.Cmd_Index)); writeb(1, (void volatile *)(& dp6_ptr->io.irqen)); } else if ((unsigned int )ha->type == 4U) { outb(255, (int )((unsigned short )((long )(& (ha->plx)->edoor_reg)))); outb(3, (int )((unsigned short )((long )(& (ha->plx)->control1)))); } else if ((unsigned int )ha->type == 5U) { dp6m_ptr = (gdt6m_dpram_str *)ha->brd; writeb(255, (void volatile *)(& dp6m_ptr->i960r.edoor_reg)); tmp___0 = readb((void const volatile *)(& dp6m_ptr->i960r.edoor_en_reg)); writeb((int )tmp___0 & 251, (void volatile *)(& dp6m_ptr->i960r.edoor_en_reg)); } else { } spin_unlock_irqrestore(& ha->smp_lock, flags); return; } } static u8 gdth_get_status(gdth_ha_str *ha ) { u8 IStatus ; { IStatus = 0U; if ((unsigned int )ha->type == 2U) { IStatus = inb((int )ha->bmic + 3215); } else if ((unsigned int )ha->type == 1U) { IStatus = readb((void const volatile *)(& ((gdt2_dpram_str *)ha->brd)->u.ic.Cmd_Index)); } else if ((unsigned int )ha->type == 3U) { IStatus = readb((void const volatile *)(& ((gdt6_dpram_str *)ha->brd)->u.ic.Cmd_Index)); } else if ((unsigned int )ha->type == 4U) { IStatus = inb((int )((unsigned short )((long )(& (ha->plx)->edoor_reg)))); } else if ((unsigned int )ha->type == 5U) { IStatus = readb((void const volatile *)(& ((gdt6m_dpram_str *)ha->brd)->i960r.edoor_reg)); } else { } return (IStatus); } } static int gdth_test_busy(gdth_ha_str *ha ) { register int gdtsema0 ; unsigned char tmp ; unsigned char tmp___0 ; unsigned char tmp___1 ; unsigned char tmp___2 ; unsigned char tmp___3 ; { gdtsema0 = 0; if ((unsigned int )ha->type == 2U) { tmp = inb((int )ha->bmic + 3210); gdtsema0 = (int )tmp; } else if ((unsigned int )ha->type == 1U) { tmp___0 = readb((void const volatile *)(& ((gdt2_dpram_str *)ha->brd)->u.ic.Sema0)); gdtsema0 = (int )tmp___0; } else if ((unsigned int )ha->type == 3U) { tmp___1 = readb((void const volatile *)(& ((gdt6_dpram_str *)ha->brd)->u.ic.Sema0)); gdtsema0 = (int )tmp___1; } else if ((unsigned int )ha->type == 4U) { tmp___2 = inb((int )((unsigned short )((long )(& (ha->plx)->sema0_reg)))); gdtsema0 = (int )tmp___2; } else if ((unsigned int )ha->type == 5U) { tmp___3 = readb((void const volatile *)(& ((gdt6m_dpram_str *)ha->brd)->i960r.sema0_reg)); gdtsema0 = (int )tmp___3; } else { } return (gdtsema0 & 1); } } static int gdth_get_cmd_index(gdth_ha_str *ha ) { int i ; { i = 0; goto ldv_31588; ldv_31587: ; if ((unsigned long )ha->cmd_tab[i].cmnd == (unsigned long )((Scsi_Cmnd *)-1)) { ha->cmd_tab[i].cmnd = (Scsi_Cmnd *)(ha->pccb)->RequestBuffer; ha->cmd_tab[i].service = (u16 )(ha->pccb)->Service; (ha->pccb)->CommandIndex = (unsigned int )i + 2U; return (i + 2); } else { } i = i + 1; ldv_31588: ; if (i <= 119) { goto ldv_31587; } else { } return (0); } } static void gdth_set_sema0(gdth_ha_str *ha ) { { if ((unsigned int )ha->type == 2U) { outb(1, (int )ha->bmic + 3210); } else if ((unsigned int )ha->type == 1U) { writeb(1, (void volatile *)(& ((gdt2_dpram_str *)ha->brd)->u.ic.Sema0)); } else if ((unsigned int )ha->type == 3U) { writeb(1, (void volatile *)(& ((gdt6_dpram_str *)ha->brd)->u.ic.Sema0)); } else if ((unsigned int )ha->type == 4U) { outb(1, (int )((unsigned short )((long )(& (ha->plx)->sema0_reg)))); } else if ((unsigned int )ha->type == 5U) { writeb(1, (void volatile *)(& ((gdt6m_dpram_str *)ha->brd)->i960r.sema0_reg)); } else { } return; } } static void gdth_copy_command(gdth_ha_str *ha ) { register gdth_cmd_str *cmd_ptr ; register gdt6m_dpram_str *dp6m_ptr ; register gdt6c_dpram_str *dp6c_ptr ; gdt6_dpram_str *dp6_ptr ; gdt2_dpram_str *dp2_ptr ; u16 cp_count ; u16 dp_offset ; u16 cmd_no ; { cp_count = ha->cmd_len; dp_offset = ha->cmd_offs_dpmem; cmd_no = ha->cmd_cnt; cmd_ptr = ha->pccb; ha->cmd_cnt = (u16 )((int )ha->cmd_cnt + 1); if ((unsigned int )ha->type == 2U) { return; } else { } if (((int )cp_count & 3) != 0) { cp_count = ((unsigned int )cp_count & 65532U) + 4U; } else { } ha->cmd_offs_dpmem = (int )ha->cmd_offs_dpmem + (int )cp_count; if ((unsigned int )ha->type == 1U) { dp2_ptr = (gdt2_dpram_str *)ha->brd; writew((int )((unsigned int )dp_offset + 560U), (void volatile *)(& dp2_ptr->u.ic.comm_queue[(int )cmd_no].offset)); writew((int )cmd_ptr->Service, (void volatile *)(& dp2_ptr->u.ic.comm_queue[(int )cmd_no].serv_id)); memcpy_toio((void volatile *)(& dp2_ptr->u.ic.gdt_dpr_cmd) + (unsigned long )dp_offset, (void const *)cmd_ptr, (size_t )cp_count); } else if ((unsigned int )ha->type == 3U) { dp6_ptr = (gdt6_dpram_str *)ha->brd; writew((int )((unsigned int )dp_offset + 560U), (void volatile *)(& dp6_ptr->u.ic.comm_queue[(int )cmd_no].offset)); writew((int )cmd_ptr->Service, (void volatile *)(& dp6_ptr->u.ic.comm_queue[(int )cmd_no].serv_id)); memcpy_toio((void volatile *)(& dp6_ptr->u.ic.gdt_dpr_cmd) + (unsigned long )dp_offset, (void const *)cmd_ptr, (size_t )cp_count); } else if ((unsigned int )ha->type == 4U) { dp6c_ptr = (gdt6c_dpram_str *)ha->brd; writew((int )((unsigned int )dp_offset + 560U), (void volatile *)(& dp6c_ptr->u.ic.comm_queue[(int )cmd_no].offset)); writew((int )cmd_ptr->Service, (void volatile *)(& dp6c_ptr->u.ic.comm_queue[(int )cmd_no].serv_id)); memcpy_toio((void volatile *)(& dp6c_ptr->u.ic.gdt_dpr_cmd) + (unsigned long )dp_offset, (void const *)cmd_ptr, (size_t )cp_count); } else if ((unsigned int )ha->type == 5U) { dp6m_ptr = (gdt6m_dpram_str *)ha->brd; writew((int )((unsigned int )dp_offset + 560U), (void volatile *)(& dp6m_ptr->u.ic.comm_queue[(int )cmd_no].offset)); writew((int )cmd_ptr->Service, (void volatile *)(& dp6m_ptr->u.ic.comm_queue[(int )cmd_no].serv_id)); memcpy_toio((void volatile *)(& dp6m_ptr->u.ic.gdt_dpr_cmd) + (unsigned long )dp_offset, (void const *)cmd_ptr, (size_t )cp_count); } else { } return; } } static void gdth_release_event(gdth_ha_str *ha ) { u32 i ; u32 j ; { i = 0U; j = 0U; goto ldv_31610; ldv_31609: ; if ((unsigned long )ha->cmd_tab[j].cmnd != (unsigned long )((Scsi_Cmnd *)-1)) { i = i + 1U; } else { } j = j + 1U; ldv_31610: ; if (j <= 119U) { goto ldv_31609; } else { } if (max_index < i) { max_index = i; } else { } if ((unsigned int )(ha->pccb)->OpCode == 0U) { (ha->pccb)->Service = (u8 )((unsigned int )(ha->pccb)->Service | 128U); } else { } if ((unsigned int )ha->type == 2U) { if ((unsigned int )(ha->pccb)->OpCode == 0U) { outl(ha->ccb_phys, (int )ha->bmic + 3216); } else { } outb((int )(ha->pccb)->Service, (int )ha->bmic + 3213); } else if ((unsigned int )ha->type == 1U) { writeb(0, (void volatile *)(& ((gdt2_dpram_str *)ha->brd)->io.event)); } else if ((unsigned int )ha->type == 3U) { writeb(0, (void volatile *)(& ((gdt6_dpram_str *)ha->brd)->io.event)); } else if ((unsigned int )ha->type == 4U) { outb(1, (int )((unsigned short )((long )(& (ha->plx)->ldoor_reg)))); } else if ((unsigned int )ha->type == 5U) { writeb(1, (void volatile *)(& ((gdt6m_dpram_str *)ha->brd)->i960r.ldoor_reg)); } else { } return; } } static int gdth_wait(gdth_ha_str *ha , int index , u32 time ) { int answer_found ; int wait_index ; int tmp ; { answer_found = 0; wait_index = 0; if (index == 0) { return (1); } else { } ldv_31620: __gdth_interrupt(ha, 1, & wait_index); if (wait_index == index) { answer_found = 1; goto ldv_31619; } else { } gdth_delay(1); time = time - 1U; if (time != 0U) { goto ldv_31620; } else { } ldv_31619: ; goto ldv_31622; ldv_31621: gdth_delay(0); ldv_31622: tmp = gdth_test_busy(ha); if (tmp != 0) { goto ldv_31621; } else { } return (answer_found); } } static int gdth_internal_cmd(gdth_ha_str *ha , u8 service , u16 opcode , u32 p1 , u64 p2 , u64 p3 ) { register gdth_cmd_str *cmd_ptr ; int retries ; int index ; int tmp ; { cmd_ptr = ha->pccb; memset((void *)cmd_ptr, 0, 476UL); retries = 100000; ldv_31636: cmd_ptr->Service = service; cmd_ptr->RequestBuffer = (void *)-2; index = gdth_get_cmd_index(ha); if (index == 0) { return (0); } else { } gdth_set_sema0(ha); cmd_ptr->OpCode = opcode; cmd_ptr->BoardNode = 0U; if ((unsigned int )service == 9U) { if ((unsigned int )opcode == 5U) { cmd_ptr->u.ioctl.subfunc = p1; cmd_ptr->u.ioctl.channel = (unsigned int )p2; cmd_ptr->u.ioctl.param_size = (unsigned short )p3; cmd_ptr->u.ioctl.p_param = ha->scratch_phys; } else if (((int )ha->cache_feat & 512) != 0) { cmd_ptr->u.cache64.DeviceNo = (unsigned short )p1; cmd_ptr->u.cache64.BlockNo = p2; } else { cmd_ptr->u.cache.DeviceNo = (unsigned short )p1; cmd_ptr->u.cache.BlockNo = (unsigned int )p2; } } else if ((unsigned int )service == 3U) { if (((int )ha->raw_feat & 512) != 0) { cmd_ptr->u.raw64.direction = p1; cmd_ptr->u.raw64.bus = (unsigned char )p2; cmd_ptr->u.raw64.target = (unsigned char )p3; cmd_ptr->u.raw64.lun = (unsigned char )(p3 >> 8); } else { cmd_ptr->u.raw.direction = p1; cmd_ptr->u.raw.bus = (unsigned char )p2; cmd_ptr->u.raw.target = (unsigned char )p3; cmd_ptr->u.raw.lun = (unsigned char )(p3 >> 8); } } else if ((unsigned int )service == 11U) { if ((unsigned int )opcode == 3U) { *((u32 *)(& cmd_ptr->u.screen.su.data)) = p1; *((u32 *)(& cmd_ptr->u.screen.su.data) + 4U) = (unsigned int )p2; *((u32 *)(& cmd_ptr->u.screen.su.data) + 8U) = (unsigned int )p3; } else { } } else { } ha->cmd_len = 476U; ha->cmd_offs_dpmem = 0U; ha->cmd_cnt = 0U; gdth_copy_command(ha); gdth_release_event(ha); gdth_delay(20); tmp = gdth_wait(ha, index, 100000U); if (tmp == 0) { printk("GDT: Initialization error (timeout service %d)\n", (int )service); return (0); } else { } if ((unsigned int )ha->status != 7U) { goto ldv_31635; } else { retries = retries - 1; if (retries == 0) { goto ldv_31635; } else { } } gdth_delay(1); goto ldv_31636; ldv_31635: ; return ((unsigned int )ha->status == 1U); } } static int gdth_search_drives(gdth_ha_str *ha ) { u16 cdev_cnt ; u16 i ; int ok ; u32 bus_no ; u32 drv_cnt ; u32 drv_no ; u32 j ; gdth_getch_str *chn ; gdth_drlist_str *drl ; gdth_iochan_str *ioc ; gdth_raw_iochan_str *iocr ; gdth_arcdl_str *alst ; gdth_alist_str *alst2 ; gdth_oem_str_ioctl *oemstr ; int tmp ; int tmp___0 ; int tmp___1 ; size_t __len ; void *__ret ; int tmp___2 ; char const *tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; { ok = 0; ha->screen_feat = 0U; if (force_dma32 == 0) { ok = gdth_internal_cmd(ha, 11, 4, 0U, 0ULL, 0ULL); if (ok != 0) { ha->screen_feat = 512U; } else { } } else { } if (force_dma32 != 0 || (ok == 0 && (unsigned int )ha->status == 65534U)) { ok = gdth_internal_cmd(ha, 11, 0, 0U, 0ULL, 0ULL); } else { } if (ok == 0) { printk("GDT-HA %d: Initialization error screen service (code %d)\n", (int )ha->hanum, (int )ha->status); return (0); } else { } gdth_internal_cmd(ha, 9, 26, 0U, 0ULL, 0ULL); ha->cache_feat = 0U; if (force_dma32 == 0) { ok = gdth_internal_cmd(ha, 9, 29, 8U, 0ULL, 0ULL); if (ok != 0) { ha->cache_feat = 512U; } else { } } else { } if (force_dma32 != 0 || (ok == 0 && (unsigned int )ha->status == 65534U)) { ok = gdth_internal_cmd(ha, 9, 0, 8U, 0ULL, 0ULL); } else { } if (ok == 0) { printk("GDT-HA %d: Initialization error cache service (code %d)\n", (int )ha->hanum, (int )ha->status); return (0); } else { } cdev_cnt = (unsigned short )ha->info; ha->fw_vers = ha->service; iocr = (gdth_raw_iochan_str *)ha->pscratch; iocr->hdr.version = 4294967295U; iocr->hdr.list_entries = 6U; iocr->hdr.first_chan = 0U; iocr->hdr.last_chan = 5U; iocr->hdr.list_offset = 12U; tmp___0 = gdth_internal_cmd(ha, 9, 5, 94U, 65535ULL, 36ULL); if (tmp___0 != 0) { ha->bus_cnt = iocr->hdr.chan_count; bus_no = 0U; goto ldv_31655; ldv_31654: ; if ((unsigned int )iocr->list[bus_no].proc_id <= 126U) { ha->bus_id[bus_no] = iocr->list[bus_no].proc_id; } else { ha->bus_id[bus_no] = 255U; } bus_no = bus_no + 1U; ldv_31655: ; if ((u32 )ha->bus_cnt > bus_no) { goto ldv_31654; } else { } } else { chn = (gdth_getch_str *)ha->pscratch; bus_no = 0U; goto ldv_31659; ldv_31658: chn->channel_no = bus_no; tmp = gdth_internal_cmd(ha, 9, 5, 536870917U, 196607ULL, 10ULL); if (tmp == 0) { if (bus_no == 0U) { printk("GDT-HA %d: Error detecting channel count (0x%x)\n", (int )ha->hanum, (int )ha->status); return (0); } else { } goto ldv_31657; } else { } if ((unsigned int )chn->siop_id <= 126U) { ha->bus_id[bus_no] = chn->siop_id; } else { ha->bus_id[bus_no] = 255U; } bus_no = bus_no + 1U; ldv_31659: ; if (bus_no <= 5U) { goto ldv_31658; } else { } ldv_31657: ha->bus_cnt = (unsigned char )bus_no; } tmp___1 = gdth_internal_cmd(ha, 9, 5, 4U, 65535ULL, 36ULL); if (tmp___1 == 0) { printk("GDT-HA %d: Initialization error cache service (code %d)\n", (int )ha->hanum, (int )ha->status); return (0); } else { } ha->cpar = ((gdth_cinfo_str *)ha->pscratch)->cpar; ha->more_proc = 0U; tmp___4 = gdth_internal_cmd(ha, 9, 5, 40U, 65535ULL, 84ULL); if (tmp___4 != 0) { __len = 84UL; if (__len > 63UL) { __ret = memcpy((void *)(& ha->binfo), (void const *)ha->pscratch, __len); } else { __ret = memcpy((void *)(& ha->binfo), (void const *)ha->pscratch, __len); } tmp___2 = gdth_internal_cmd(ha, 9, 5, 21U, 65535ULL, 4ULL); if (tmp___2 != 0) { ha->bfeat = *((gdth_bfeat_str *)ha->pscratch); ha->more_proc = 1U; } else { } } else { tmp___3 = gdth_ctr_name(ha); strcpy((char *)(& ha->binfo.type_string), tmp___3); } if ((unsigned int )ha->more_proc != 0U) { ioc = (gdth_iochan_str *)ha->pscratch; ioc->hdr.version = 4294967295U; ioc->hdr.list_entries = 6U; ioc->hdr.first_chan = 0U; ioc->hdr.last_chan = 5U; ioc->hdr.list_offset = 12U; tmp___5 = gdth_internal_cmd(ha, 9, 5, 93U, 65535ULL, 60ULL); if (tmp___5 != 0) { bus_no = 0U; goto ldv_31664; ldv_31663: ha->raw[bus_no].address = ioc->list[bus_no].address; ha->raw[bus_no].local_no = ioc->list[bus_no].local_no; bus_no = bus_no + 1U; ldv_31664: ; if ((u32 )ha->bus_cnt > bus_no) { goto ldv_31663; } else { } } else { bus_no = 0U; goto ldv_31667; ldv_31666: ha->raw[bus_no].address = 131072U; ha->raw[bus_no].local_no = (u8 )bus_no; bus_no = bus_no + 1U; ldv_31667: ; if ((u32 )ha->bus_cnt > bus_no) { goto ldv_31666; } else { } } bus_no = 0U; goto ldv_31673; ldv_31672: chn = (gdth_getch_str *)ha->pscratch; chn->channel_no = (u32 )ha->raw[bus_no].local_no; tmp___6 = gdth_internal_cmd(ha, 9, 5, 536870917U, (u64 )(ha->raw[bus_no].address | 65535U), 10ULL); if (tmp___6 != 0) { ha->raw[bus_no].pdev_cnt = (u8 )chn->drive_cnt; } else { } if ((unsigned int )ha->raw[bus_no].pdev_cnt != 0U) { drl = (gdth_drlist_str *)ha->pscratch; drl->sc_no = (u32 )ha->raw[bus_no].local_no; drl->sc_cnt = (u32 )ha->raw[bus_no].pdev_cnt; tmp___7 = gdth_internal_cmd(ha, 9, 5, 536870918U, (u64 )(ha->raw[bus_no].address | 65535U), 516ULL); if (tmp___7 != 0) { j = 0U; goto ldv_31670; ldv_31669: ha->raw[bus_no].id_list[j] = drl->sc_list[j]; j = j + 1U; ldv_31670: ; if ((u32 )ha->raw[bus_no].pdev_cnt > j) { goto ldv_31669; } else { } } else { ha->raw[bus_no].pdev_cnt = 0U; } } else { } bus_no = bus_no + 1U; ldv_31673: ; if ((u32 )ha->bus_cnt > bus_no) { goto ldv_31672; } else { } tmp___11 = gdth_internal_cmd(ha, 9, 5, 1U, 65535ULL, 4ULL); if (tmp___11 != 0) { drv_cnt = *((u32 *)ha->pscratch); tmp___8 = gdth_internal_cmd(ha, 9, 5, 2U, 65535ULL, (u64 )((unsigned long )drv_cnt * 4UL)); if (tmp___8 != 0) { j = 0U; goto ldv_31676; ldv_31675: drv_no = *((u32 *)ha->pscratch + (unsigned long )j); if (drv_no <= 254U) { ha->hdr[drv_no].is_logdrv = 1U; } else { } j = j + 1U; ldv_31676: ; if (j < drv_cnt) { goto ldv_31675; } else { } } else { } alst = (gdth_arcdl_str *)ha->pscratch; alst->entries_avail = 255U; alst->first_entry = 0U; alst->list_offset = 16U; tmp___10 = gdth_internal_cmd(ha, 9, 5, 268435508U, 65535ULL, (u64 )((unsigned long )(alst->entries_avail - 1U) * 12UL + 28UL)); if (tmp___10 != 0) { j = 0U; goto ldv_31679; ldv_31678: ha->hdr[j].is_arraydrv = alst->list[j].is_arrayd; ha->hdr[j].is_master = alst->list[j].is_master; ha->hdr[j].is_parity = alst->list[j].is_parity; ha->hdr[j].is_hotfix = alst->list[j].is_hotfix; ha->hdr[j].master_no = alst->list[j].cd_handle; j = j + 1U; ldv_31679: ; if (alst->entries_init > j) { goto ldv_31678; } else { } } else { tmp___9 = gdth_internal_cmd(ha, 9, 5, 268435471U, 0ULL, 420ULL); if (tmp___9 != 0) { j = 0U; goto ldv_31682; ldv_31681: alst2 = (gdth_alist_str *)ha->pscratch + (unsigned long )j; ha->hdr[j].is_arraydrv = alst2->is_arrayd; ha->hdr[j].is_master = alst2->is_master; ha->hdr[j].is_parity = alst2->is_parity; ha->hdr[j].is_hotfix = alst2->is_hotfix; ha->hdr[j].master_no = alst2->cd_handle; j = j + 1U; ldv_31682: ; if (j <= 34U) { goto ldv_31681; } else { } } else { } } } else { } } else { } ha->raw_feat = 0U; if (force_dma32 == 0) { ok = gdth_internal_cmd(ha, 3, 21, 0U, 0ULL, 0ULL); if (ok != 0) { ha->raw_feat = 512U; } else { } } else { } if (force_dma32 != 0 || (ok == 0 && (unsigned int )ha->status == 65534U)) { ok = gdth_internal_cmd(ha, 3, 0, 0U, 0ULL, 0ULL); } else { } if (ok == 0) { printk("GDT-HA %d: Initialization error raw service (code %d)\n", (int )ha->hanum, (int )ha->status); return (0); } else { } tmp___13 = gdth_internal_cmd(ha, 3, 12, 1U, 0ULL, 0ULL); if (tmp___13 != 0) { tmp___12 = gdth_internal_cmd(ha, 3, 13, 0U, 0ULL, 0ULL); if (tmp___12 != 0) { ha->raw_feat = (u16 )((int )ha->raw_feat | (int )((unsigned short )ha->info)); } else { } } else { } tmp___15 = gdth_internal_cmd(ha, 9, 12, 0U, 1ULL, 0ULL); if (tmp___15 != 0) { tmp___14 = gdth_internal_cmd(ha, 9, 13, 0U, 0ULL, 0ULL); if (tmp___14 != 0) { ha->cache_feat = (u16 )((int )ha->cache_feat | (int )((unsigned short )ha->info)); } else { } } else { } if (reserve_mode != 0) { gdth_internal_cmd(ha, 3, 16, reserve_mode == 1 ? 1U : 3U, 0ULL, 0ULL); } else { } i = 0U; goto ldv_31685; ldv_31684: ; if (((reserve_list[(int )i] == (int )ha->hanum && reserve_list[(int )i + 1] < (int )ha->bus_cnt) && reserve_list[(int )i + 2] < (int )ha->tid_cnt) && reserve_list[(int )i + 3] <= 7) { tmp___16 = gdth_internal_cmd(ha, 3, 14, 0U, (u64 )reserve_list[(int )i + 1], (u64 )(reserve_list[(int )i + 2] | (reserve_list[(int )i + 3] << 8))); if (tmp___16 == 0) { printk("GDT-HA %d: Error raw service (RESERVE, code %d)\n", (int )ha->hanum, (int )ha->status); } else { } } else { } i = (unsigned int )i + 4U; ldv_31685: ; if ((unsigned int )i <= 39U) { goto ldv_31684; } else { } oemstr = (gdth_oem_str_ioctl *)ha->pscratch; oemstr->params.ctl_version = 1U; oemstr->params.buffer_size = 716U; tmp___17 = gdth_internal_cmd(ha, 9, 5, 132U, 65535ULL, 748ULL); if (tmp___17 != 0) { printk("GDT-HA %d: Vendor: %s Name: %s\n", (int )ha->hanum, (u8 *)(& oemstr->text.oem_company_name), (char *)(& ha->binfo.type_string)); strlcpy((char *)(& ha->oem_name), (char const *)(& oemstr->text.scsi_host_drive_inquiry_vendor_id), 8UL); } else { printk("GDT-HA %d: Name: %s\n", (int )ha->hanum, (char *)(& ha->binfo.type_string)); if ((unsigned int )ha->oem_id == 32768U) { strlcpy((char *)(& ha->oem_name), "Intel ", 8UL); } else { strlcpy((char *)(& ha->oem_name), "ICP ", 8UL); } } i = 0U; goto ldv_31688; ldv_31687: gdth_analyse_hdrive(ha, (int )i); i = (u16 )((int )i + 1); ldv_31688: ; if ((int )i < (int )cdev_cnt) { goto ldv_31687; } else { } return (1); } } static int gdth_analyse_hdrive(gdth_ha_str *ha , u16 hdrive ) { u32 drv_cyls ; int drv_hds ; int drv_secs ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { if ((unsigned int )hdrive > 254U) { return (0); } else { } tmp = gdth_internal_cmd(ha, 9, 3, (u32 )hdrive, 0ULL, 0ULL); if (tmp == 0) { return (0); } else { } ha->hdr[(int )hdrive].present = 1U; ha->hdr[(int )hdrive].size = (u64 )ha->info; ha->hdr[(int )hdrive].size = ha->hdr[(int )hdrive].size & 0xffffffffffffffe0ULL; if (ha->info2 == 0U) { gdth_eval_mapping((u32 )ha->hdr[(int )hdrive].size, & drv_cyls, & drv_hds, & drv_secs); } else { drv_hds = (int )ha->info2 & 255; drv_secs = (int )(ha->info2 >> 8) & 255; drv_cyls = ((unsigned int )ha->hdr[(int )hdrive].size / (unsigned int )drv_hds) / (unsigned int )drv_secs; } ha->hdr[(int )hdrive].heads = (unsigned char )drv_hds; ha->hdr[(int )hdrive].secs = (unsigned char )drv_secs; ha->hdr[(int )hdrive].size = (u64 )((drv_cyls * (u32 )drv_hds) * (u32 )drv_secs); if (((int )ha->cache_feat & 512) != 0) { tmp___0 = gdth_internal_cmd(ha, 9, 30, (u32 )hdrive, 0ULL, 0ULL); if (tmp___0 != 0 && ha->info2 != 0U) { ha->hdr[(int )hdrive].size = ((unsigned long long )ha->info2 << 32) | (unsigned long long )ha->info; } else { } } else { } tmp___1 = gdth_internal_cmd(ha, 9, 9, (u32 )hdrive, 0ULL, 0ULL); if (tmp___1 != 0) { ha->hdr[(int )hdrive].devtype = (unsigned short )ha->info; } else { } tmp___2 = gdth_internal_cmd(ha, 9, 22, (u32 )hdrive, 0ULL, 0ULL); if (tmp___2 != 0) { if (shared_access == 0) { ha->hdr[(int )hdrive].cluster_type = (unsigned char )ha->info; } else { } } else { } tmp___3 = gdth_internal_cmd(ha, 9, 23, (u32 )hdrive, 0ULL, 0ULL); if (tmp___3 != 0) { ha->hdr[(int )hdrive].rw_attribs = (unsigned char )ha->info; } else { } return (1); } } static void gdth_putq(gdth_ha_str *ha , Scsi_Cmnd *scp , u8 priority ) { struct gdth_cmndinfo *cmndinfo ; struct gdth_cmndinfo *tmp ; register Scsi_Cmnd *pscp ; register Scsi_Cmnd *nscp ; unsigned long flags ; raw_spinlock_t *tmp___0 ; struct gdth_cmndinfo *tmp___1 ; { tmp = gdth_cmnd_priv(scp); cmndinfo = tmp; tmp___0 = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp___0); if (cmndinfo->internal_command == 0) { cmndinfo->priority = priority; } else { } if ((unsigned long )ha->req_first == (unsigned long )((Scsi_Cmnd *)0)) { ha->req_first = scp; scp->SCp.ptr = (char *)0; } else { pscp = ha->req_first; nscp = (Scsi_Cmnd *)pscp->SCp.ptr; goto ldv_31710; ldv_31709: pscp = nscp; nscp = (Scsi_Cmnd *)pscp->SCp.ptr; ldv_31710: ; if ((unsigned long )nscp != (unsigned long )((Scsi_Cmnd *)0)) { tmp___1 = gdth_cmnd_priv(nscp); if ((int )tmp___1->priority <= (int )priority) { goto ldv_31709; } else { goto ldv_31711; } } else { } ldv_31711: pscp->SCp.ptr = (char *)scp; scp->SCp.ptr = (char *)nscp; } spin_unlock_irqrestore(& ha->smp_lock, flags); flags = 0UL; nscp = ha->req_first; goto ldv_31713; ldv_31712: flags = flags + 1UL; nscp = (Scsi_Cmnd *)nscp->SCp.ptr; ldv_31713: ; if ((unsigned long )nscp != (unsigned long )((Scsi_Cmnd *)0)) { goto ldv_31712; } else { } if ((unsigned long )max_rq < flags) { max_rq = (u32 )flags; } else { } return; } } static void gdth_next(gdth_ha_str *ha ) { register Scsi_Cmnd *pscp ; register Scsi_Cmnd *nscp ; u8 b ; u8 t ; u8 l ; u8 firsttime ; u8 this_cmd ; u8 next_cmd ; unsigned long flags ; int cmd_index ; raw_spinlock_t *tmp ; u16 tmp___0 ; struct gdth_cmndinfo *nscp_cmndinfo ; struct gdth_cmndinfo *tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; struct gdth_cmndinfo *tmp___5 ; int tmp___6 ; { flags = 0UL; if ((unsigned int )gdth_polling == 0U) { tmp = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp); } else { } tmp___0 = 0U; ha->cmd_offs_dpmem = tmp___0; ha->cmd_cnt = tmp___0; firsttime = 1U; this_cmd = firsttime; next_cmd = (unsigned int )gdth_polling == 0U; cmd_index = 0; pscp = ha->req_first; nscp = pscp; goto ldv_31757; ldv_31756: tmp___1 = gdth_cmnd_priv(nscp); nscp_cmndinfo = tmp___1; if ((unsigned long )nscp != (unsigned long )pscp && (unsigned long )((Scsi_Cmnd *)pscp->SCp.ptr) != (unsigned long )nscp) { pscp = (Scsi_Cmnd *)pscp->SCp.ptr; } else { } if (nscp_cmndinfo->internal_command == 0) { b = (u8 )(nscp->device)->channel; t = (u8 )(nscp->device)->id; l = (u8 )(nscp->device)->lun; if ((unsigned int )nscp_cmndinfo->priority > 31U) { if (((int )ha->virt_bus != (int )b && (unsigned int )ha->raw[(int )ha->virt_bus < (int )b ? (int )b + -1 : (int )b].lock != 0U) || (((int )ha->virt_bus == (int )b && (unsigned int )t != 255U) && (unsigned int )ha->hdr[(int )t].lock != 0U)) { goto ldv_31732; } else { } } else { } } else { l = 0U; t = l; b = t; } if ((unsigned int )firsttime != 0U) { tmp___3 = gdth_test_busy(ha); if (tmp___3 != 0) { if ((unsigned int )gdth_polling == 0U) { spin_unlock_irqrestore(& ha->smp_lock, flags); return; } else { } goto ldv_31734; ldv_31733: gdth_delay(1); ldv_31734: tmp___2 = gdth_test_busy(ha); if (tmp___2 != 0) { goto ldv_31733; } else { } } else { } firsttime = 0U; } else { } if (nscp_cmndinfo->internal_command == 0) { if (nscp_cmndinfo->phase == -1) { nscp_cmndinfo->phase = 9; if ((unsigned int )*(nscp->cmnd) == 0U) { if (((int )ha->scan_mode & 15) == 0) { if (((unsigned int )b == 0U && (unsigned int )t == 0U) && (unsigned int )l == 0U) { ha->scan_mode = (u8 )((unsigned int )ha->scan_mode | 1U); } else { } } else if (((int )ha->scan_mode & 15) == 1) { if ((unsigned int )b == 0U && (((unsigned int )t == 0U && (unsigned int )l == 1U) || ((unsigned int )t == 1U && (unsigned int )l == 0U))) { nscp_cmndinfo->OpCode = 19; nscp_cmndinfo->phase = ((int )ha->scan_mode & 16) != 0 ? 259 : 3; ha->scan_mode = 18U; } else { ha->scan_mode = (unsigned int )ha->scan_mode & 16U; } } else if ((unsigned int )ha->scan_mode == 18U) { if ((int )ha->bus_cnt == (int )b && (int )t == (int )ha->tid_cnt + -1) { nscp_cmndinfo->phase = 3; nscp_cmndinfo->OpCode = 20; ha->scan_mode = (unsigned int )ha->scan_mode & 16U; } else { } } else { } } else { } if (((((int )ha->virt_bus == (int )b && (unsigned int )*(nscp->cmnd) != 18U) && (unsigned int )*(nscp->cmnd) != 37U) && (unsigned int )*(nscp->cmnd) != 26U) && (int )ha->hdr[(int )t].cluster_type & 1) { nscp_cmndinfo->OpCode = 22; } else { } } else { } } else { } if (nscp_cmndinfo->OpCode != -1) { if ((nscp_cmndinfo->phase & 255) == 9) { cmd_index = gdth_fill_cache_cmd(ha, nscp, (int )t); if (cmd_index == 0) { this_cmd = 0U; } else { } next_cmd = 0U; } else if ((nscp_cmndinfo->phase & 255) == 3) { cmd_index = gdth_fill_raw_cmd(ha, nscp, (int )((int )ha->virt_bus < (int )b ? (unsigned int )b + 255U : b)); if (cmd_index == 0) { this_cmd = 0U; } else { } next_cmd = 0U; } else { memset((void *)nscp->sense_buffer, 0, 16UL); *(nscp->sense_buffer) = 112U; *(nscp->sense_buffer + 2UL) = 2U; nscp->result = 2; if ((int )nscp_cmndinfo->wait_for_completion == 0) { nscp_cmndinfo->wait_for_completion = nscp_cmndinfo->wait_for_completion + (int volatile )1; } else { gdth_scsi_done(nscp); } } } else { tmp___5 = gdth_cmnd_priv(nscp); if (tmp___5->internal_command != 0) { cmd_index = gdth_special_cmd(ha, nscp); if (cmd_index == 0) { this_cmd = 0U; } else { } next_cmd = 0U; } else if ((int )ha->virt_bus != (int )b) { if ((unsigned int )ha->raw[(int )ha->virt_bus < (int )b ? (int )b + -1 : (int )b].io_cnt[(int )t] > 1U) { this_cmd = 0U; } else { cmd_index = gdth_fill_raw_cmd(ha, nscp, (int )((int )ha->virt_bus < (int )b ? (unsigned int )b + 255U : b)); if (cmd_index == 0) { this_cmd = 0U; } else { ha->raw[(int )ha->virt_bus < (int )b ? (int )b + -1 : (int )b].io_cnt[(int )t] = (u8 )((int )ha->raw[(int )ha->virt_bus < (int )b ? (int )b + -1 : (int )b].io_cnt[(int )t] + 1); } } } else if (((unsigned int )t == 255U || (unsigned int )ha->hdr[(int )t].present == 0U) || (unsigned int )l != 0U) { nscp->result = 262144; if ((int )nscp_cmndinfo->wait_for_completion == 0) { nscp_cmndinfo->wait_for_completion = nscp_cmndinfo->wait_for_completion + (int volatile )1; } else { gdth_scsi_done(nscp); } } else { switch ((int )*(nscp->cmnd)) { case 0: ; case 18: ; case 3: ; case 37: ; case 47: ; case 27: ; case 26: ; case 158: ; if ((unsigned int )ha->hdr[(int )t].media_changed != 0U && (unsigned int )*(nscp->cmnd) != 18U) { ha->hdr[(int )t].media_changed = 0U; memset((void *)nscp->sense_buffer, 0, 16UL); *(nscp->sense_buffer) = 112U; *(nscp->sense_buffer + 2UL) = 6U; nscp->result = 2; if ((int )nscp_cmndinfo->wait_for_completion == 0) { nscp_cmndinfo->wait_for_completion = nscp_cmndinfo->wait_for_completion + (int volatile )1; } else { gdth_scsi_done(nscp); } } else { tmp___4 = gdth_internal_cache_cmd(ha, nscp); if (tmp___4 != 0) { gdth_scsi_done(nscp); } else { } } goto ldv_31744; case 30: ; if ((int )*(nscp->cmnd + 4UL) & 1 && ((int )ha->hdr[(int )t].devtype & 1) == 0) { nscp->result = 0; *(nscp->sense_buffer) = 0U; if ((int )nscp_cmndinfo->wait_for_completion == 0) { nscp_cmndinfo->wait_for_completion = nscp_cmndinfo->wait_for_completion + (int volatile )1; } else { gdth_scsi_done(nscp); } } else { *(nscp->cmnd + 3UL) = (unsigned int )((unsigned char )ha->hdr[(int )t].devtype) & 1U; cmd_index = gdth_fill_cache_cmd(ha, nscp, (int )t); if (cmd_index == 0) { this_cmd = 0U; } else { } } goto ldv_31744; case 22: ; case 23: cmd_index = gdth_fill_cache_cmd(ha, nscp, (int )t); if (cmd_index == 0) { this_cmd = 0U; } else { } goto ldv_31744; case 8: ; case 10: ; case 40: ; case 42: ; case 136: ; case 138: ; if ((unsigned int )ha->hdr[(int )t].media_changed != 0U) { ha->hdr[(int )t].media_changed = 0U; memset((void *)nscp->sense_buffer, 0, 16UL); *(nscp->sense_buffer) = 112U; *(nscp->sense_buffer + 2UL) = 6U; nscp->result = 2; if ((int )nscp_cmndinfo->wait_for_completion == 0) { nscp_cmndinfo->wait_for_completion = nscp_cmndinfo->wait_for_completion + (int volatile )1; } else { gdth_scsi_done(nscp); } } else { cmd_index = gdth_fill_cache_cmd(ha, nscp, (int )t); if (cmd_index == 0) { this_cmd = 0U; } else { } } goto ldv_31744; default: printk("GDT-HA %d: Unknown SCSI command 0x%x to cache service !\n", (int )ha->hanum, (int )*(nscp->cmnd)); nscp->result = 327680; if ((int )nscp_cmndinfo->wait_for_completion == 0) { nscp_cmndinfo->wait_for_completion = nscp_cmndinfo->wait_for_completion + (int volatile )1; } else { gdth_scsi_done(nscp); } goto ldv_31744; } ldv_31744: ; } } if ((unsigned int )this_cmd == 0U) { goto ldv_31755; } else { } if ((unsigned long )ha->req_first == (unsigned long )nscp) { pscp = (Scsi_Cmnd *)nscp->SCp.ptr; ha->req_first = pscp; } else { pscp->SCp.ptr = nscp->SCp.ptr; } if ((unsigned int )next_cmd == 0U) { goto ldv_31755; } else { } ldv_31732: nscp = (Scsi_Cmnd *)nscp->SCp.ptr; ldv_31757: ; if ((unsigned long )nscp != (unsigned long )((Scsi_Cmnd *)0)) { goto ldv_31756; } else { } ldv_31755: ; if ((unsigned int )ha->cmd_cnt != 0U) { gdth_release_event(ha); } else { } if ((unsigned int )gdth_polling == 0U) { spin_unlock_irqrestore(& ha->smp_lock, flags); } else { } if ((unsigned int )gdth_polling != 0U && (unsigned int )ha->cmd_cnt != 0U) { tmp___6 = gdth_wait(ha, cmd_index, 10000U); if (tmp___6 == 0) { printk("GDT-HA %d: Command %d timed out !\n", (int )ha->hanum, cmd_index); } else { } } else { } return; } } static void gdth_copy_internal_data(gdth_ha_str *ha , Scsi_Cmnd *scp , char *buffer , u16 count ) { u16 cpcount ; u16 i ; u16 max_sg___0 ; unsigned int tmp ; u16 cpsum ; u16 cpnow ; struct scatterlist *sl ; char *address ; u16 __min1 ; u16 __min2 ; unsigned int tmp___0 ; unsigned long flags ; struct page *tmp___1 ; struct page *tmp___2 ; void *tmp___3 ; size_t __len ; void *__ret ; struct page *tmp___4 ; int tmp___5 ; int __ret_warn_on ; long tmp___6 ; { tmp = scsi_sg_count(scp); max_sg___0 = (u16 )tmp; __min1 = count; tmp___0 = scsi_bufflen(scp); __min2 = (u16 )tmp___0; cpcount = (u16 )((int )__min1 < (int )__min2 ? __min1 : __min2); if ((unsigned int )cpcount != 0U) { cpsum = 0U; i = 0U; sl = scsi_sglist(scp); goto ldv_31786; ldv_31785: cpnow = (unsigned short )sl->length; if ((int )cpsum + (int )cpnow > (int )cpcount) { cpnow = (int )cpcount - (int )cpsum; } else { } cpsum = (int )cpsum + (int )cpnow; tmp___1 = sg_page(sl); if ((unsigned long )tmp___1 == (unsigned long )((struct page *)0)) { printk("GDT-HA %d: invalid sc/gt element in gdth_copy_internal_data()\n", (int )ha->hanum); return; } else { } flags = __raw_local_irq_save(); trace_hardirqs_off(); tmp___2 = sg_page(sl); tmp___3 = kmap_atomic(tmp___2, 5); address = (char *)tmp___3 + (unsigned long )sl->offset; __len = (size_t )cpnow; __ret = memcpy((void *)address, (void const *)buffer, __len); tmp___4 = sg_page(sl); flush_dcache_page(tmp___4); pagefault_enable(); tmp___5 = raw_irqs_disabled_flags(flags); if (tmp___5 != 0) { raw_local_irq_restore(flags); trace_hardirqs_off(); } else { trace_hardirqs_on(); raw_local_irq_restore(flags); } if ((int )cpsum == (int )cpcount) { goto ldv_31784; } else { } buffer = buffer + (unsigned long )cpnow; i = (u16 )((int )i + 1); sl = sg_next(sl); ldv_31786: ; if ((int )i < (int )max_sg___0) { goto ldv_31785; } else { } ldv_31784: ; } else if ((unsigned int )count != 0U) { printk("GDT-HA %d: SCSI command with no buffers but data transfer expected!\n", (int )ha->hanum); __ret_warn_on = 1; tmp___6 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___6 != 0L) { warn_slowpath_null("/home/ldvuser/gratinskiy/commit-tester-runs/6-cpa-svcomp-newdeg/commit-tester-work/task-021--linux-stable--dir/work/current--X--drivers/scsi/gdth.ko--X--defaultlinux-stable-5934df9-1--X--111_1a--X--cpachecker/linux-stable-5934df9-1/csd_deg_dscv/11/dscv_tempdir/dscv/ri/111_1a/drivers/scsi/gdth.o.c.prepared", 2418); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); } else { } return; } } static int gdth_internal_cache_cmd(gdth_ha_str *ha , Scsi_Cmnd *scp ) { u8 t ; gdth_inq_data inq ; gdth_rdcap_data rdc ; gdth_sense_data sd ; gdth_modep_data mpd ; struct gdth_cmndinfo *cmndinfo ; struct gdth_cmndinfo *tmp ; __u32 tmp___0 ; gdth_rdcap16_data rdc16 ; __u64 tmp___1 ; { tmp = gdth_cmnd_priv(scp); cmndinfo = tmp; t = (u8 )(scp->device)->id; scp->result = 0; *(scp->sense_buffer) = 0U; switch ((int )*(scp->cmnd)) { case 0: ; case 47: ; case 27: ; goto ldv_31802; case 18: inq.type_qual = ((int )ha->hdr[(int )t].devtype & 4) != 0 ? 5U : 0U; inq.modif_rmb = 0U; if ((int )ha->hdr[(int )t].devtype & 1 || (int )ha->hdr[(int )t].cluster_type & 1) { inq.modif_rmb = 128U; } else { } inq.version = 2U; inq.resp_aenc = 2U; inq.add_length = 32U; strcpy((char *)(& inq.vendor), (char const *)(& ha->oem_name)); sprintf((char *)(& inq.product), "Host Drive #%02d", (int )t); strcpy((char *)(& inq.revision), " "); gdth_copy_internal_data(ha, scp, (char *)(& inq), 36); goto ldv_31802; case 3: sd.errorcode = 112U; sd.segno = 0U; sd.key = 0U; sd.info = 0U; sd.add_length = 0U; gdth_copy_internal_data(ha, scp, (char *)(& sd), 18); goto ldv_31802; case 26: memset((void *)(& mpd), 0, 12UL); mpd.hd.data_length = 12U; mpd.hd.dev_par = ((int )ha->hdr[(int )t].devtype & 2) != 0 ? 128U : 0U; mpd.hd.bd_length = 8U; mpd.bd.block_length[0] = 0U; mpd.bd.block_length[1] = 2U; mpd.bd.block_length[2] = 0U; gdth_copy_internal_data(ha, scp, (char *)(& mpd), 12); goto ldv_31802; case 37: ; if (ha->hdr[(int )t].size > 4294967295ULL) { rdc.last_block_no = 4294967295U; } else { tmp___0 = __fswab32((__u32 )ha->hdr[(int )t].size - 1U); rdc.last_block_no = tmp___0; } rdc.block_length = 131072U; gdth_copy_internal_data(ha, scp, (char *)(& rdc), 8); goto ldv_31802; case 158: ; if (((int )*(scp->cmnd + 1UL) & 31) == 16 && ((int )ha->cache_feat & 512) != 0) { tmp___1 = __fswab64(ha->hdr[(int )t].size - 1ULL); rdc16.last_block_no = tmp___1; rdc16.block_length = 131072U; gdth_copy_internal_data(ha, scp, (char *)(& rdc16), 12); } else { scp->result = 327680; } goto ldv_31802; default: ; goto ldv_31802; } ldv_31802: ; if ((int )cmndinfo->wait_for_completion == 0) { cmndinfo->wait_for_completion = cmndinfo->wait_for_completion + (int volatile )1; } else { return (1); } return (0); } } static int gdth_fill_cache_cmd(gdth_ha_str *ha , Scsi_Cmnd *scp , u16 hdrive ) { register gdth_cmd_str *cmdp ; struct gdth_cmndinfo *cmndinfo ; struct gdth_cmndinfo *tmp ; u32 cnt ; u32 blockcnt ; u64 no ; u64 blockno ; int i ; int cmd_index ; int read_write ; int sgcnt ; int mode64 ; size_t __len ; void *__ret ; __u64 tmp___0 ; size_t __len___0 ; void *__ret___0 ; __u32 tmp___1 ; size_t __len___1 ; void *__ret___1 ; __u32 tmp___2 ; size_t __len___2 ; void *__ret___2 ; __u16 tmp___3 ; size_t __len___3 ; void *__ret___3 ; __u32 tmp___4 ; unsigned int tmp___5 ; struct scatterlist *tmp___6 ; struct scatterlist *sl ; struct scatterlist *sl___0 ; unsigned int tmp___7 ; { tmp = gdth_cmnd_priv(scp); cmndinfo = tmp; cmdp = ha->pccb; if ((unsigned int )ha->type == 2U && (unsigned int )ha->cmd_cnt != 0U) { return (0); } else { } mode64 = ((int )ha->cache_feat & 512) != 0; cmdp->Service = 9U; cmdp->RequestBuffer = (void *)scp; cmd_index = gdth_get_cmd_index(ha); if (cmd_index == 0) { return (0); } else { } if ((unsigned int )ha->cmd_cnt == 0U) { gdth_set_sema0(ha); } else { } read_write = 0; if (cmndinfo->OpCode != -1) { cmdp->OpCode = (u16 )cmndinfo->OpCode; } else if ((unsigned int )*(scp->cmnd) == 22U) { cmdp->OpCode = 20U; } else if ((unsigned int )*(scp->cmnd) == 23U) { cmdp->OpCode = 21U; } else if ((unsigned int )*(scp->cmnd) == 30U) { if ((int )*(scp->cmnd + 4UL) & 1) { cmdp->OpCode = 10U; } else if ((int )*(scp->cmnd + 3UL) & 1) { cmdp->OpCode = 11U; } else { cmdp->OpCode = 4U; } } else if ((((unsigned int )*(scp->cmnd) == 10U || (unsigned int )*(scp->cmnd) == 42U) || (unsigned int )*(scp->cmnd) == 170U) || (unsigned int )*(scp->cmnd) == 138U) { read_write = 1; if ((unsigned int )gdth_write_through != 0U || ((int )ha->hdr[(int )hdrive].rw_attribs & 1 && ((int )ha->cache_feat & 256) != 0)) { cmdp->OpCode = 16U; } else { cmdp->OpCode = 2U; } } else { read_write = 2; cmdp->OpCode = 1U; } cmdp->BoardNode = 0U; if (mode64 != 0) { cmdp->u.cache64.DeviceNo = hdrive; cmdp->u.cache64.BlockNo = 1ULL; cmdp->u.cache64.sg_canz = 0U; } else { cmdp->u.cache.DeviceNo = hdrive; cmdp->u.cache.BlockNo = 1U; cmdp->u.cache.sg_canz = 0U; } if (read_write != 0) { if ((unsigned int )scp->cmd_len == 16U) { __len = 8UL; if (__len > 63UL) { __ret = memcpy((void *)(& no), (void const *)scp->cmnd + 2U, __len); } else { __ret = memcpy((void *)(& no), (void const *)scp->cmnd + 2U, __len); } tmp___0 = __fswab64(no); blockno = tmp___0; __len___0 = 4UL; if (__len___0 > 63UL) { __ret___0 = memcpy((void *)(& cnt), (void const *)scp->cmnd + 10U, __len___0); } else { __ret___0 = memcpy((void *)(& cnt), (void const *)scp->cmnd + 10U, __len___0); } tmp___1 = __fswab32(cnt); blockcnt = tmp___1; } else if ((unsigned int )scp->cmd_len == 10U) { __len___1 = 4UL; if (__len___1 > 63UL) { __ret___1 = memcpy((void *)(& no), (void const *)scp->cmnd + 2U, __len___1); } else { __ret___1 = memcpy((void *)(& no), (void const *)scp->cmnd + 2U, __len___1); } tmp___2 = __fswab32((unsigned int )no); blockno = (u64 )tmp___2; __len___2 = 2UL; if (__len___2 > 63UL) { __ret___2 = memcpy((void *)(& cnt), (void const *)scp->cmnd + 7U, __len___2); } else { __ret___2 = memcpy((void *)(& cnt), (void const *)scp->cmnd + 7U, __len___2); } tmp___3 = __fswab16((int )((unsigned short )cnt)); blockcnt = (u32 )tmp___3; } else { __len___3 = 4UL; if (__len___3 > 63UL) { __ret___3 = memcpy((void *)(& no), (void const *)scp->cmnd, __len___3); } else { __ret___3 = memcpy((void *)(& no), (void const *)scp->cmnd, __len___3); } tmp___4 = __fswab32((unsigned int )no); blockno = (u64 )tmp___4 & 2097151ULL; blockcnt = (unsigned int )*(scp->cmnd + 4UL) != 0U ? (u32 )*(scp->cmnd + 4UL) : 256U; } if (mode64 != 0) { cmdp->u.cache64.BlockNo = blockno; cmdp->u.cache64.BlockCnt = blockcnt; } else { cmdp->u.cache.BlockNo = (unsigned int )blockno; cmdp->u.cache.BlockCnt = blockcnt; } tmp___7 = scsi_bufflen(scp); if (tmp___7 != 0U) { cmndinfo->dma_dir = read_write == 1 ? 1 : 2; tmp___5 = scsi_sg_count(scp); tmp___6 = scsi_sglist(scp); sgcnt = pci_map_sg(ha->pdev, tmp___6, (int )tmp___5, (int )cmndinfo->dma_dir); if (mode64 != 0) { cmdp->u.cache64.DestAddr = 0xffffffffffffffffULL; cmdp->u.cache64.sg_canz = (u32 )sgcnt; i = 0; sl = scsi_sglist(scp); goto ldv_31843; ldv_31842: cmdp->u.cache64.sg_lst[i].sg_ptr = sl->dma_address; cmdp->u.cache64.sg_lst[i].sg_len = sl->dma_length; i = i + 1; sl = sg_next(sl); ldv_31843: ; if (i < sgcnt) { goto ldv_31842; } else { } } else { cmdp->u.cache.DestAddr = 4294967295U; cmdp->u.cache.sg_canz = (u32 )sgcnt; i = 0; sl___0 = scsi_sglist(scp); goto ldv_31847; ldv_31846: cmdp->u.cache.sg_lst[i].sg_ptr = (u32 )sl___0->dma_address; cmdp->u.cache.sg_lst[i].sg_len = sl___0->dma_length; i = i + 1; sl___0 = sg_next(sl___0); ldv_31847: ; if (i < sgcnt) { goto ldv_31846; } else { } } if ((u32 )sgcnt > max_sg) { max_sg = (unsigned int )sgcnt; } else { } } else { } } else { } if (mode64 != 0) { ha->cmd_len = (unsigned int )((u16 )cmdp->u.cache64.sg_canz) * 12U + 36U; } else { ha->cmd_len = (unsigned int )((u16 )cmdp->u.cache.sg_canz) * 8U + 28U; } if (((int )ha->cmd_len & 3) != 0) { ha->cmd_len = ((unsigned int )ha->cmd_len & 65532U) + 4U; } else { } if ((unsigned int )ha->cmd_cnt != 0U) { if (((int )ha->cmd_offs_dpmem + (int )ha->cmd_len) + 560 > (int )ha->ic_all_size) { ha->cmd_tab[cmd_index + -2].cmnd = (Scsi_Cmnd *)-1; return (0); } else { } } else { } gdth_copy_command(ha); return (cmd_index); } } static int gdth_fill_raw_cmd(gdth_ha_str *ha , Scsi_Cmnd *scp , u8 b ) { register gdth_cmd_str *cmdp ; u16 i ; dma_addr_t sense_paddr ; int cmd_index ; int sgcnt ; int mode64 ; u8 t ; u8 l ; struct page *page ; unsigned long offset ; struct gdth_cmndinfo *cmndinfo ; unsigned long tmp ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; unsigned int tmp___0 ; struct scatterlist *tmp___1 ; struct scatterlist *sl ; struct scatterlist *sl___0 ; unsigned int tmp___2 ; { t = (u8 )(scp->device)->id; l = (u8 )(scp->device)->lun; cmdp = ha->pccb; if ((unsigned int )ha->type == 2U && (unsigned int )ha->cmd_cnt != 0U) { return (0); } else { } mode64 = ((int )ha->raw_feat & 512) != 0; cmdp->Service = 3U; cmdp->RequestBuffer = (void *)scp; cmd_index = gdth_get_cmd_index(ha); if (cmd_index == 0) { return (0); } else { } if ((unsigned int )ha->cmd_cnt == 0U) { gdth_set_sema0(ha); } else { } cmndinfo = gdth_cmnd_priv(scp); if (cmndinfo->OpCode != -1) { cmdp->OpCode = (u16 )cmndinfo->OpCode; cmdp->BoardNode = 0U; if (mode64 != 0) { cmdp->u.raw64.direction = (u32 )(cmndinfo->phase >> 8); ha->cmd_len = 76U; } else { cmdp->u.raw.direction = (u32 )(cmndinfo->phase >> 8); ha->cmd_len = 68U; } } else { tmp = __phys_addr((unsigned long )scp->sense_buffer); page = (struct page *)-24189255811072L + (tmp >> 12); offset = (unsigned long )scp->sense_buffer & 4095UL; sense_paddr = pci_map_page(ha->pdev, page, offset, 16UL, 2); cmndinfo->sense_paddr = sense_paddr; cmdp->OpCode = 2U; cmdp->BoardNode = 0U; if (mode64 != 0) { cmdp->u.raw64.reserved = 0U; cmdp->u.raw64.mdisc_time = 0U; cmdp->u.raw64.mcon_time = 0U; cmdp->u.raw64.clen = (u32 )scp->cmd_len; cmdp->u.raw64.target = t; cmdp->u.raw64.lun = l; cmdp->u.raw64.bus = b; cmdp->u.raw64.priority = 0U; cmdp->u.raw64.sdlen = scsi_bufflen(scp); cmdp->u.raw64.sense_len = 16U; cmdp->u.raw64.sense_data = sense_paddr; cmdp->u.raw64.direction = (unsigned int )gdth_direction_tab[(int )*(scp->cmnd)] == 2U ? 0U : 16777216U; __len = 16UL; if (__len > 63UL) { __ret = memcpy((void *)(& cmdp->u.raw64.cmd), (void const *)scp->cmnd, __len); } else { __ret = memcpy((void *)(& cmdp->u.raw64.cmd), (void const *)scp->cmnd, __len); } cmdp->u.raw64.sg_ranz = 0U; } else { cmdp->u.raw.reserved = 0U; cmdp->u.raw.mdisc_time = 0U; cmdp->u.raw.mcon_time = 0U; cmdp->u.raw.clen = (u32 )scp->cmd_len; cmdp->u.raw.target = t; cmdp->u.raw.lun = l; cmdp->u.raw.bus = b; cmdp->u.raw.priority = 0U; cmdp->u.raw.link_p = 0U; cmdp->u.raw.sdlen = scsi_bufflen(scp); cmdp->u.raw.sense_len = 16U; cmdp->u.raw.sense_data = (u32 )sense_paddr; cmdp->u.raw.direction = (unsigned int )gdth_direction_tab[(int )*(scp->cmnd)] == 2U ? 0U : 16777216U; __len___0 = 12UL; if (__len___0 > 63UL) { __ret___0 = memcpy((void *)(& cmdp->u.raw.cmd), (void const *)scp->cmnd, __len___0); } else { __ret___0 = memcpy((void *)(& cmdp->u.raw.cmd), (void const *)scp->cmnd, __len___0); } cmdp->u.raw.sg_ranz = 0U; } tmp___2 = scsi_bufflen(scp); if (tmp___2 != 0U) { cmndinfo->dma_dir = 0; tmp___0 = scsi_sg_count(scp); tmp___1 = scsi_sglist(scp); sgcnt = pci_map_sg(ha->pdev, tmp___1, (int )tmp___0, (int )cmndinfo->dma_dir); if (mode64 != 0) { cmdp->u.raw64.sdata = 0xffffffffffffffffULL; cmdp->u.raw64.sg_ranz = (u32 )sgcnt; i = 0U; sl = scsi_sglist(scp); goto ldv_31873; ldv_31872: cmdp->u.raw64.sg_lst[(int )i].sg_ptr = sl->dma_address; cmdp->u.raw64.sg_lst[(int )i].sg_len = sl->dma_length; i = (u16 )((int )i + 1); sl = sg_next(sl); ldv_31873: ; if ((int )i < sgcnt) { goto ldv_31872; } else { } } else { cmdp->u.raw.sdata = 4294967295U; cmdp->u.raw.sg_ranz = (u32 )sgcnt; i = 0U; sl___0 = scsi_sglist(scp); goto ldv_31877; ldv_31876: cmdp->u.raw.sg_lst[(int )i].sg_ptr = (u32 )sl___0->dma_address; cmdp->u.raw.sg_lst[(int )i].sg_len = sl___0->dma_length; i = (u16 )((int )i + 1); sl___0 = sg_next(sl___0); ldv_31877: ; if ((int )i < sgcnt) { goto ldv_31876; } else { } } if ((u32 )sgcnt > max_sg) { max_sg = (u32 )sgcnt; } else { } } else { } if (mode64 != 0) { ha->cmd_len = (unsigned int )((u16 )cmdp->u.raw64.sg_ranz) * 12U + 76U; } else { ha->cmd_len = (unsigned int )((u16 )cmdp->u.raw.sg_ranz) * 8U + 68U; } } if (((int )ha->cmd_len & 3) != 0) { ha->cmd_len = ((unsigned int )ha->cmd_len & 65532U) + 4U; } else { } if ((unsigned int )ha->cmd_cnt != 0U) { if (((int )ha->cmd_offs_dpmem + (int )ha->cmd_len) + 560 > (int )ha->ic_all_size) { ha->cmd_tab[cmd_index + -2].cmnd = (Scsi_Cmnd *)-1; return (0); } else { } } else { } gdth_copy_command(ha); return (cmd_index); } } static int gdth_special_cmd(gdth_ha_str *ha , Scsi_Cmnd *scp ) { register gdth_cmd_str *cmdp ; struct gdth_cmndinfo *cmndinfo ; struct gdth_cmndinfo *tmp ; int cmd_index ; { tmp = gdth_cmnd_priv(scp); cmndinfo = tmp; cmdp = ha->pccb; if ((unsigned int )ha->type == 2U && (unsigned int )ha->cmd_cnt != 0U) { return (0); } else { } *cmdp = *(cmndinfo->internal_cmd_str); cmdp->RequestBuffer = (void *)scp; cmd_index = gdth_get_cmd_index(ha); if (cmd_index == 0) { return (0); } else { } if ((unsigned int )ha->cmd_cnt == 0U) { gdth_set_sema0(ha); } else { } if ((unsigned int )cmdp->OpCode == 5U) { ha->cmd_len = 28U; } else if ((unsigned int )cmdp->Service == 9U) { if (((int )ha->cache_feat & 512) != 0) { ha->cmd_len = 48U; } else { ha->cmd_len = 36U; } } else if ((unsigned int )cmdp->Service == 3U) { if (((int )ha->raw_feat & 512) != 0) { ha->cmd_len = 88U; } else { ha->cmd_len = 76U; } } else { } if (((int )ha->cmd_len & 3) != 0) { ha->cmd_len = ((unsigned int )ha->cmd_len & 65532U) + 4U; } else { } if ((unsigned int )ha->cmd_cnt != 0U) { if (((int )ha->cmd_offs_dpmem + (int )ha->cmd_len) + 560 > (int )ha->ic_all_size) { ha->cmd_tab[cmd_index + -2].cmnd = (Scsi_Cmnd *)-1; return (0); } else { } } else { } gdth_copy_command(ha); return (cmd_index); } } static gdth_evt_str *gdth_store_event(gdth_ha_str *ha , u16 source , u16 idx , gdth_evt_data *evt ) { gdth_evt_str *e ; struct timeval tv ; u32 tmp ; int tmp___0 ; int tmp___1 ; { if ((unsigned int )source == 0U) { return ((gdth_evt_str *)0); } else { } if ((int )ebuffer[elastidx].event_source == (int )source && (int )ebuffer[elastidx].event_idx == (int )idx) { if ((unsigned int )evt->size != 0U && (unsigned int )ebuffer[elastidx].event_data.size != 0U) { tmp___0 = memcmp((void const *)(& ebuffer[elastidx].event_data.eu), (void const *)(& evt->eu), (size_t )evt->size); if (tmp___0 == 0) { e = (gdth_evt_str *)(& ebuffer) + (unsigned long )elastidx; do_gettimeofday(& tv); e->last_stamp = (u32 )tv.tv_sec; e->same_count = (u16 )((int )e->same_count + 1); } else { goto _L___0; } } else _L___0: /* CIL Label */ if ((unsigned int )evt->size == 0U && (unsigned int )ebuffer[elastidx].event_data.size == 0U) { tmp___1 = strcmp((char const *)(& ebuffer[elastidx].event_data.event_string), (char const *)(& evt->event_string)); if (tmp___1 == 0) { e = (gdth_evt_str *)(& ebuffer) + (unsigned long )elastidx; do_gettimeofday(& tv); e->last_stamp = (u32 )tv.tv_sec; e->same_count = (u16 )((int )e->same_count + 1); } else { goto _L; } } else { goto _L; } } else { _L: /* CIL Label */ if ((unsigned int )ebuffer[elastidx].event_source != 0U) { elastidx = elastidx + 1; if (elastidx == 100) { elastidx = 0; } else { } if (elastidx == eoldidx) { eoldidx = eoldidx + 1; if (eoldidx == 100) { eoldidx = 0; } else { } } else { } } else { } e = (gdth_evt_str *)(& ebuffer) + (unsigned long )elastidx; e->event_source = source; e->event_idx = idx; do_gettimeofday(& tv); tmp = (u32 )tv.tv_sec; e->last_stamp = tmp; e->first_stamp = tmp; e->same_count = 1U; e->event_data = *evt; e->application = 0U; } return (e); } } static int gdth_read_event(gdth_ha_str *ha , int handle , gdth_evt_str *estr ) { gdth_evt_str *e ; int eindex ; unsigned long flags ; raw_spinlock_t *tmp ; size_t __len ; void *__ret ; { tmp = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp); if (handle == -1) { eindex = eoldidx; } else { eindex = handle; } estr->event_source = 0U; if (eindex < 0 || eindex > 99) { spin_unlock_irqrestore(& ha->smp_lock, flags); return (eindex); } else { } e = (gdth_evt_str *)(& ebuffer) + (unsigned long )eindex; if ((unsigned int )e->event_source != 0U) { if (eindex != elastidx) { eindex = eindex + 1; if (eindex == 100) { eindex = 0; } else { } } else { eindex = -1; } __len = 294UL; if (__len > 63UL) { __ret = memcpy((void *)estr, (void const *)e, __len); } else { __ret = memcpy((void *)estr, (void const *)e, __len); } } else { } spin_unlock_irqrestore(& ha->smp_lock, flags); return (eindex); } } static void gdth_readapp_event(gdth_ha_str *ha , u8 application , gdth_evt_str *estr ) { gdth_evt_str *e ; int eindex ; unsigned long flags ; u8 found ; raw_spinlock_t *tmp ; size_t __len ; void *__ret ; { found = 0U; tmp = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp); eindex = eoldidx; ldv_31921: e = (gdth_evt_str *)(& ebuffer) + (unsigned long )eindex; if ((unsigned int )e->event_source == 0U) { goto ldv_31920; } else { } if ((unsigned int )((int )e->application & (int )application) == 0U) { e->application = (u8 )((int )e->application | (int )application); found = 1U; goto ldv_31920; } else { } if (eindex == elastidx) { goto ldv_31920; } else { } eindex = eindex + 1; if (eindex == 100) { eindex = 0; } else { } goto ldv_31921; ldv_31920: ; if ((unsigned int )found != 0U) { __len = 294UL; if (__len > 63UL) { __ret = memcpy((void *)estr, (void const *)e, __len); } else { __ret = memcpy((void *)estr, (void const *)e, __len); } } else { estr->event_source = 0U; } spin_unlock_irqrestore(& ha->smp_lock, flags); return; } } static void gdth_clear_events(void) { { elastidx = 0; eoldidx = elastidx; ebuffer[0].event_source = 0U; return; } } static irqreturn_t __gdth_interrupt(gdth_ha_str *ha , int gdth_from_wait , int *pIndex ) { gdt6m_dpram_str *dp6m_ptr ; gdt6_dpram_str *dp6_ptr ; gdt2_dpram_str *dp2_ptr ; Scsi_Cmnd *scp ; int rval ; int i ; u8 IStatus ; u16 Service ; unsigned long flags ; raw_spinlock_t *tmp ; unsigned char tmp___0 ; struct gdth_cmndinfo *tmp___1 ; { dp6m_ptr = (gdt6m_dpram_str *)0; flags = 0UL; if ((unsigned int )gdth_polling != 0U) { if (gdth_from_wait == 0) { return (1); } else { } } else { } if ((unsigned int )gdth_polling == 0U) { tmp = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp); } else { } IStatus = gdth_get_status(ha); if ((unsigned int )IStatus == 0U) { if ((unsigned int )gdth_polling == 0U) { spin_unlock_irqrestore(& ha->smp_lock, flags); } else { } return (1); } else { } act_ints = act_ints + 1U; if ((unsigned int )ha->type == 2U) { if ((int )((signed char )IStatus) < 0) { IStatus = (unsigned int )IStatus & 127U; ha->status = inw((int )ha->bmic + 3224); } else { ha->status = 1U; } ha->info = inl((int )ha->bmic + 3228); ha->service = inw((int )ha->bmic + 3226); ha->info2 = inl((int )ha->bmic + 3220); outb(255, (int )ha->bmic + 3215); outb(0, (int )ha->bmic + 3211); } else if ((unsigned int )ha->type == 1U) { dp2_ptr = (gdt2_dpram_str *)ha->brd; if ((int )((signed char )IStatus) < 0) { IStatus = (unsigned int )IStatus & 127U; ha->status = readw((void const volatile *)(& dp2_ptr->u.ic.Status)); } else { ha->status = 1U; } ha->info = readl((void const volatile *)(& dp2_ptr->u.ic.Info)); ha->service = readw((void const volatile *)(& dp2_ptr->u.ic.Service)); ha->info2 = readl((void const volatile *)(& dp2_ptr->u.ic.Info) + 1U); writeb(255, (void volatile *)(& dp2_ptr->io.irqdel)); writeb(0, (void volatile *)(& dp2_ptr->u.ic.Cmd_Index)); writeb(0, (void volatile *)(& dp2_ptr->io.Sema1)); } else if ((unsigned int )ha->type == 3U) { dp6_ptr = (gdt6_dpram_str *)ha->brd; if ((int )((signed char )IStatus) < 0) { IStatus = (unsigned int )IStatus & 127U; ha->status = readw((void const volatile *)(& dp6_ptr->u.ic.Status)); } else { ha->status = 1U; } ha->info = readl((void const volatile *)(& dp6_ptr->u.ic.Info)); ha->service = readw((void const volatile *)(& dp6_ptr->u.ic.Service)); ha->info2 = readl((void const volatile *)(& dp6_ptr->u.ic.Info) + 1U); writeb(255, (void volatile *)(& dp6_ptr->io.irqdel)); writeb(0, (void volatile *)(& dp6_ptr->u.ic.Cmd_Index)); writeb(0, (void volatile *)(& dp6_ptr->io.Sema1)); } else if ((unsigned int )ha->type == 4U) { if ((int )((signed char )IStatus) < 0) { IStatus = (unsigned int )IStatus & 127U; ha->status = inw((int )((unsigned short )((long )(& (ha->plx)->status)))); } else { ha->status = 1U; } ha->info = inl((int )((unsigned short )((long )(& (ha->plx)->info)))); ha->service = inw((int )((unsigned short )((long )(& (ha->plx)->service)))); ha->info2 = inl((int )((unsigned short )((long )((u32 *)(& (ha->plx)->info) + 1UL)))); outb(255, (int )((unsigned short )((long )(& (ha->plx)->edoor_reg)))); outb(0, (int )((unsigned short )((long )(& (ha->plx)->sema1_reg)))); } else if ((unsigned int )ha->type == 5U) { dp6m_ptr = (gdt6m_dpram_str *)ha->brd; if ((int )((signed char )IStatus) < 0) { IStatus = (unsigned int )IStatus & 127U; ha->status = readw((void const volatile *)(& dp6m_ptr->i960r.status)); } else { ha->status = 1U; } ha->info = readl((void const volatile *)(& dp6m_ptr->i960r.info)); ha->service = readw((void const volatile *)(& dp6m_ptr->i960r.service)); ha->info2 = readl((void const volatile *)(& dp6m_ptr->i960r.info) + 1U); if ((unsigned int )IStatus == 0U) { if ((unsigned int )ha->service != 11U && ((int )ha->fw_vers & 255) > 25) { tmp___0 = readb((void const volatile *)(& ((gdt6m_dpram_str *)ha->brd)->i960r.severity)); ha->dvr.severity = (u32 )tmp___0; i = 0; goto ldv_31947; ldv_31946: ha->dvr.event_string[i] = readb((void const volatile *)(& ((gdt6m_dpram_str *)ha->brd)->i960r.evt_str) + (unsigned long )i); if ((unsigned int )ha->dvr.event_string[i] == 0U) { goto ldv_31945; } else { } i = i + 1; ldv_31947: ; if (i <= 255) { goto ldv_31946; } else { } ldv_31945: ; } else { } } else { } writeb(255, (void volatile *)(& dp6m_ptr->i960r.edoor_reg)); writeb(0, (void volatile *)(& dp6m_ptr->i960r.sema1_reg)); } else { if ((unsigned int )gdth_polling == 0U) { spin_unlock_irqrestore(& ha->smp_lock, flags); } else { } return (1); } if (gdth_from_wait != 0) { *pIndex = (int )IStatus; } else { } if ((unsigned int )IStatus == 0U) { gdth_async_event(ha); if ((unsigned int )gdth_polling == 0U) { spin_unlock_irqrestore(& ha->smp_lock, flags); } else { } gdth_next(ha); return (1); } else { } if ((unsigned int )IStatus == 1U) { ha->dvr.size = 8U; ha->dvr.eu.driver.ionode = ha->hanum; gdth_store_event(ha, 2, 4, & ha->dvr); if ((unsigned int )gdth_polling == 0U) { spin_unlock_irqrestore(& ha->smp_lock, flags); } else { } return (1); } else { } scp = ha->cmd_tab[(int )IStatus + -2].cmnd; Service = ha->cmd_tab[(int )IStatus + -2].service; ha->cmd_tab[(int )IStatus + -2].cmnd = (Scsi_Cmnd *)-1; if ((unsigned long )scp == (unsigned long )((Scsi_Cmnd *)-1)) { ha->dvr.size = 8U; ha->dvr.eu.driver.ionode = ha->hanum; ha->dvr.eu.driver.index = (u32 )IStatus; gdth_store_event(ha, 2, 1, & ha->dvr); if ((unsigned int )gdth_polling == 0U) { spin_unlock_irqrestore(& ha->smp_lock, flags); } else { } return (1); } else { } if ((unsigned long )scp == (unsigned long )((Scsi_Cmnd *)-2)) { if ((unsigned int )gdth_polling == 0U) { spin_unlock_irqrestore(& ha->smp_lock, flags); } else { } return (1); } else { } rval = gdth_sync_event(ha, (int )Service, (int )IStatus, scp); if ((unsigned int )gdth_polling == 0U) { spin_unlock_irqrestore(& ha->smp_lock, flags); } else { } if (rval == 2) { tmp___1 = gdth_cmnd_priv(scp); gdth_putq(ha, scp, (int )tmp___1->priority); } else if (rval == 1) { gdth_scsi_done(scp); } else { } gdth_next(ha); return (1); } } static irqreturn_t gdth_interrupt(int irq___0 , void *dev_id ) { gdth_ha_str *ha ; irqreturn_t tmp ; { ha = (gdth_ha_str *)dev_id; tmp = __gdth_interrupt(ha, 0, (int *)0); return (tmp); } } static int gdth_sync_event(gdth_ha_str *ha , int service , u8 index , Scsi_Cmnd *scp ) { gdth_msg_str *msg ; gdth_cmd_str *cmdp ; u8 b ; u8 t ; struct gdth_cmndinfo *cmndinfo ; struct gdth_cmndinfo *tmp ; int tmp___0 ; int tmp___1 ; unsigned int tmp___2 ; struct scatterlist *tmp___3 ; unsigned int tmp___4 ; { tmp = gdth_cmnd_priv(scp); cmndinfo = tmp; cmdp = ha->pccb; if (service == 11) { msg = ha->pmsg; if (msg->msg_len > 17U) { msg->msg_len = 17U; } else { } if (msg->msg_len != 0U) { if ((unsigned int )msg->msg_answer == 0U || (unsigned int )msg->msg_ext == 0U) { msg->msg_text[msg->msg_len] = 0; printk("%s", (char *)(& msg->msg_text)); } else { } } else { } if ((unsigned int )msg->msg_ext != 0U && (unsigned int )msg->msg_answer == 0U) { goto ldv_31965; ldv_31964: gdth_delay(0); ldv_31965: tmp___0 = gdth_test_busy(ha); if (tmp___0 != 0) { goto ldv_31964; } else { } cmdp->Service = 11U; cmdp->RequestBuffer = (void *)-3; gdth_get_cmd_index(ha); gdth_set_sema0(ha); cmdp->OpCode = 1U; cmdp->BoardNode = 0U; cmdp->u.screen.reserved = 0U; cmdp->u.screen.su.msg.msg_handle = msg->msg_handle; cmdp->u.screen.su.msg.msg_addr = ha->msg_phys; ha->cmd_offs_dpmem = 0U; ha->cmd_len = 24U; ha->cmd_cnt = 0U; gdth_copy_command(ha); gdth_release_event(ha); return (0); } else { } if ((unsigned int )msg->msg_answer != 0U && msg->msg_alen != 0U) { if (msg->msg_alen == 1U) { msg->msg_alen = 0U; msg->msg_len = 1U; msg->msg_text[0] = 0; } else { msg->msg_alen = msg->msg_alen - 2U; msg->msg_len = 2U; msg->msg_text[0] = 1; msg->msg_text[1] = 0; } msg->msg_ext = 0U; msg->msg_answer = 0U; goto ldv_31968; ldv_31967: gdth_delay(0); ldv_31968: tmp___1 = gdth_test_busy(ha); if (tmp___1 != 0) { goto ldv_31967; } else { } cmdp->Service = 11U; cmdp->RequestBuffer = (void *)-3; gdth_get_cmd_index(ha); gdth_set_sema0(ha); cmdp->OpCode = 2U; cmdp->BoardNode = 0U; cmdp->u.screen.reserved = 0U; cmdp->u.screen.su.msg.msg_handle = msg->msg_handle; cmdp->u.screen.su.msg.msg_addr = ha->msg_phys; ha->cmd_offs_dpmem = 0U; ha->cmd_len = 24U; ha->cmd_cnt = 0U; gdth_copy_command(ha); gdth_release_event(ha); return (0); } else { } printk("\n"); } else { b = (u8 )(scp->device)->channel; t = (u8 )(scp->device)->id; if (cmndinfo->OpCode == -1 && (int )ha->virt_bus != (int )b) { ha->raw[(int )ha->virt_bus < (int )b ? (int )b + -1 : (int )b].io_cnt[(int )t] = (u8 )((int )ha->raw[(int )ha->virt_bus < (int )b ? (int )b + -1 : (int )b].io_cnt[(int )t] - 1); } else { } if ((unsigned int )ha->status == 7U) { if (cmndinfo->OpCode == 10) { cmndinfo->OpCode = 22; } else { } return (2); } else { } tmp___4 = scsi_bufflen(scp); if (tmp___4 != 0U) { tmp___2 = scsi_sg_count(scp); tmp___3 = scsi_sglist(scp); pci_unmap_sg(ha->pdev, tmp___3, (int )tmp___2, (int )cmndinfo->dma_dir); } else { } if (cmndinfo->sense_paddr != 0ULL) { pci_unmap_page(ha->pdev, cmndinfo->sense_paddr, 16UL, 2); } else { } if ((unsigned int )ha->status == 1U) { cmndinfo->status = 1U; cmndinfo->info = ha->info; if (cmndinfo->OpCode != -1) { if (cmndinfo->OpCode == 22) { ha->hdr[(int )t].cluster_type = (unsigned char )ha->info; if (((int )ha->hdr[(int )t].cluster_type & 2) == 0) { cmndinfo->OpCode = 10; if (((int )ha->hdr[(int )t].cluster_type & 4) != 0) { cmndinfo->phase = -2; } else { } } else { cmndinfo->OpCode = -1; } } else { if (cmndinfo->OpCode == 10) { ha->hdr[(int )t].cluster_type = (u8 )((unsigned int )ha->hdr[(int )t].cluster_type | 2U); ha->hdr[(int )t].media_changed = 1U; } else if (cmndinfo->OpCode == 11) { ha->hdr[(int )t].cluster_type = (unsigned int )ha->hdr[(int )t].cluster_type & 253U; ha->hdr[(int )t].media_changed = 1U; } else { } cmndinfo->OpCode = -1; } cmndinfo->priority = 8U; return (2); } else { if ((unsigned int )*(scp->cmnd) == 22U) { ha->hdr[(int )t].cluster_type = (u8 )((unsigned int )ha->hdr[(int )t].cluster_type | 4U); } else if ((unsigned int )*(scp->cmnd) == 23U) { ha->hdr[(int )t].cluster_type = (unsigned int )ha->hdr[(int )t].cluster_type & 251U; } else { } scp->result = 0; *(scp->sense_buffer) = 0U; } } else { cmndinfo->status = ha->status; cmndinfo->info = ha->info; if (cmndinfo->OpCode != -1) { if (cmndinfo->OpCode == 19 || cmndinfo->OpCode == 20) { cmndinfo->OpCode = -1; cmndinfo->priority = 8U; return (2); } else { } memset((void *)scp->sense_buffer, 0, 16UL); *(scp->sense_buffer) = 112U; *(scp->sense_buffer + 2UL) = 2U; scp->result = 2; } else if (service == 9) { if ((unsigned int )ha->status == 12U && ((int )ha->hdr[(int )t].cluster_type & 7) == 7) { ha->hdr[(int )t].cluster_type = (unsigned int )ha->hdr[(int )t].cluster_type & 251U; } else { } memset((void *)scp->sense_buffer, 0, 16UL); if ((unsigned int )ha->status == 65512U) { scp->result = 24; } else { *(scp->sense_buffer) = 112U; *(scp->sense_buffer + 2UL) = 2U; scp->result = 2; } if (cmndinfo->internal_command == 0) { ha->dvr.size = 16U; ha->dvr.eu.sync.ionode = ha->hanum; ha->dvr.eu.sync.service = (u16 )service; ha->dvr.eu.sync.status = ha->status; ha->dvr.eu.sync.info = ha->info; ha->dvr.eu.sync.hostdrive = (u16 )t; if ((int )((short )ha->status) < 0) { gdth_store_event(ha, 4, 0, & ha->dvr); } else { gdth_store_event(ha, 4, (int )((u16 )service), & ha->dvr); } } else { } } else if ((unsigned int )ha->status != 12U || ha->info > 255U) { scp->result = 262144; } else { scp->result = (int )ha->info; } } if ((int )cmndinfo->wait_for_completion == 0) { cmndinfo->wait_for_completion = cmndinfo->wait_for_completion + (int volatile )1; } else { return (1); } } return (0); } } static char *async_cache_tab[76U] = { (char *)"\t", (char *)"\t", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\a", (char *)"\005", (char *)"\005", (char *)"\a", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\a", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\a", (char *)"\a", (char *)"\a", (char *)"\a", (char *)"\a", (char *)"\t", (char *)"\a", (char *)"\a", (char *)"\a", (char *)"\a", (char *)"\a", (char *)"\a", (char *)"\a", (char *)"\005", (char *)"\003", (char *)"\005", (char *)"\a", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\a", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\003", (char *)"\003", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\005", (char *)"\003", (char *)"\003", (char *)"\t", (char *)"\005", (char *)"\005", (char *)"\003"}; static int gdth_async_event(gdth_ha_str *ha ) { gdth_cmd_str *cmdp ; int cmd_index ; int tmp ; { cmdp = ha->pccb; if ((unsigned int )ha->service == 11U) { if ((unsigned int )ha->status == 0U) { goto ldv_31977; ldv_31976: gdth_delay(0); ldv_31977: tmp = gdth_test_busy(ha); if (tmp != 0) { goto ldv_31976; } else { } cmdp->Service = 11U; cmdp->RequestBuffer = (void *)-3; cmd_index = gdth_get_cmd_index(ha); gdth_set_sema0(ha); cmdp->OpCode = 1U; cmdp->BoardNode = 0U; cmdp->u.screen.reserved = 0U; cmdp->u.screen.su.msg.msg_handle = 4294967295U; cmdp->u.screen.su.msg.msg_addr = ha->msg_phys; ha->cmd_offs_dpmem = 0U; ha->cmd_len = 24U; ha->cmd_cnt = 0U; gdth_copy_command(ha); if ((unsigned int )ha->type == 2U) { printk("[EISA slot %d] ", (int )((unsigned short )ha->brd_phys)); } else if ((unsigned int )ha->type == 1U) { printk("[DPMEM 0x%4X] ", (int )((unsigned short )ha->brd_phys)); } else { printk("[PCI %d/%d] ", (int )((unsigned short )(ha->brd_phys >> 8)), (int )((unsigned short )(ha->brd_phys >> 3)) & 31); } gdth_release_event(ha); } else { } } else { if ((unsigned int )ha->type == 5U && ((int )ha->fw_vers & 255) > 25) { ha->dvr.size = 0U; ha->dvr.eu.async.ionode = ha->hanum; ha->dvr.eu.async.status = ha->status; } else { ha->dvr.size = 13U; ha->dvr.eu.async.ionode = ha->hanum; ha->dvr.eu.async.service = ha->service; ha->dvr.eu.async.status = ha->status; ha->dvr.eu.async.info = ha->info; *((u32 *)(& ha->dvr.eu.async.scsi_coord)) = ha->info2; } gdth_store_event(ha, 1, (int )ha->service, & ha->dvr); gdth_log_event(& ha->dvr, (char *)0); } return (1); } } static void gdth_log_event(gdth_evt_data *dvr , char *buffer ) { gdth_stackframe stack ; char *f ; int i ; int j ; int tmp ; int tmp___0 ; int tmp___1 ; { f = (char *)0; if ((unsigned int )dvr->size == 0U) { if ((unsigned long )buffer == (unsigned long )((char *)0)) { printk("Adapter %d: %s\n", (int )dvr->eu.async.ionode, (u8 *)(& dvr->event_string)); } else { sprintf(buffer, "Adapter %d: %s\n", (int )dvr->eu.async.ionode, (u8 *)(& dvr->event_string)); } } else if ((unsigned int )dvr->eu.async.service == 9U && (unsigned int )dvr->eu.async.status <= 75U) { f = async_cache_tab[(int )dvr->eu.async.status]; j = 0; i = 1; goto ldv_31995; ldv_31994: ; switch ((int )*(f + ((unsigned long )i + 1UL))) { case 4: tmp = j; j = j + 1; stack.b[tmp] = (unsigned long )*((u32 *)(& dvr->eu.stream) + (unsigned long )*(f + (unsigned long )i)); goto ldv_31990; case 2: tmp___0 = j; j = j + 1; stack.b[tmp___0] = (unsigned long )*((u16 *)(& dvr->eu.stream) + (unsigned long )*(f + (unsigned long )i)); goto ldv_31990; case 1: tmp___1 = j; j = j + 1; stack.b[tmp___1] = (unsigned long )*((u8 *)(& dvr->eu.stream) + (unsigned long )*(f + (unsigned long )i)); goto ldv_31990; default: ; goto ldv_31990; } ldv_31990: i = i + 2; ldv_31995: ; if ((int )*f > i) { goto ldv_31994; } else { } if ((unsigned long )buffer == (unsigned long )((char *)0)) { printk((char const *)f + (unsigned long )*f, stack); printk("\n"); } else { sprintf(buffer, (char const *)f + (unsigned long )*f, stack); } } else if ((unsigned long )buffer == (unsigned long )((char *)0)) { printk("GDT HA %u, Unknown async. event service %d event no. %d\n", (int )dvr->eu.async.ionode, (int )dvr->eu.async.service, (int )dvr->eu.async.status); } else { sprintf(buffer, "GDT HA %u, Unknown async. event service %d event no. %d", (int )dvr->eu.async.ionode, (int )dvr->eu.async.service, (int )dvr->eu.async.status); } return; } } static u8 gdth_timer_running ; static void gdth_timeout(unsigned long data ) { u32 i ; Scsi_Cmnd *nscp ; gdth_ha_str *ha ; unsigned long flags ; int tmp ; long tmp___0 ; struct list_head const *__mptr ; raw_spinlock_t *tmp___1 ; { tmp = list_empty((struct list_head const *)(& gdth_instances)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); if (tmp___0 != 0L) { gdth_timer_running = 0U; return; } else { } __mptr = (struct list_head const *)gdth_instances.next; ha = (gdth_ha_str *)__mptr + 0xfffffffffffffff8UL; tmp___1 = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp___1); act_stats = 0U; i = 0U; goto ldv_32011; ldv_32010: ; if ((unsigned long )ha->cmd_tab[i].cmnd != (unsigned long )((Scsi_Cmnd *)-1)) { act_stats = act_stats + 1U; } else { } i = i + 1U; ldv_32011: ; if (i <= 119U) { goto ldv_32010; } else { } act_rq = 0U; nscp = ha->req_first; goto ldv_32014; ldv_32013: act_rq = act_rq + 1U; nscp = (Scsi_Cmnd *)nscp->SCp.ptr; ldv_32014: ; if ((unsigned long )nscp != (unsigned long )((Scsi_Cmnd *)0)) { goto ldv_32013; } else { } act_ios = 0U; act_ints = act_ios; gdth_timer.expires = (unsigned long )jiffies + 7500UL; add_timer(& gdth_timer); spin_unlock_irqrestore(& ha->smp_lock, flags); return; } } static void gdth_timer_init(void) { { if ((unsigned int )gdth_timer_running != 0U) { return; } else { } gdth_timer_running = 1U; gdth_timer.expires = (unsigned long )jiffies + 250UL; gdth_timer.data = 0UL; gdth_timer.function = & gdth_timeout; add_timer(& gdth_timer); return; } } static void internal_setup(char *str , int *ints ) { int i ; int argc ; char *cur_str ; char *argv ; int val ; int c ; unsigned long tmp ; unsigned long tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; { if ((unsigned long )ints != (unsigned long )((int *)0)) { argc = *ints; if (argc > 0) { if (argc > 16) { argc = 16; } else { } i = 0; goto ldv_32028; ldv_32027: irq[i] = *(ints + ((unsigned long )i + 1UL)); i = i + 1; ldv_32028: ; if (i < argc) { goto ldv_32027; } else { } } else { } } else { } argv = str; goto ldv_32036; ldv_32037: val = 0; cur_str = cur_str + 1; c = (int )*cur_str; if (c == 110 || c == 78) { val = 0; } else if (c == 121 || c == 89) { val = 1; } else { tmp = simple_strtoul((char const *)cur_str, (char **)0, 0U); val = (int )tmp; } tmp___9 = strncmp((char const *)argv, "disable:", 8UL); if (tmp___9 == 0) { disable = val; } else { tmp___8 = strncmp((char const *)argv, "reserve_mode:", 13UL); if (tmp___8 == 0) { reserve_mode = val; } else { tmp___7 = strncmp((char const *)argv, "reverse_scan:", 13UL); if (tmp___7 == 0) { reverse_scan = val; } else { tmp___6 = strncmp((char const *)argv, "hdr_channel:", 12UL); if (tmp___6 == 0) { hdr_channel = val; } else { tmp___5 = strncmp((char const *)argv, "max_ids:", 8UL); if (tmp___5 == 0) { max_ids = val; } else { tmp___4 = strncmp((char const *)argv, "rescan:", 7UL); if (tmp___4 == 0) { rescan = val; } else { tmp___3 = strncmp((char const *)argv, "shared_access:", 14UL); if (tmp___3 == 0) { shared_access = val; } else { tmp___2 = strncmp((char const *)argv, "probe_eisa_isa:", 15UL); if (tmp___2 == 0) { probe_eisa_isa = val; } else { tmp___1 = strncmp((char const *)argv, "reserve_list:", 13UL); if (tmp___1 == 0) { reserve_list[0] = val; i = 1; goto ldv_32034; ldv_32033: cur_str = strchr((char const *)cur_str, 44); if ((unsigned long )cur_str == (unsigned long )((char *)0)) { goto ldv_32032; } else { } cur_str = cur_str + 1; if (((int )_ctype[(int )((unsigned char )*cur_str)] & 4) == 0) { cur_str = cur_str - 1; goto ldv_32032; } else { } tmp___0 = simple_strtoul((char const *)cur_str, (char **)0, 0U); reserve_list[i] = (int )tmp___0; i = i + 1; ldv_32034: ; if (i <= 39) { goto ldv_32033; } else { } ldv_32032: ; if ((unsigned long )cur_str == (unsigned long )((char *)0)) { goto ldv_32035; } else { } cur_str = cur_str + 1; argv = cur_str; goto ldv_32036; } else { } } } } } } } } } argv = strchr((char const *)argv, 44); if ((unsigned long )argv != (unsigned long )((char *)0)) { argv = argv + 1; } else { } ldv_32036: ; if ((unsigned long )argv != (unsigned long )((char *)0)) { cur_str = strchr((char const *)argv, 58); if ((unsigned long )cur_str != (unsigned long )((char *)0)) { goto ldv_32037; } else { goto ldv_32035; } } else { } ldv_32035: ; return; } } int option_setup(char *str ) { int ints[16U] ; char *cur ; int i ; int tmp ; unsigned long tmp___0 ; { cur = str; i = 1; goto ldv_32045; ldv_32044: tmp = i; i = i + 1; tmp___0 = simple_strtoul((char const *)cur, (char **)0, 0U); ints[tmp] = (int )tmp___0; cur = strchr((char const *)cur, 44); if ((unsigned long )cur != (unsigned long )((char *)0)) { cur = cur + 1; } else { } ldv_32045: ; if (((unsigned long )cur != (unsigned long )((char *)0) && ((int )_ctype[(int )((unsigned char )*cur)] & 4) != 0) && i <= 15) { goto ldv_32044; } else { } ints[0] = i + -1; internal_setup(cur, (int *)(& ints)); return (1); } } static char const *gdth_ctr_name(gdth_ha_str *ha ) { { if ((unsigned int )ha->type == 2U) { switch (ha->stype) { case 19960860U: ; return ("GDT3000/3020"); case 36738076U: ; return ("GDT3000A/3020A/3050A"); case 53515292U: ; return ("GDT3000B/3010A"); } } else if ((unsigned int )ha->type == 1U) { return ("GDT2000/2020"); } else if ((unsigned int )ha->type == 3U) { switch ((int )(ha->pdev)->device) { case 0: ; return ("GDT6000/6020/6050"); case 1: ; return ("GDT6000B/6010"); } } else { } return (""); } } static char const *gdth_info(struct Scsi_Host *shp ) { gdth_ha_str *ha ; void *tmp ; { tmp = shost_priv(shp); ha = (gdth_ha_str *)tmp; return ((char const *)(& ha->binfo.type_string)); } } static enum blk_eh_timer_return gdth_timed_out(struct scsi_cmnd *scp ) { gdth_ha_str *ha ; void *tmp ; struct gdth_cmndinfo *cmndinfo ; struct gdth_cmndinfo *tmp___0 ; u8 b ; u8 t ; unsigned long flags ; enum blk_eh_timer_return retval ; raw_spinlock_t *tmp___1 ; { tmp = shost_priv((scp->device)->host); ha = (gdth_ha_str *)tmp; tmp___0 = gdth_cmnd_priv(scp); cmndinfo = tmp___0; retval = 0; b = (u8 )(scp->device)->channel; t = (u8 )(scp->device)->id; cmndinfo->timeout_count = cmndinfo->timeout_count + 1; if (cmndinfo->timeout_count <= 5) { retval = 2; } else { } tmp___1 = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp___1); if (((int )ha->virt_bus != (int )b && (unsigned int )ha->raw[(int )ha->virt_bus < (int )b ? (int )b + -1 : (int )b].lock != 0U) || (((int )ha->virt_bus == (int )b && (unsigned int )t != 255U) && (unsigned int )ha->hdr[(int )t].lock != 0U)) { retval = 2; } else { } spin_unlock_irqrestore(& ha->smp_lock, flags); return (retval); } } static int gdth_eh_bus_reset(Scsi_Cmnd *scp ) { gdth_ha_str *ha ; void *tmp ; int i ; unsigned long flags ; Scsi_Cmnd *cmnd ; u8 b ; raw_spinlock_t *tmp___0 ; raw_spinlock_t *tmp___1 ; int tmp___2 ; int tmp___3 ; raw_spinlock_t *tmp___4 ; int tmp___5 ; { tmp = shost_priv((scp->device)->host); ha = (gdth_ha_str *)tmp; b = (u8 )(scp->device)->channel; tmp___0 = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp___0); i = 0; goto ldv_32083; ldv_32082: cmnd = ha->cmd_tab[i].cmnd; if ((((unsigned long )cmnd != (unsigned long )((Scsi_Cmnd *)-1) && (unsigned long )cmnd != (unsigned long )((Scsi_Cmnd *)-2)) && (unsigned long )cmnd != (unsigned long )((Scsi_Cmnd *)-3)) && (cmnd->device)->channel == (unsigned int )b) { ha->cmd_tab[i].cmnd = (Scsi_Cmnd *)-1; } else { } i = i + 1; ldv_32083: ; if (i <= 119) { goto ldv_32082; } else { } spin_unlock_irqrestore(& ha->smp_lock, flags); if ((int )ha->virt_bus == (int )b) { i = 0; goto ldv_32092; ldv_32091: ; if ((unsigned int )ha->hdr[i].present != 0U) { tmp___1 = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp___1); gdth_polling = 1U; goto ldv_32089; ldv_32088: gdth_delay(0); ldv_32089: tmp___2 = gdth_test_busy(ha); if (tmp___2 != 0) { goto ldv_32088; } else { } tmp___3 = gdth_internal_cmd(ha, 9, 24, (u32 )i, 0ULL, 0ULL); if (tmp___3 != 0) { ha->hdr[i].cluster_type = (unsigned int )ha->hdr[i].cluster_type & 251U; } else { } gdth_polling = 0U; spin_unlock_irqrestore(& ha->smp_lock, flags); } else { } i = i + 1; ldv_32092: ; if (i <= 254) { goto ldv_32091; } else { } } else { tmp___4 = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp___4); i = 0; goto ldv_32098; ldv_32097: ha->raw[(int )ha->virt_bus < (int )b ? (int )b + -1 : (int )b].io_cnt[i] = 0U; i = i + 1; ldv_32098: ; if (i <= 126) { goto ldv_32097; } else { } gdth_polling = 1U; goto ldv_32101; ldv_32100: gdth_delay(0); ldv_32101: tmp___5 = gdth_test_busy(ha); if (tmp___5 != 0) { goto ldv_32100; } else { } gdth_internal_cmd(ha, 3, 18, (int )ha->virt_bus < (int )b ? (u32 )((int )b + -1) : (u32 )b, 0ULL, 0ULL); gdth_polling = 0U; spin_unlock_irqrestore(& ha->smp_lock, flags); } return (8194); } } static int gdth_bios_param(struct scsi_device *sdev , struct block_device *bdev , sector_t cap , int *ip ) { u8 b ; u8 t ; gdth_ha_str *ha ; void *tmp ; struct scsi_device *sd ; unsigned int capacity ; { tmp = shost_priv(sdev->host); ha = (gdth_ha_str *)tmp; sd = sdev; capacity = (unsigned int )cap; b = (u8 )sd->channel; t = (u8 )sd->id; if ((int )ha->virt_bus != (int )b || (unsigned int )ha->hdr[(int )t].heads == 0U) { gdth_eval_mapping(capacity, (u32 *)ip + 2U, ip, ip + 1UL); } else { *ip = (int )ha->hdr[(int )t].heads; *(ip + 1UL) = (int )ha->hdr[(int )t].secs; *(ip + 2UL) = (int )((capacity / (unsigned int )*ip) / (unsigned int )*(ip + 1UL)); } return (0); } } static int gdth_queuecommand(struct scsi_cmnd *scp , void (*done)(struct scsi_cmnd * ) ) { gdth_ha_str *ha ; void *tmp ; struct gdth_cmndinfo *cmndinfo ; long tmp___0 ; int tmp___1 ; { tmp = shost_priv((scp->device)->host); ha = (gdth_ha_str *)tmp; cmndinfo = gdth_get_cmndinfo(ha); tmp___0 = ldv__builtin_expect((unsigned long )cmndinfo == (unsigned long )((struct gdth_cmndinfo *)0), 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/ldvuser/gratinskiy/commit-tester-runs/6-cpa-svcomp-newdeg/commit-tester-work/task-021--linux-stable--dir/work/current--X--drivers/scsi/gdth.ko--X--defaultlinux-stable-5934df9-1--X--111_1a--X--cpachecker/linux-stable-5934df9-1/csd_deg_dscv/11/dscv_tempdir/dscv/ri/111_1a/drivers/scsi/gdth.o.c.prepared"), "i" (4109), "i" (12UL)); ldv_32121: ; goto ldv_32121; } else { } scp->scsi_done = done; cmndinfo->timeout_count = 0; cmndinfo->priority = 32U; tmp___1 = __gdth_queuecommand(ha, scp, cmndinfo); return (tmp___1); } } static int __gdth_queuecommand(gdth_ha_str *ha , struct scsi_cmnd *scp , struct gdth_cmndinfo *cmndinfo ) { { scp->host_scribble = (unsigned char *)cmndinfo; cmndinfo->wait_for_completion = 1; cmndinfo->phase = -1; cmndinfo->OpCode = -1; act_ios = act_ios + 1U; gdth_putq(ha, scp, (int )cmndinfo->priority); gdth_next(ha); return (0); } } static int gdth_open(struct inode *inode , struct file *filep ) { gdth_ha_str *ha ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { _lock_kernel("gdth_open", "/home/ldvuser/gratinskiy/commit-tester-runs/6-cpa-svcomp-newdeg/commit-tester-work/task-021--linux-stable--dir/work/current--X--drivers/scsi/gdth.ko--X--defaultlinux-stable-5934df9-1--X--111_1a--X--cpachecker/linux-stable-5934df9-1/csd_deg_dscv/11/dscv_tempdir/dscv/ri/111_1a/drivers/scsi/gdth.o.c.prepared", 4140); __mptr = (struct list_head const *)gdth_instances.next; ha = (gdth_ha_str *)__mptr + 0xfffffffffffffff8UL; goto ldv_32138; ldv_32137: ; if ((unsigned long )ha->sdev == (unsigned long )((struct scsi_device *)0)) { ha->sdev = scsi_get_host_dev(ha->shost); } else { } __mptr___0 = (struct list_head const *)ha->list.next; ha = (gdth_ha_str *)__mptr___0 + 0xfffffffffffffff8UL; ldv_32138: __builtin_prefetch((void const *)ha->list.next); if ((unsigned long )(& ha->list) != (unsigned long )(& gdth_instances)) { goto ldv_32137; } else { } _unlock_kernel("gdth_open", "/home/ldvuser/gratinskiy/commit-tester-runs/6-cpa-svcomp-newdeg/commit-tester-work/task-021--linux-stable--dir/work/current--X--drivers/scsi/gdth.ko--X--defaultlinux-stable-5934df9-1--X--111_1a--X--cpachecker/linux-stable-5934df9-1/csd_deg_dscv/11/dscv_tempdir/dscv/ri/111_1a/drivers/scsi/gdth.o.c.prepared", 4145); return (0); } } static int gdth_close(struct inode *inode , struct file *filep ) { { return (0); } } static int ioc_event(void *arg ) { gdth_ioctl_event evt ; gdth_ha_str *ha ; unsigned long flags ; unsigned long tmp ; raw_spinlock_t *tmp___0 ; int tmp___1 ; { tmp = ldv_copy_from_user_8((void *)(& evt), (void const *)arg, 308UL); if (tmp != 0UL) { return (-14); } else { } ha = gdth_find_ha((int )evt.ionode); if ((unsigned long )ha == (unsigned long )((gdth_ha_str *)0)) { return (-14); } else { } if (evt.erase == 255) { if ((unsigned int )evt.event.event_source == 3U) { evt.event.event_data.size = 16U; } else if ((unsigned int )evt.event.event_source == 2U) { evt.event.event_data.size = 8U; } else if ((unsigned int )evt.event.event_source == 4U) { evt.event.event_data.size = 16U; } else { evt.event.event_data.size = 13U; } tmp___0 = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp___0); gdth_store_event(ha, (int )evt.event.event_source, (int )evt.event.event_idx, & evt.event.event_data); spin_unlock_irqrestore(& ha->smp_lock, flags); } else if (evt.erase == 254) { gdth_clear_events(); } else if (evt.erase == 0) { evt.handle = gdth_read_event(ha, evt.handle, & evt.event); } else { gdth_readapp_event(ha, (int )((u8 )evt.erase), & evt.event); } tmp___1 = copy_to_user(arg, (void const *)(& evt), 308U); if (tmp___1 != 0) { return (-14); } else { } return (0); } } static int ioc_lockdrv(void *arg ) { gdth_ioctl_lockdrv ldrv ; u8 i ; u8 j ; unsigned long flags ; gdth_ha_str *ha ; unsigned long tmp ; raw_spinlock_t *tmp___0 ; raw_spinlock_t *tmp___1 ; { tmp = ldv_copy_from_user_8((void *)(& ldrv), (void const *)arg, 514UL); if (tmp != 0UL) { return (-14); } else { } ha = gdth_find_ha((int )ldrv.ionode); if ((unsigned long )ha == (unsigned long )((gdth_ha_str *)0)) { return (-14); } else { } i = 0U; goto ldv_32169; ldv_32168: j = (u8 )ldrv.drives[(int )i]; if ((unsigned int )j == 255U || (unsigned int )ha->hdr[(int )j].present == 0U) { goto ldv_32161; } else { } if ((unsigned int )ldrv.lock != 0U) { tmp___0 = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp___0); ha->hdr[(int )j].lock = 1U; spin_unlock_irqrestore(& ha->smp_lock, flags); gdth_wait_completion(ha, (int )ha->bus_cnt, (int )j); } else { tmp___1 = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp___1); ha->hdr[(int )j].lock = 0U; spin_unlock_irqrestore(& ha->smp_lock, flags); gdth_next(ha); } ldv_32161: i = (u8 )((int )i + 1); ldv_32169: ; if ((int )ldrv.drive_cnt > (int )i && (unsigned int )i != 255U) { goto ldv_32168; } else { } return (0); } } static int ioc_resetdrv(void *arg , char *cmnd ) { gdth_ioctl_reset res ; gdth_cmd_str cmd ; gdth_ha_str *ha ; int rval ; unsigned long tmp ; int tmp___0 ; { tmp = ldv_copy_from_user_8((void *)(& res), (void const *)arg, 6UL); if (tmp != 0UL || (unsigned int )res.number > 254U) { return (-14); } else { } ha = gdth_find_ha((int )res.ionode); if ((unsigned long )ha == (unsigned long )((gdth_ha_str *)0)) { return (-14); } else { } if ((unsigned int )ha->hdr[(int )res.number].present == 0U) { return (0); } else { } memset((void *)(& cmd), 0, 476UL); cmd.Service = 9U; cmd.OpCode = 24U; if (((int )ha->cache_feat & 512) != 0) { cmd.u.cache64.DeviceNo = res.number; } else { cmd.u.cache.DeviceNo = res.number; } rval = __gdth_execute(ha->sdev, & cmd, cmnd, 30, (u32 *)0U); if (rval < 0) { return (rval); } else { } res.status = (u16 )rval; tmp___0 = copy_to_user(arg, (void const *)(& res), 6U); if (tmp___0 != 0) { return (-14); } else { } return (0); } } static int ioc_general(void *arg , char *cmnd ) { gdth_ioctl_general gen ; char *buf ; u64 paddr ; gdth_ha_str *ha ; int rval ; unsigned long tmp ; unsigned long tmp___0 ; char cmd[16U] ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; int tmp___1 ; int tmp___2 ; { buf = (char *)0; tmp = ldv_copy_from_user_8((void *)(& gen), (void const *)arg, 512UL); if (tmp != 0UL) { return (-14); } else { } ha = gdth_find_ha((int )gen.ionode); if ((unsigned long )ha == (unsigned long )((gdth_ha_str *)0)) { return (-14); } else { } if (gen.data_len + gen.sense_len != 0UL) { buf = gdth_ioctl_alloc(ha, (int )((unsigned int )gen.data_len + (unsigned int )gen.sense_len), 0, & paddr); if ((unsigned long )buf == (unsigned long )((char *)0)) { return (-14); } else { } tmp___0 = ldv_copy_from_user_8((void *)buf, (void const *)arg + 512U, gen.data_len + gen.sense_len); if (tmp___0 != 0UL) { gdth_ioctl_free(ha, (int )((unsigned int )gen.data_len + (unsigned int )gen.sense_len), buf, paddr); return (-14); } else { } if ((unsigned int )gen.command.OpCode == 5U) { gen.command.u.ioctl.p_param = paddr; } else if ((unsigned int )gen.command.Service == 9U) { if (((int )ha->cache_feat & 512) != 0) { gen.command.u.cache64.BlockCnt = gen.command.u.cache.BlockCnt; gen.command.u.cache64.BlockNo = (u64 )gen.command.u.cache.BlockNo; gen.command.u.cache64.DeviceNo = gen.command.u.cache.DeviceNo; if ((int )ha->cache_feat & 1) { gen.command.u.cache64.DestAddr = 0xffffffffffffffffULL; gen.command.u.cache64.sg_canz = 1U; gen.command.u.cache64.sg_lst[0].sg_ptr = paddr; gen.command.u.cache64.sg_lst[0].sg_len = (u32 )gen.data_len; gen.command.u.cache64.sg_lst[1].sg_len = 0U; } else { gen.command.u.cache64.DestAddr = paddr; gen.command.u.cache64.sg_canz = 0U; } } else if ((int )ha->cache_feat & 1) { gen.command.u.cache.DestAddr = 4294967295U; gen.command.u.cache.sg_canz = 1U; gen.command.u.cache.sg_lst[0].sg_ptr = (unsigned int )paddr; gen.command.u.cache.sg_lst[0].sg_len = (u32 )gen.data_len; gen.command.u.cache.sg_lst[1].sg_len = 0U; } else { gen.command.u.cache.DestAddr = (u32 )paddr; gen.command.u.cache.sg_canz = 0U; } } else if ((unsigned int )gen.command.Service == 3U) { if (((int )ha->raw_feat & 512) != 0) { gen.command.u.raw64.sense_len = gen.command.u.raw.sense_len; gen.command.u.raw64.bus = gen.command.u.raw.bus; gen.command.u.raw64.lun = gen.command.u.raw.lun; gen.command.u.raw64.target = gen.command.u.raw.target; __len = 16UL; if (__len > 63UL) { __ret = memcpy((void *)(& cmd), (void const *)(& gen.command.u.raw.cmd), __len); } else { __ret = memcpy((void *)(& cmd), (void const *)(& gen.command.u.raw.cmd), __len); } __len___0 = 16UL; if (__len___0 > 63UL) { __ret___0 = memcpy((void *)(& gen.command.u.raw64.cmd), (void const *)(& cmd), __len___0); } else { __ret___0 = memcpy((void *)(& gen.command.u.raw64.cmd), (void const *)(& cmd), __len___0); } gen.command.u.raw64.clen = gen.command.u.raw.clen; gen.command.u.raw64.sdlen = gen.command.u.raw.sdlen; gen.command.u.raw64.direction = gen.command.u.raw.direction; if ((int )ha->raw_feat & 1) { gen.command.u.raw64.sdata = 0xffffffffffffffffULL; gen.command.u.raw64.sg_ranz = 1U; gen.command.u.raw64.sg_lst[0].sg_ptr = paddr; gen.command.u.raw64.sg_lst[0].sg_len = (u32 )gen.data_len; gen.command.u.raw64.sg_lst[1].sg_len = 0U; } else { gen.command.u.raw64.sdata = paddr; gen.command.u.raw64.sg_ranz = 0U; } gen.command.u.raw64.sense_data = (unsigned long long )gen.data_len + paddr; } else { if ((int )ha->raw_feat & 1) { gen.command.u.raw.sdata = 4294967295U; gen.command.u.raw.sg_ranz = 1U; gen.command.u.raw.sg_lst[0].sg_ptr = (unsigned int )paddr; gen.command.u.raw.sg_lst[0].sg_len = (u32 )gen.data_len; gen.command.u.raw.sg_lst[1].sg_len = 0U; } else { gen.command.u.raw.sdata = (u32 )paddr; gen.command.u.raw.sg_ranz = 0U; } gen.command.u.raw.sense_data = (u32 )paddr + (u32 )gen.data_len; } } else { gdth_ioctl_free(ha, (int )((unsigned int )gen.data_len + (unsigned int )gen.sense_len), buf, paddr); return (-14); } } else { } rval = __gdth_execute(ha->sdev, & gen.command, cmnd, (int )gen.timeout, & gen.info); if (rval < 0) { return (rval); } else { } gen.status = (u16 )rval; tmp___1 = copy_to_user(arg + 512UL, (void const *)buf, (unsigned int )gen.data_len + (unsigned int )gen.sense_len); if (tmp___1 != 0) { gdth_ioctl_free(ha, (int )((unsigned int )gen.data_len + (unsigned int )gen.sense_len), buf, paddr); return (-14); } else { } tmp___2 = copy_to_user(arg, (void const *)(& gen), 36U); if (tmp___2 != 0) { gdth_ioctl_free(ha, (int )((unsigned int )gen.data_len + (unsigned int )gen.sense_len), buf, paddr); return (-14); } else { } gdth_ioctl_free(ha, (int )((unsigned int )gen.data_len + (unsigned int )gen.sense_len), buf, paddr); return (0); } } static int ioc_hdrlist(void *arg , char *cmnd ) { gdth_ioctl_rescan *rsc ; gdth_cmd_str *cmd ; gdth_ha_str *ha ; u8 i ; int rc ; u32 cluster_type ; void *tmp ; void *tmp___0 ; unsigned long tmp___1 ; int tmp___2 ; int tmp___3 ; { rc = -12; cluster_type = 0U; tmp = kmalloc(1026UL, 208U); rsc = (gdth_ioctl_rescan *)tmp; tmp___0 = kmalloc(476UL, 208U); cmd = (gdth_cmd_str *)tmp___0; if ((unsigned long )rsc == (unsigned long )((gdth_ioctl_rescan *)0) || (unsigned long )cmd == (unsigned long )((gdth_cmd_str *)0)) { goto free_fail; } else { } tmp___1 = ldv_copy_from_user_8((void *)rsc, (void const *)arg, 1026UL); if (tmp___1 != 0UL) { rc = -14; goto free_fail; } else { ha = gdth_find_ha((int )rsc->ionode); if ((unsigned long )ha == (unsigned long )((gdth_ha_str *)0)) { rc = -14; goto free_fail; } else { } } memset((void *)cmd, 0, 476UL); i = 0U; goto ldv_32208; ldv_32207: ; if ((unsigned int )ha->hdr[(int )i].present == 0U) { rsc->hdr_list[(int )i].bus = 255U; goto ldv_32206; } else { } rsc->hdr_list[(int )i].bus = ha->virt_bus; rsc->hdr_list[(int )i].target = i; rsc->hdr_list[(int )i].lun = 0U; rsc->hdr_list[(int )i].cluster_type = ha->hdr[(int )i].cluster_type; if ((int )ha->hdr[(int )i].cluster_type & 1) { cmd->Service = 9U; cmd->OpCode = 22U; if (((int )ha->cache_feat & 512) != 0) { cmd->u.cache64.DeviceNo = (u16 )i; } else { cmd->u.cache.DeviceNo = (u16 )i; } tmp___2 = __gdth_execute(ha->sdev, cmd, cmnd, 30, & cluster_type); if (tmp___2 == 1) { rsc->hdr_list[(int )i].cluster_type = (u8 )cluster_type; } else { } } else { } ldv_32206: i = (u8 )((int )i + 1); ldv_32208: ; if ((unsigned int )i != 255U) { goto ldv_32207; } else { } tmp___3 = copy_to_user(arg, (void const *)rsc, 1026U); if (tmp___3 != 0) { rc = -14; } else { rc = 0; } free_fail: kfree((void const *)rsc); kfree((void const *)cmd); return (rc); } } static int ioc_rescan(void *arg , char *cmnd ) { gdth_ioctl_rescan *rsc ; gdth_cmd_str *cmd ; u16 i ; u16 status ; u16 hdr_cnt ; u32 info ; int cyls ; int hds ; int secs ; int rc ; unsigned long flags ; gdth_ha_str *ha ; void *tmp ; void *tmp___0 ; unsigned long tmp___1 ; int tmp___2 ; int tmp___3 ; raw_spinlock_t *tmp___4 ; int tmp___5 ; raw_spinlock_t *tmp___6 ; int tmp___7 ; raw_spinlock_t *tmp___8 ; int tmp___9 ; raw_spinlock_t *tmp___10 ; int tmp___11 ; { rc = -12; tmp = kmalloc(1026UL, 208U); rsc = (gdth_ioctl_rescan *)tmp; tmp___0 = kmalloc(476UL, 208U); cmd = (gdth_cmd_str *)tmp___0; if ((unsigned long )cmd == (unsigned long )((gdth_cmd_str *)0) || (unsigned long )rsc == (unsigned long )((gdth_ioctl_rescan *)0)) { goto free_fail; } else { } tmp___1 = ldv_copy_from_user_8((void *)rsc, (void const *)arg, 1026UL); if (tmp___1 != 0UL) { rc = -14; goto free_fail; } else { ha = gdth_find_ha((int )rsc->ionode); if ((unsigned long )ha == (unsigned long )((gdth_ha_str *)0)) { rc = -14; goto free_fail; } else { } } memset((void *)cmd, 0, 476UL); if ((unsigned int )rsc->flag == 0U) { cmd->Service = 9U; if (((int )ha->cache_feat & 512) != 0) { cmd->OpCode = 29U; cmd->u.cache64.DeviceNo = 8U; } else { cmd->OpCode = 0U; cmd->u.cache.DeviceNo = 8U; } tmp___2 = __gdth_execute(ha->sdev, cmd, cmnd, 30, & info); status = (u16 )tmp___2; i = 0U; hdr_cnt = (unsigned int )status == 1U ? (u16 )info : 0U; } else { i = rsc->hdr_no; hdr_cnt = (unsigned int )i + 1U; } goto ldv_32241; ldv_32240: cmd->Service = 9U; cmd->OpCode = 3U; if (((int )ha->cache_feat & 512) != 0) { cmd->u.cache64.DeviceNo = i; } else { cmd->u.cache.DeviceNo = i; } tmp___3 = __gdth_execute(ha->sdev, cmd, cmnd, 30, & info); status = (u16 )tmp___3; tmp___4 = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp___4); rsc->hdr_list[(int )i].bus = ha->virt_bus; rsc->hdr_list[(int )i].target = (u8 )i; rsc->hdr_list[(int )i].lun = 0U; if ((unsigned int )status != 1U) { ha->hdr[(int )i].present = 0U; } else { ha->hdr[(int )i].present = 1U; ha->hdr[(int )i].size = (u64 )info; ha->hdr[(int )i].size = ha->hdr[(int )i].size & 0xffffffffffffffe0ULL; gdth_eval_mapping((u32 )ha->hdr[(int )i].size, (u32 *)(& cyls), & hds, & secs); ha->hdr[(int )i].heads = (u8 )hds; ha->hdr[(int )i].secs = (u8 )secs; ha->hdr[(int )i].size = (u64 )((cyls * hds) * secs); } spin_unlock_irqrestore(& ha->smp_lock, flags); if ((unsigned int )status != 1U) { goto ldv_32230; } else { } cmd->Service = 9U; cmd->OpCode = 9U; if (((int )ha->cache_feat & 512) != 0) { cmd->u.cache64.DeviceNo = i; } else { cmd->u.cache.DeviceNo = i; } tmp___5 = __gdth_execute(ha->sdev, cmd, cmnd, 30, & info); status = (u16 )tmp___5; tmp___6 = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp___6); ha->hdr[(int )i].devtype = (unsigned int )status == 1U ? (u16 )info : 0U; spin_unlock_irqrestore(& ha->smp_lock, flags); cmd->Service = 9U; cmd->OpCode = 22U; if (((int )ha->cache_feat & 512) != 0) { cmd->u.cache64.DeviceNo = i; } else { cmd->u.cache.DeviceNo = i; } tmp___7 = __gdth_execute(ha->sdev, cmd, cmnd, 30, & info); status = (u16 )tmp___7; tmp___8 = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp___8); ha->hdr[(int )i].cluster_type = (unsigned int )status == 1U && shared_access == 0 ? (u8 )info : 0U; spin_unlock_irqrestore(& ha->smp_lock, flags); rsc->hdr_list[(int )i].cluster_type = ha->hdr[(int )i].cluster_type; cmd->Service = 9U; cmd->OpCode = 23U; if (((int )ha->cache_feat & 512) != 0) { cmd->u.cache64.DeviceNo = i; } else { cmd->u.cache.DeviceNo = i; } tmp___9 = __gdth_execute(ha->sdev, cmd, cmnd, 30, & info); status = (u16 )tmp___9; tmp___10 = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp___10); ha->hdr[(int )i].rw_attribs = (unsigned int )status == 1U ? (u8 )info : 0U; spin_unlock_irqrestore(& ha->smp_lock, flags); ldv_32230: i = (u16 )((int )i + 1); ldv_32241: ; if ((int )i < (int )hdr_cnt && (unsigned int )i <= 254U) { goto ldv_32240; } else { } tmp___11 = copy_to_user(arg, (void const *)rsc, 1026U); if (tmp___11 != 0) { rc = -14; } else { rc = 0; } free_fail: kfree((void const *)rsc); kfree((void const *)cmd); return (rc); } } static int gdth_ioctl(struct file *filep , unsigned int cmd , unsigned long arg ) { gdth_ha_str *ha ; Scsi_Cmnd *scp ; unsigned long flags ; char cmnd[16U] ; void *argp ; int cnt ; int __ret_pu ; int __pu_val ; int ver ; int __ret_pu___0 ; int __pu_val___0 ; gdth_ioctl_osvers osv ; int tmp ; gdth_ioctl_ctrtype ctrt ; unsigned long tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; gdth_ioctl_lockchn lchn ; u8 i ; u8 j ; unsigned long tmp___5 ; raw_spinlock_t *tmp___6 ; raw_spinlock_t *tmp___7 ; int tmp___8 ; int tmp___9 ; gdth_ioctl_reset res ; int rval ; unsigned long tmp___10 ; void *tmp___11 ; int tmp___12 ; int tmp___13 ; { argp = (void *)arg; memset((void *)(& cmnd), 255, 12UL); switch (cmd) { case 18949U: cnt = gdth_ctr_count; might_fault(); __pu_val = cnt; switch (4UL) { case 1UL: __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)argp): "ebx"); goto ldv_32258; case 2UL: __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)argp): "ebx"); goto ldv_32258; case 4UL: __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)argp): "ebx"); goto ldv_32258; case 8UL: __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)argp): "ebx"); goto ldv_32258; default: __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)argp): "ebx"); goto ldv_32258; } ldv_32258: ; if (__ret_pu != 0) { return (-14); } else { } goto ldv_32264; case 18945U: ver = 773; might_fault(); __pu_val___0 = ver; switch (4UL) { case 1UL: __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)argp): "ebx"); goto ldv_32270; case 2UL: __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)argp): "ebx"); goto ldv_32270; case 4UL: __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)argp): "ebx"); goto ldv_32270; case 8UL: __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)argp): "ebx"); goto ldv_32270; default: __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)argp): "ebx"); goto ldv_32270; } ldv_32270: ; if (__ret_pu___0 != 0) { return (-14); } else { } goto ldv_32264; case 18947U: osv.version = 2U; osv.subversion = 6U; osv.revision = 35U; tmp = copy_to_user(argp, (void const *)(& osv), 4U); if (tmp != 0) { return (-14); } else { } goto ldv_32264; case 18946U: tmp___0 = ldv_copy_from_user_8((void *)(& ctrt), (void const *)argp, 18UL); if (tmp___0 != 0UL) { return (-14); } else { ha = gdth_find_ha((int )ctrt.ionode); if ((unsigned long )ha == (unsigned long )((gdth_ha_str *)0)) { return (-14); } else { } } if ((unsigned int )ha->type == 1U || (unsigned int )ha->type == 2U) { ctrt.type = (unsigned int )((unsigned char )(ha->stype >> 20)) - 16U; } else { if ((unsigned int )ha->type != 5U) { ctrt.type = (unsigned int )((int )((unsigned char )ha->stype) << 4U) + 6U; } else { ctrt.type = (unsigned int )ha->oem_id == 32768U ? 253U : 254U; if (ha->stype > 767U) { ctrt.ext_type = (u16 )((unsigned int )(ha->pdev)->subsystem_device | 24576U); } else { ctrt.ext_type = (unsigned int )((u16 )ha->stype) | 24576U; } } ctrt.device_id = (ha->pdev)->device; ctrt.sub_device_id = (ha->pdev)->subsystem_device; } ctrt.info = (u16 )ha->brd_phys; ctrt.oem_id = ha->oem_id; tmp___1 = copy_to_user(argp, (void const *)(& ctrt), 18U); if (tmp___1 != 0) { return (-14); } else { } goto ldv_32264; case 18944U: tmp___2 = ioc_general(argp, (char *)(& cmnd)); return (tmp___2); case 18952U: tmp___3 = ioc_event(argp); return (tmp___3); case 18950U: tmp___4 = ioc_lockdrv(argp); return (tmp___4); case 18951U: tmp___5 = ldv_copy_from_user_8((void *)(& lchn), (void const *)argp, 4UL); if (tmp___5 != 0UL) { return (-14); } else { ha = gdth_find_ha((int )lchn.ionode); if ((unsigned long )ha == (unsigned long )((gdth_ha_str *)0)) { return (-14); } else { } } i = lchn.channel; if ((int )ha->bus_cnt > (int )i) { if ((unsigned int )lchn.lock != 0U) { tmp___6 = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp___6); ha->raw[(int )i].lock = 1U; spin_unlock_irqrestore(& ha->smp_lock, flags); j = 0U; goto ldv_32291; ldv_32290: gdth_wait_completion(ha, (int )i, (int )j); j = (u8 )((int )j + 1); ldv_32291: ; if ((int )ha->tid_cnt > (int )j) { goto ldv_32290; } else { } } else { tmp___7 = spinlock_check(& ha->smp_lock); flags = _raw_spin_lock_irqsave(tmp___7); ha->raw[(int )i].lock = 0U; spin_unlock_irqrestore(& ha->smp_lock, flags); j = 0U; goto ldv_32297; ldv_32296: gdth_next(ha); j = (u8 )((int )j + 1); ldv_32297: ; if ((int )ha->tid_cnt > (int )j) { goto ldv_32296; } else { } } } else { } goto ldv_32264; case 18955U: tmp___8 = ioc_rescan(argp, (char *)(& cmnd)); return (tmp___8); case 18948U: tmp___9 = ioc_hdrlist(argp, (char *)(& cmnd)); return (tmp___9); case 18954U: tmp___10 = ldv_copy_from_user_8((void *)(& res), (void const *)argp, 6UL); if (tmp___10 != 0UL) { return (-14); } else { ha = gdth_find_ha((int )res.ionode); if ((unsigned long )ha == (unsigned long )((gdth_ha_str *)0)) { return (-14); } else { } } tmp___11 = kzalloc(232UL, 208U); scp = (Scsi_Cmnd *)tmp___11; if ((unsigned long )scp == (unsigned long )((Scsi_Cmnd *)0)) { return (-12); } else { } scp->device = ha->sdev; scp->cmd_len = 12U; (scp->device)->channel = (unsigned int )res.number; rval = gdth_eh_bus_reset(scp); res.status = rval == 8194 ? 1U : 6U; kfree((void const *)scp); tmp___12 = copy_to_user(argp, (void const *)(& res), 6U); if (tmp___12 != 0) { return (-14); } else { } goto ldv_32264; case 18956U: tmp___13 = ioc_resetdrv(argp, (char *)(& cmnd)); return (tmp___13); default: ; goto ldv_32264; } ldv_32264: ; return (0); } } static long gdth_unlocked_ioctl(struct file *file , unsigned int cmd , unsigned long arg ) { int ret ; { _lock_kernel("gdth_unlocked_ioctl", "/home/ldvuser/gratinskiy/commit-tester-runs/6-cpa-svcomp-newdeg/commit-tester-work/task-021--linux-stable--dir/work/current--X--drivers/scsi/gdth.ko--X--defaultlinux-stable-5934df9-1--X--111_1a--X--cpachecker/linux-stable-5934df9-1/csd_deg_dscv/11/dscv_tempdir/dscv/ri/111_1a/drivers/scsi/gdth.o.c.prepared", 4713); ret = gdth_ioctl(file, cmd, arg); _unlock_kernel("gdth_unlocked_ioctl", "/home/ldvuser/gratinskiy/commit-tester-runs/6-cpa-svcomp-newdeg/commit-tester-work/task-021--linux-stable--dir/work/current--X--drivers/scsi/gdth.ko--X--defaultlinux-stable-5934df9-1--X--111_1a--X--cpachecker/linux-stable-5934df9-1/csd_deg_dscv/11/dscv_tempdir/dscv/ri/111_1a/drivers/scsi/gdth.o.c.prepared", 4715); return ((long )ret); } } static void gdth_flush(gdth_ha_str *ha ) { int i ; gdth_cmd_str gdtcmd ; char cmnd[16U] ; { memset((void *)(& cmnd), 255, 16UL); i = 0; goto ldv_32320; ldv_32319: ; if ((unsigned int )ha->hdr[i].present != 0U) { gdtcmd.BoardNode = 0U; gdtcmd.Service = 9U; gdtcmd.OpCode = 4U; if (((int )ha->cache_feat & 512) != 0) { gdtcmd.u.cache64.DeviceNo = (u16 )i; gdtcmd.u.cache64.BlockNo = 1ULL; gdtcmd.u.cache64.sg_canz = 0U; } else { gdtcmd.u.cache.DeviceNo = (u16 )i; gdtcmd.u.cache.BlockNo = 1U; gdtcmd.u.cache.sg_canz = 0U; } gdth_execute(ha->shost, & gdtcmd, (char *)(& cmnd), 30, (u32 *)0U); } else { } i = i + 1; ldv_32320: ; if (i <= 254) { goto ldv_32319; } else { } return; } } static int gdth_slave_configure(struct scsi_device *sdev ) { { scsi_adjust_queue_depth(sdev, 0, (int )(sdev->host)->cmd_per_lun); sdev->skip_ms_page_3f = 1U; sdev->skip_ms_page_8 = 1U; return (0); } } static struct scsi_host_template gdth_template = {0, "GDT SCSI Disk Array Controller", 0, 0, & gdth_info, 0, 0, & gdth_queuecommand, 0, 0, 0, 0, & gdth_eh_bus_reset, 0, 0, & gdth_slave_configure, 0, 0, 0, 0, 0, 0, 0, & gdth_bios_param, 0, & gdth_proc_info, & gdth_timed_out, "gdth", 0, 120, -1, 32U, (unsigned short)0, 0UL, 16, (unsigned char)0, (unsigned char)0, 1U, 1U, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0U, 0, 0, {0, 0}, 0ULL}; static int gdth_pci_probe_one(gdth_pci_str *pcistr , gdth_ha_str **ha_out ) { struct Scsi_Host *shp ; gdth_ha_str *ha ; dma_addr_t scratch_dma_handle ; int error ; int i ; struct pci_dev *pdev ; void *tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; struct lock_class_key __key ; { scratch_dma_handle = 0ULL; pdev = pcistr->pdev; *ha_out = (gdth_ha_str *)0; shp = ldv_scsi_host_alloc_18(& gdth_template, 21784); if ((unsigned long )shp == (unsigned long )((struct Scsi_Host *)0)) { return (-12); } else { } tmp = shost_priv(shp); ha = (gdth_ha_str *)tmp; error = -19; tmp___0 = gdth_init_pci(pdev, pcistr, ha); if (tmp___0 == 0) { goto out_host_put; } else { } printk("Configuring GDT-PCI HA at %d/%d IRQ %u\n", (int )(pdev->bus)->number, (pdev->devfn >> 3) & 31U, (int )ha->irq); error = ldv_request_irq_19((unsigned int )ha->irq, & gdth_interrupt, 160UL, "gdth", (void *)ha); if (error != 0) { printk("GDT-PCI: Unable to allocate IRQ\n"); goto out_host_put; } else { } shp->unchecked_isa_dma = 0U; shp->irq = (unsigned int )ha->irq; shp->dma_channel = 255U; tmp___1 = gdth_ctr_count; gdth_ctr_count = gdth_ctr_count + 1; ha->hanum = (u16 )tmp___1; ha->shost = shp; ha->pccb = & ha->cmdext; ha->ccb_phys = 0U; error = -12; tmp___2 = pci_alloc_consistent(ha->pdev, 4096UL, & scratch_dma_handle); ha->pscratch = (char *)tmp___2; if ((unsigned long )ha->pscratch == (unsigned long )((char *)0)) { goto out_free_irq; } else { } ha->scratch_phys = scratch_dma_handle; tmp___3 = pci_alloc_consistent(ha->pdev, 34UL, & scratch_dma_handle); ha->pmsg = (gdth_msg_str *)tmp___3; if ((unsigned long )ha->pmsg == (unsigned long )((gdth_msg_str *)0)) { goto out_free_pscratch; } else { } ha->msg_phys = scratch_dma_handle; ha->scratch_busy = 0U; ha->req_first = (Scsi_Cmnd *)0; ha->tid_cnt = (unsigned int )pdev->device > 511U ? 127U : 255U; if (max_ids > 0 && (int )ha->tid_cnt > max_ids) { ha->tid_cnt = (u8 )max_ids; } else { } i = 0; goto ldv_32340; ldv_32339: ha->cmd_tab[i].cmnd = (Scsi_Cmnd *)-1; i = i + 1; ldv_32340: ; if (i <= 119) { goto ldv_32339; } else { } ha->scan_mode = rescan != 0 ? 16U : 0U; error = -19; tmp___4 = gdth_search_drives(ha); if (tmp___4 == 0) { printk("GDT-PCI %d: Error during device scan\n", (int )ha->hanum); goto out_free_coal_stat; } else { } if (hdr_channel < 0 || (int )ha->bus_cnt < hdr_channel) { hdr_channel = (int )ha->bus_cnt; } else { } ha->virt_bus = (u8 )hdr_channel; if (((((int )ha->cache_feat & (int )ha->raw_feat) & (int )ha->screen_feat) & 512) == 0 || (unsigned int )ha->dma64_support == 0U) { tmp___5 = pci_set_dma_mask(pdev, 4294967295ULL); if (tmp___5 != 0) { printk("<4>GDT-PCI %d: Unable to set 32-bit DMA\n", (int )ha->hanum); goto out_free_coal_stat; } else { } } else { shp->max_cmd_len = 16U; tmp___7 = pci_set_dma_mask(pdev, 0xffffffffffffffffULL); if (tmp___7 == 0) { printk("GDT-PCI %d: 64-bit DMA enabled\n", (int )ha->hanum); } else { tmp___6 = pci_set_dma_mask(pdev, 4294967295ULL); if (tmp___6 != 0) { printk("<4>GDT-PCI %d: Unable to set 64/32-bit DMA\n", (int )ha->hanum); goto out_free_coal_stat; } else { } } } shp->max_id = (unsigned int )ha->tid_cnt; shp->max_lun = 8U; shp->max_channel = (unsigned int )ha->bus_cnt; spinlock_check(& ha->smp_lock); __raw_spin_lock_init(& ha->smp_lock.ldv_5750.rlock, "&(&ha->smp_lock)->rlock", & __key); gdth_enable_int(ha); error = scsi_add_host(shp, & pdev->dev); if (error != 0) { goto out_free_coal_stat; } else { } list_add_tail(& ha->list, & gdth_instances); pci_set_drvdata(ha->pdev, (void *)ha); gdth_timer_init(); scsi_scan_host(shp); *ha_out = ha; return (0); out_free_coal_stat: pci_free_consistent(ha->pdev, 34UL, (void *)ha->pmsg, ha->msg_phys); out_free_pscratch: pci_free_consistent(ha->pdev, 4096UL, (void *)ha->pscratch, ha->scratch_phys); out_free_irq: ldv_free_irq_20((unsigned int )ha->irq, (void *)ha); gdth_ctr_count = gdth_ctr_count - 1; out_host_put: scsi_host_put(shp); return (error); } } static void gdth_remove_one(gdth_ha_str *ha ) { struct Scsi_Host *shp ; { shp = ha->shost; ldv_scsi_remove_host_21(shp); gdth_flush(ha); if ((unsigned long )ha->sdev != (unsigned long )((struct scsi_device *)0)) { scsi_free_host_dev(ha->sdev); ha->sdev = (struct scsi_device *)0; } else { } if (shp->irq != 0U) { ldv_free_irq_22(shp->irq, (void *)ha); } else { } if ((unsigned long )ha->pscratch != (unsigned long )((char *)0)) { pci_free_consistent(ha->pdev, 4096UL, (void *)ha->pscratch, ha->scratch_phys); } else { } if ((unsigned long )ha->pmsg != (unsigned long )((gdth_msg_str *)0)) { pci_free_consistent(ha->pdev, 34UL, (void *)ha->pmsg, ha->msg_phys); } else { } if (ha->ccb_phys != 0U) { pci_unmap_single(ha->pdev, (dma_addr_t )ha->ccb_phys, 476UL, 0); } else { } scsi_host_put(shp); return; } } static int gdth_halt(struct notifier_block *nb , unsigned long event , void *buf ) { gdth_ha_str *ha ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { if ((event != 1UL && event != 2UL) && event != 3UL) { return (0); } else { } __mptr = (struct list_head const *)gdth_instances.next; ha = (gdth_ha_str *)__mptr + 0xfffffffffffffff8UL; goto ldv_32359; ldv_32358: gdth_flush(ha); __mptr___0 = (struct list_head const *)ha->list.next; ha = (gdth_ha_str *)__mptr___0 + 0xfffffffffffffff8UL; ldv_32359: __builtin_prefetch((void const *)ha->list.next); if ((unsigned long )(& ha->list) != (unsigned long )(& gdth_instances)) { goto ldv_32358; } else { } return (1); } } static struct notifier_block gdth_notifier = {& gdth_halt, (struct notifier_block *)0, 0}; static int gdth_init(void) { gdth_ha_str *ha ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; int tmp ; { if (disable != 0) { printk("GDT-HA: Controller driver disabled from command line !\n"); return (0); } else { } printk("GDT-HA: Storage RAID Controller Driver. Version: %s\n", (char *)"3.05"); gdth_polling = 1U; gdth_clear_events(); reg_timer_2(& gdth_timer); tmp = __pci_register_driver(& gdth_pci_driver, & __this_module, "gdth"); if (tmp != 0) { __mptr = (struct list_head const *)gdth_instances.next; ha = (gdth_ha_str *)__mptr + 0xfffffffffffffff8UL; goto ldv_32371; ldv_32370: gdth_remove_one(ha); __mptr___0 = (struct list_head const *)ha->list.next; ha = (gdth_ha_str *)__mptr___0 + 0xfffffffffffffff8UL; ldv_32371: __builtin_prefetch((void const *)ha->list.next); if ((unsigned long )(& ha->list) != (unsigned long )(& gdth_instances)) { goto ldv_32370; } else { } return (-19); } else { } major = ldv_register_chrdev_23(0U, "gdth", & gdth_fops); register_reboot_notifier(& gdth_notifier); gdth_polling = 0U; return (0); } } static void gdth_exit(void) { gdth_ha_str *ha ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { ldv_unregister_chrdev_24((unsigned int )major, "gdth"); unregister_reboot_notifier(& gdth_notifier); ldv_del_timer_sync_25(& gdth_timer); pci_unregister_driver(& gdth_pci_driver); __mptr = (struct list_head const *)gdth_instances.next; ha = (gdth_ha_str *)__mptr + 0xfffffffffffffff8UL; goto ldv_32382; ldv_32381: gdth_remove_one(ha); __mptr___0 = (struct list_head const *)ha->list.next; ha = (gdth_ha_str *)__mptr___0 + 0xfffffffffffffff8UL; ldv_32382: __builtin_prefetch((void const *)ha->list.next); if ((unsigned long )(& ha->list) != (unsigned long )(& gdth_instances)) { goto ldv_32381; } else { } return; } } int ldv_retval_0 ; void (*ldvarg32)(struct scsi_cmnd * ) ; int ldv_retval_1 ; extern void ldv_initialize(void) ; extern void ldv_check_final_state(void) ; int ldv_retval_2 ; void ldv_initialize_kernel_param_8(void) { void *tmp ; { tmp = ldv_zalloc(40UL); __param_probe_eisa_isa_group0 = (struct kernel_param *)tmp; return; } } void ldv_file_operations_6(void) { void *tmp ; void *tmp___0 ; { tmp = ldv_zalloc(1168UL); gdth_fops_group1 = (struct inode *)tmp; tmp___0 = ldv_zalloc(312UL); gdth_fops_group2 = (struct file *)tmp___0; return; } } void ldv_initialize_kernel_param_10(void) { void *tmp ; { tmp = ldv_zalloc(40UL); __param_rescan_group0 = (struct kernel_param *)tmp; return; } } void ldv_initialize_scsi_host_template_4(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; { tmp = ldv_zalloc(232UL); gdth_template_group0 = (struct scsi_cmnd *)tmp; tmp___0 = ldv_zalloc(2688UL); gdth_template_group1 = (struct Scsi_Host *)tmp___0; tmp___1 = ldv_zalloc(2488UL); gdth_template_group2 = (struct scsi_device *)tmp___1; return; } } void choose_timer_2(struct timer_list *timer ) { { LDV_IN_INTERRUPT = 2; (*(timer->function))(timer->data); LDV_IN_INTERRUPT = 1; ldv_timer_state_2 = 2; return; } } int reg_timer_2(struct timer_list *timer ) { { ldv_timer_list_2 = timer; ldv_timer_state_2 = 1; return (0); } } void ldv_initialize_pci_driver_5(void) { void *tmp ; { tmp = ldv_zalloc(2728UL); gdth_pci_driver_group0 = (struct pci_dev *)tmp; return; } } void activate_pending_timer_2(struct timer_list *timer , unsigned long data , int pending_flag ) { { if ((unsigned long )ldv_timer_list_2 == (unsigned long )timer) { if (ldv_timer_state_2 == 2 || pending_flag != 0) { ldv_timer_list_2 = timer; ldv_timer_list_2->data = data; ldv_timer_state_2 = 1; } else { } return; } else { } reg_timer_2(timer); ldv_timer_list_2->data = data; return; } } void ldv_initialize_kernel_param_9(void) { void *tmp ; { tmp = ldv_zalloc(40UL); __param_shared_access_group0 = (struct kernel_param *)tmp; return; } } int reg_check_1(irqreturn_t (*handler)(int , void * ) ) { { if ((unsigned long )handler == (unsigned long )(& gdth_interrupt)) { return (1); } else { } return (0); } } void ldv_initialize_kernel_param_16(void) { void *tmp ; { tmp = ldv_zalloc(40UL); __param_reserve_mode_group0 = (struct kernel_param *)tmp; return; } } void ldv_initialize_kernel_param_7(void) { void *tmp ; { tmp = ldv_zalloc(40UL); __param_force_dma32_group0 = (struct kernel_param *)tmp; return; } } void ldv_initialize_kernel_param_18(void) { void *tmp ; { tmp = ldv_zalloc(40UL); __param_irq_group0 = (struct kernel_param *)tmp; return; } } void ldv_initialize_kernel_param_17(void) { void *tmp ; { tmp = ldv_zalloc(40UL); __param_disable_group0 = (struct kernel_param *)tmp; return; } } void ldv_initialize_kernel_param_14(void) { void *tmp ; { tmp = ldv_zalloc(40UL); __param_reserve_list_group0 = (struct kernel_param *)tmp; return; } } void choose_interrupt_1(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_0, ldv_irq_line_1_0, ldv_irq_data_1_0); goto ldv_32456; case 1: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_1, ldv_irq_line_1_1, ldv_irq_data_1_1); goto ldv_32456; case 2: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_2, ldv_irq_line_1_2, ldv_irq_data_1_2); goto ldv_32456; case 3: ldv_irq_1_0 = ldv_irq_1(ldv_irq_1_3, ldv_irq_line_1_3, ldv_irq_data_1_3); goto ldv_32456; default: ldv_stop(); } ldv_32456: ; return; } } void ldv_initialize_kparam_array_19(void) { void *tmp ; { tmp = ldv_zalloc(40UL); __param_arr_irq_group0 = (struct kernel_param *)tmp; return; } } void ldv_initialize_kparam_array_15(void) { void *tmp ; { tmp = ldv_zalloc(40UL); __param_arr_reserve_list_group0 = (struct kernel_param *)tmp; return; } } void ldv_initialize_kernel_param_12(void) { void *tmp ; { tmp = ldv_zalloc(40UL); __param_hdr_channel_group0 = (struct kernel_param *)tmp; return; } } void ldv_initialize_kernel_param_11(void) { void *tmp ; { tmp = ldv_zalloc(40UL); __param_max_ids_group0 = (struct kernel_param *)tmp; return; } } void disable_suitable_timer_2(struct timer_list *timer ) { { if ((unsigned long )timer == (unsigned long )ldv_timer_list_2) { ldv_timer_state_2 = 0; return; } else { } return; } } void disable_suitable_irq_1(int line , void *data ) { { if (ldv_irq_1_0 != 0 && line == ldv_irq_line_1_0) { ldv_irq_1_0 = 0; return; } else { } if (ldv_irq_1_1 != 0 && line == ldv_irq_line_1_1) { ldv_irq_1_1 = 0; return; } else { } if (ldv_irq_1_2 != 0 && line == ldv_irq_line_1_2) { ldv_irq_1_2 = 0; return; } else { } if (ldv_irq_1_3 != 0 && line == ldv_irq_line_1_3) { ldv_irq_1_3 = 0; return; } else { } return; } } int ldv_irq_1(int state , int line , void *data ) { irqreturn_t irq_retval ; int tmp ; { if (state != 0) { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (state == 1) { LDV_IN_INTERRUPT = 2; irq_retval = gdth_interrupt(line, data); LDV_IN_INTERRUPT = 1; return (state); } else { } goto ldv_32487; default: ldv_stop(); } ldv_32487: ; } else { } return (state); } } void activate_suitable_irq_1(int line , void *data ) { { if (ldv_irq_1_0 == 0) { ldv_irq_line_1_0 = line; ldv_irq_data_1_0 = data; ldv_irq_1_0 = 1; return; } else { } if (ldv_irq_1_1 == 0) { ldv_irq_line_1_1 = line; ldv_irq_data_1_1 = data; ldv_irq_1_1 = 1; return; } else { } if (ldv_irq_1_2 == 0) { ldv_irq_line_1_2 = line; ldv_irq_data_1_2 = data; ldv_irq_1_2 = 1; return; } else { } if (ldv_irq_1_3 == 0) { ldv_irq_line_1_3 = line; ldv_irq_data_1_3 = data; ldv_irq_1_3 = 1; return; } else { } return; } } void ldv_initialize_kernel_param_13(void) { void *tmp ; { tmp = ldv_zalloc(40UL); __param_reverse_scan_group0 = (struct kernel_param *)tmp; return; } } int main(void) { char *ldvarg1 ; void *tmp ; char *ldvarg0 ; void *tmp___0 ; char *ldvarg3 ; void *tmp___1 ; char *ldvarg2 ; void *tmp___2 ; char *ldvarg4 ; void *tmp___3 ; char *ldvarg5 ; void *tmp___4 ; char *ldvarg7 ; void *tmp___5 ; char *ldvarg6 ; void *tmp___6 ; char *ldvarg8 ; void *tmp___7 ; char *ldvarg9 ; void *tmp___8 ; char *ldvarg11 ; void *tmp___9 ; char *ldvarg10 ; void *tmp___10 ; unsigned int ldvarg13 ; unsigned int tmp___11 ; unsigned long ldvarg12 ; unsigned long tmp___12 ; struct notifier_block *ldvarg14 ; void *tmp___13 ; unsigned long ldvarg16 ; unsigned long tmp___14 ; void *ldvarg15 ; void *tmp___15 ; char *ldvarg18 ; void *tmp___16 ; char *ldvarg17 ; void *tmp___17 ; char *ldvarg20 ; void *tmp___18 ; char *ldvarg19 ; void *tmp___19 ; char *ldvarg21 ; void *tmp___20 ; char *ldvarg22 ; void *tmp___21 ; char *ldvarg24 ; void *tmp___22 ; char *ldvarg23 ; void *tmp___23 ; char *ldvarg26 ; void *tmp___24 ; char *ldvarg25 ; void *tmp___25 ; int ldvarg27 ; int tmp___26 ; struct block_device *ldvarg35 ; void *tmp___27 ; int ldvarg31 ; int tmp___28 ; int *ldvarg33 ; void *tmp___29 ; char *ldvarg30 ; void *tmp___30 ; char **ldvarg29 ; void *tmp___31 ; off_t ldvarg28 ; sector_t ldvarg34 ; char *ldvarg37 ; void *tmp___32 ; char *ldvarg36 ; void *tmp___33 ; char *ldvarg39 ; void *tmp___34 ; char *ldvarg38 ; void *tmp___35 ; struct pci_device_id *ldvarg40 ; void *tmp___36 ; int tmp___37 ; int tmp___38 ; int tmp___39 ; int tmp___40 ; int tmp___41 ; int tmp___42 ; int tmp___43 ; int tmp___44 ; int tmp___45 ; int tmp___46 ; int tmp___47 ; int tmp___48 ; int tmp___49 ; int tmp___50 ; int tmp___51 ; int tmp___52 ; int tmp___53 ; int tmp___54 ; int tmp___55 ; { tmp = ldv_zalloc(1UL); ldvarg1 = (char *)tmp; tmp___0 = ldv_zalloc(1UL); ldvarg0 = (char *)tmp___0; tmp___1 = ldv_zalloc(1UL); ldvarg3 = (char *)tmp___1; tmp___2 = ldv_zalloc(1UL); ldvarg2 = (char *)tmp___2; tmp___3 = ldv_zalloc(1UL); ldvarg4 = (char *)tmp___3; tmp___4 = ldv_zalloc(1UL); ldvarg5 = (char *)tmp___4; tmp___5 = ldv_zalloc(1UL); ldvarg7 = (char *)tmp___5; tmp___6 = ldv_zalloc(1UL); ldvarg6 = (char *)tmp___6; tmp___7 = ldv_zalloc(1UL); ldvarg8 = (char *)tmp___7; tmp___8 = ldv_zalloc(1UL); ldvarg9 = (char *)tmp___8; tmp___9 = ldv_zalloc(1UL); ldvarg11 = (char *)tmp___9; tmp___10 = ldv_zalloc(1UL); ldvarg10 = (char *)tmp___10; tmp___11 = __VERIFIER_nondet_uint(); ldvarg13 = tmp___11; tmp___12 = __VERIFIER_nondet_ulong(); ldvarg12 = tmp___12; tmp___13 = ldv_zalloc(24UL); ldvarg14 = (struct notifier_block *)tmp___13; tmp___14 = __VERIFIER_nondet_ulong(); ldvarg16 = tmp___14; tmp___15 = ldv_zalloc(1UL); ldvarg15 = tmp___15; tmp___16 = ldv_zalloc(1UL); ldvarg18 = (char *)tmp___16; tmp___17 = ldv_zalloc(1UL); ldvarg17 = (char *)tmp___17; tmp___18 = ldv_zalloc(1UL); ldvarg20 = (char *)tmp___18; tmp___19 = ldv_zalloc(1UL); ldvarg19 = (char *)tmp___19; tmp___20 = ldv_zalloc(1UL); ldvarg21 = (char *)tmp___20; tmp___21 = ldv_zalloc(1UL); ldvarg22 = (char *)tmp___21; tmp___22 = ldv_zalloc(1UL); ldvarg24 = (char *)tmp___22; tmp___23 = ldv_zalloc(1UL); ldvarg23 = (char *)tmp___23; tmp___24 = ldv_zalloc(1UL); ldvarg26 = (char *)tmp___24; tmp___25 = ldv_zalloc(1UL); ldvarg25 = (char *)tmp___25; tmp___26 = __VERIFIER_nondet_int(); ldvarg27 = tmp___26; tmp___27 = ldv_zalloc(464UL); ldvarg35 = (struct block_device *)tmp___27; tmp___28 = __VERIFIER_nondet_int(); ldvarg31 = tmp___28; tmp___29 = ldv_zalloc(4UL); ldvarg33 = (int *)tmp___29; tmp___30 = ldv_zalloc(1UL); ldvarg30 = (char *)tmp___30; tmp___31 = ldv_zalloc(8UL); ldvarg29 = (char **)tmp___31; tmp___32 = ldv_zalloc(1UL); ldvarg37 = (char *)tmp___32; tmp___33 = ldv_zalloc(1UL); ldvarg36 = (char *)tmp___33; tmp___34 = ldv_zalloc(1UL); ldvarg39 = (char *)tmp___34; tmp___35 = ldv_zalloc(1UL); ldvarg38 = (char *)tmp___35; tmp___36 = ldv_zalloc(32UL); ldvarg40 = (struct pci_device_id *)tmp___36; ldv_initialize(); memset((void *)(& ldvarg28), 0, 8UL); memset((void *)(& ldvarg34), 0, 8UL); ldv_state_variable_11 = 0; ldv_state_variable_7 = 0; ldv_state_variable_17 = 0; ldv_state_variable_2 = 1; ldv_state_variable_1 = 1; ldv_state_variable_18 = 0; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_16 = 0; ldv_state_variable_13 = 0; ldv_state_variable_6 = 0; ldv_state_variable_3 = 0; ldv_state_variable_9 = 0; ldv_state_variable_12 = 0; ldv_state_variable_14 = 0; ldv_state_variable_15 = 0; ldv_state_variable_8 = 0; ldv_state_variable_4 = 0; ldv_state_variable_19 = 0; ldv_state_variable_10 = 0; ldv_state_variable_5 = 0; ldv_32677: tmp___37 = __VERIFIER_nondet_int(); switch (tmp___37) { case 0: ; if (ldv_state_variable_11 != 0) { tmp___38 = __VERIFIER_nondet_int(); switch (tmp___38) { case 0: ; if (ldv_state_variable_11 == 1) { param_set_int((char const *)ldvarg1, __param_max_ids_group0); ldv_state_variable_11 = 1; } else { } goto ldv_32579; case 1: ; if (ldv_state_variable_11 == 1) { param_get_int(ldvarg0, __param_max_ids_group0); ldv_state_variable_11 = 1; } else { } goto ldv_32579; default: ldv_stop(); } ldv_32579: ; } else { } goto ldv_32582; case 1: ; if (ldv_state_variable_7 != 0) { tmp___39 = __VERIFIER_nondet_int(); switch (tmp___39) { case 0: ; if (ldv_state_variable_7 == 1) { param_set_int((char const *)ldvarg3, __param_force_dma32_group0); ldv_state_variable_7 = 1; } else { } goto ldv_32585; case 1: ; if (ldv_state_variable_7 == 1) { param_get_int(ldvarg2, __param_force_dma32_group0); ldv_state_variable_7 = 1; } else { } goto ldv_32585; default: ldv_stop(); } ldv_32585: ; } else { } goto ldv_32582; case 2: ; if (ldv_state_variable_17 != 0) { tmp___40 = __VERIFIER_nondet_int(); switch (tmp___40) { case 0: ; if (ldv_state_variable_17 == 1) { param_set_int((char const *)ldvarg5, __param_disable_group0); ldv_state_variable_17 = 1; } else { } goto ldv_32590; case 1: ; if (ldv_state_variable_17 == 1) { param_get_int(ldvarg4, __param_disable_group0); ldv_state_variable_17 = 1; } else { } goto ldv_32590; default: ldv_stop(); } ldv_32590: ; } else { } goto ldv_32582; case 3: ; if (ldv_state_variable_2 != 0) { choose_timer_2(ldv_timer_list_2); } else { } goto ldv_32582; case 4: ; if (ldv_state_variable_1 != 0) { choose_interrupt_1(); } else { } goto ldv_32582; case 5: ; if (ldv_state_variable_18 != 0) { tmp___41 = __VERIFIER_nondet_int(); switch (tmp___41) { case 0: ; if (ldv_state_variable_18 == 1) { param_array_set((char const *)ldvarg7, __param_irq_group0); ldv_state_variable_18 = 1; } else { } goto ldv_32597; case 1: ; if (ldv_state_variable_18 == 1) { param_array_get(ldvarg6, __param_irq_group0); ldv_state_variable_18 = 1; } else { } goto ldv_32597; default: ldv_stop(); } ldv_32597: ; } else { } goto ldv_32582; case 6: ; if (ldv_state_variable_0 != 0) { tmp___42 = __VERIFIER_nondet_int(); switch (tmp___42) { case 0: ; if (ldv_state_variable_0 == 3 && ref_cnt == 0) { gdth_exit(); ldv_state_variable_0 = 2; goto ldv_final; } else { } goto ldv_32603; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_0 = gdth_init(); if (ldv_retval_0 == 0) { ldv_state_variable_0 = 3; ldv_state_variable_5 = 1; ldv_initialize_pci_driver_5(); ldv_state_variable_10 = 1; ldv_initialize_kernel_param_10(); ldv_state_variable_13 = 1; ldv_initialize_kernel_param_13(); ldv_state_variable_16 = 1; ldv_initialize_kernel_param_16(); ldv_state_variable_19 = 1; ldv_initialize_kparam_array_19(); ldv_state_variable_18 = 1; ldv_initialize_kernel_param_18(); ldv_state_variable_8 = 1; ldv_initialize_kernel_param_8(); ldv_state_variable_14 = 1; ldv_initialize_kernel_param_14(); ldv_state_variable_15 = 1; ldv_initialize_kparam_array_15(); ldv_state_variable_12 = 1; ldv_initialize_kernel_param_12(); ldv_state_variable_17 = 1; ldv_initialize_kernel_param_17(); ldv_state_variable_9 = 1; ldv_initialize_kernel_param_9(); ldv_state_variable_7 = 1; ldv_initialize_kernel_param_7(); ldv_state_variable_3 = 1; ldv_state_variable_11 = 1; ldv_initialize_kernel_param_11(); } else { } if (ldv_retval_0 != 0) { ldv_state_variable_0 = 2; goto ldv_final; } else { } } else { } goto ldv_32603; default: ldv_stop(); } ldv_32603: ; } else { } goto ldv_32582; case 7: ; if (ldv_state_variable_16 != 0) { tmp___43 = __VERIFIER_nondet_int(); switch (tmp___43) { case 0: ; if (ldv_state_variable_16 == 1) { param_set_int((char const *)ldvarg9, __param_reserve_mode_group0); ldv_state_variable_16 = 1; } else { } goto ldv_32608; case 1: ; if (ldv_state_variable_16 == 1) { param_get_int(ldvarg8, __param_reserve_mode_group0); ldv_state_variable_16 = 1; } else { } goto ldv_32608; default: ldv_stop(); } ldv_32608: ; } else { } goto ldv_32582; case 8: ; if (ldv_state_variable_13 != 0) { tmp___44 = __VERIFIER_nondet_int(); switch (tmp___44) { case 0: ; if (ldv_state_variable_13 == 1) { param_set_int((char const *)ldvarg11, __param_reverse_scan_group0); ldv_state_variable_13 = 1; } else { } goto ldv_32613; case 1: ; if (ldv_state_variable_13 == 1) { param_get_int(ldvarg10, __param_reverse_scan_group0); ldv_state_variable_13 = 1; } else { } goto ldv_32613; default: ldv_stop(); } ldv_32613: ; } else { } goto ldv_32582; case 9: ; if (ldv_state_variable_6 != 0) { tmp___45 = __VERIFIER_nondet_int(); switch (tmp___45) { case 0: ; if (ldv_state_variable_6 == 2) { gdth_close(gdth_fops_group1, gdth_fops_group2); ldv_state_variable_6 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_32618; case 1: ; if (ldv_state_variable_6 == 1) { ldv_retval_1 = gdth_open(gdth_fops_group1, gdth_fops_group2); if (ldv_retval_1 == 0) { ldv_state_variable_6 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_32618; case 2: ; if (ldv_state_variable_6 == 2) { gdth_unlocked_ioctl(gdth_fops_group2, ldvarg13, ldvarg12); ldv_state_variable_6 = 2; } else { } goto ldv_32618; default: ldv_stop(); } ldv_32618: ; } else { } goto ldv_32582; case 10: ; if (ldv_state_variable_3 != 0) { tmp___46 = __VERIFIER_nondet_int(); switch (tmp___46) { case 0: ; if (ldv_state_variable_3 == 1) { gdth_halt(ldvarg14, ldvarg16, ldvarg15); ldv_state_variable_3 = 1; } else { } goto ldv_32624; default: ldv_stop(); } ldv_32624: ; } else { } goto ldv_32582; case 11: ; if (ldv_state_variable_9 != 0) { tmp___47 = __VERIFIER_nondet_int(); switch (tmp___47) { case 0: ; if (ldv_state_variable_9 == 1) { param_set_int((char const *)ldvarg18, __param_shared_access_group0); ldv_state_variable_9 = 1; } else { } goto ldv_32628; case 1: ; if (ldv_state_variable_9 == 1) { param_get_int(ldvarg17, __param_shared_access_group0); ldv_state_variable_9 = 1; } else { } goto ldv_32628; default: ldv_stop(); } ldv_32628: ; } else { } goto ldv_32582; case 12: ; if (ldv_state_variable_12 != 0) { tmp___48 = __VERIFIER_nondet_int(); switch (tmp___48) { case 0: ; if (ldv_state_variable_12 == 1) { param_set_int((char const *)ldvarg20, __param_hdr_channel_group0); ldv_state_variable_12 = 1; } else { } goto ldv_32633; case 1: ; if (ldv_state_variable_12 == 1) { param_get_int(ldvarg19, __param_hdr_channel_group0); ldv_state_variable_12 = 1; } else { } goto ldv_32633; default: ldv_stop(); } ldv_32633: ; } else { } goto ldv_32582; case 13: ; if (ldv_state_variable_14 != 0) { tmp___49 = __VERIFIER_nondet_int(); switch (tmp___49) { case 0: ; if (ldv_state_variable_14 == 1) { param_array_set((char const *)ldvarg22, __param_reserve_list_group0); ldv_state_variable_14 = 1; } else { } goto ldv_32638; case 1: ; if (ldv_state_variable_14 == 1) { param_array_get(ldvarg21, __param_reserve_list_group0); ldv_state_variable_14 = 1; } else { } goto ldv_32638; default: ldv_stop(); } ldv_32638: ; } else { } goto ldv_32582; case 14: ; if (ldv_state_variable_15 != 0) { tmp___50 = __VERIFIER_nondet_int(); switch (tmp___50) { case 0: ; if (ldv_state_variable_15 == 1) { param_set_int((char const *)ldvarg24, __param_arr_reserve_list_group0); ldv_state_variable_15 = 1; } else { } goto ldv_32643; case 1: ; if (ldv_state_variable_15 == 1) { param_get_int(ldvarg23, __param_arr_reserve_list_group0); ldv_state_variable_15 = 1; } else { } goto ldv_32643; default: ldv_stop(); } ldv_32643: ; } else { } goto ldv_32582; case 15: ; if (ldv_state_variable_8 != 0) { tmp___51 = __VERIFIER_nondet_int(); switch (tmp___51) { case 0: ; if (ldv_state_variable_8 == 1) { param_set_int((char const *)ldvarg26, __param_probe_eisa_isa_group0); ldv_state_variable_8 = 1; } else { } goto ldv_32648; case 1: ; if (ldv_state_variable_8 == 1) { param_get_int(ldvarg25, __param_probe_eisa_isa_group0); ldv_state_variable_8 = 1; } else { } goto ldv_32648; default: ldv_stop(); } ldv_32648: ; } else { } goto ldv_32582; case 16: ; if (ldv_state_variable_4 != 0) { tmp___52 = __VERIFIER_nondet_int(); switch (tmp___52) { case 0: ; if (ldv_state_variable_4 == 1) { gdth_bios_param(gdth_template_group2, ldvarg35, ldvarg34, ldvarg33); ldv_state_variable_4 = 1; } else { } goto ldv_32653; case 1: ; if (ldv_state_variable_4 == 1) { gdth_slave_configure(gdth_template_group2); ldv_state_variable_4 = 1; } else { } goto ldv_32653; case 2: ; if (ldv_state_variable_4 == 1) { gdth_timed_out(gdth_template_group0); ldv_state_variable_4 = 1; } else { } goto ldv_32653; case 3: ; if (ldv_state_variable_4 == 1) { gdth_queuecommand(gdth_template_group0, ldvarg32); ldv_state_variable_4 = 1; } else { } goto ldv_32653; case 4: ; if (ldv_state_variable_4 == 1) { gdth_proc_info(gdth_template_group1, ldvarg30, ldvarg29, ldvarg28, ldvarg31, ldvarg27); ldv_state_variable_4 = 1; } else { } goto ldv_32653; case 5: ; if (ldv_state_variable_4 == 1) { gdth_eh_bus_reset(gdth_template_group0); ldv_state_variable_4 = 1; } else { } goto ldv_32653; case 6: ; if (ldv_state_variable_4 == 1) { gdth_info(gdth_template_group1); ldv_state_variable_4 = 1; } else { } goto ldv_32653; default: ldv_stop(); } ldv_32653: ; } else { } goto ldv_32582; case 17: ; if (ldv_state_variable_19 != 0) { tmp___53 = __VERIFIER_nondet_int(); switch (tmp___53) { case 0: ; if (ldv_state_variable_19 == 1) { param_set_int((char const *)ldvarg37, __param_arr_irq_group0); ldv_state_variable_19 = 1; } else { } goto ldv_32663; case 1: ; if (ldv_state_variable_19 == 1) { param_get_int(ldvarg36, __param_arr_irq_group0); ldv_state_variable_19 = 1; } else { } goto ldv_32663; default: ldv_stop(); } ldv_32663: ; } else { } goto ldv_32582; case 18: ; if (ldv_state_variable_10 != 0) { tmp___54 = __VERIFIER_nondet_int(); switch (tmp___54) { case 0: ; if (ldv_state_variable_10 == 1) { param_set_int((char const *)ldvarg39, __param_rescan_group0); ldv_state_variable_10 = 1; } else { } goto ldv_32668; case 1: ; if (ldv_state_variable_10 == 1) { param_get_int(ldvarg38, __param_rescan_group0); ldv_state_variable_10 = 1; } else { } goto ldv_32668; default: ldv_stop(); } ldv_32668: ; } else { } goto ldv_32582; case 19: ; if (ldv_state_variable_5 != 0) { tmp___55 = __VERIFIER_nondet_int(); switch (tmp___55) { case 0: ; if (ldv_state_variable_5 == 1) { ldv_retval_2 = gdth_pci_init_one(gdth_pci_driver_group0, (struct pci_device_id const *)ldvarg40); if (ldv_retval_2 == 0) { ldv_state_variable_5 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_32673; case 1: ; if (ldv_state_variable_5 == 2) { gdth_pci_remove_one(gdth_pci_driver_group0); ldv_state_variable_5 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_32673; default: ldv_stop(); } ldv_32673: ; } else { } goto ldv_32582; default: ldv_stop(); } ldv_32582: ; goto ldv_32677; ldv_final: ldv_check_final_state(); return 0; } } int ldv_del_timer_sync_1(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type ldv_func_res ; int tmp ; { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; disable_suitable_timer_2(ldv_func_arg1); return (ldv_func_res); } } int ldv_del_timer_2(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; { tmp = del_timer(ldv_func_arg1); ldv_func_res = tmp; disable_suitable_timer_2(ldv_func_arg1); return (ldv_func_res); } } unsigned long ldv__copy_from_user_3(void *ldv_func_arg1 , void const *ldv_func_arg2 , unsigned int ldv_func_arg3 ) { unsigned long tmp ; { ldv_check_len((long )ldv_func_arg3); tmp = _copy_from_user(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); return (tmp); } } unsigned long ldv__copy_to_user_4(void *ldv_func_arg1 , void const *ldv_func_arg2 , unsigned int ldv_func_arg3 ) { unsigned long tmp ; { ldv_check_len((long )ldv_func_arg3); tmp = _copy_to_user(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); return (tmp); } } long ldv___copy_user_nocache_5(void *ldv_func_arg1 , void const *ldv_func_arg2 , unsigned int ldv_func_arg3 , int ldv_func_arg4 ) { long tmp ; { ldv_check_len((long )ldv_func_arg3); tmp = __copy_user_nocache(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); return (tmp); } } long ldv___copy_user_nocache_6(void *ldv_func_arg1 , void const *ldv_func_arg2 , unsigned int ldv_func_arg3 , int ldv_func_arg4 ) { long tmp ; { ldv_check_len((long )ldv_func_arg3); tmp = __copy_user_nocache(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3, ldv_func_arg4); return (tmp); } } int ldv_scsi_add_host_with_dma_7(struct Scsi_Host *shost , struct device *dev , struct device *dma_dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; { tmp = scsi_add_host_with_dma(shost, dev, dma_dev); ldv_func_res = tmp; if (ldv_func_res == 0) { ldv_state_variable_4 = 1; ldv_initialize_scsi_host_template_4(); } else { } return (ldv_func_res); } } __inline static unsigned long ldv_copy_from_user_8(void *to , void const *from , unsigned long n ) { unsigned long tmp ; { ldv_check_len((long )n); tmp = copy_from_user(to, from, n); return (tmp); } } struct Scsi_Host *ldv_scsi_host_alloc_18(struct scsi_host_template *sht , int privsize ) { ldv_func_ret_type___2 ldv_func_res ; struct Scsi_Host *tmp ; { tmp = scsi_host_alloc(sht, privsize); ldv_func_res = tmp; if ((unsigned long )ldv_func_res != (unsigned long )((ldv_func_ret_type___2 )0)) { ldv_state_variable_4 = 1; ldv_initialize_scsi_host_template_4(); } else { } return (ldv_func_res); } } __inline static int ldv_request_irq_19(unsigned int irq___0 , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = request_irq(irq___0, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = reg_check_1(handler); if (tmp___0 != 0 && ldv_func_res == 0) { activate_suitable_irq_1((int )irq___0, dev); } else { } return (ldv_func_res); } } void ldv_free_irq_20(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { free_irq(ldv_func_arg1, ldv_func_arg2); disable_suitable_irq_1((int )ldv_func_arg1, ldv_func_arg2); return; } } void ldv_scsi_remove_host_21(struct Scsi_Host *shost ) { { scsi_remove_host(shost); ldv_state_variable_4 = 0; return; } } void ldv_free_irq_22(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { free_irq(ldv_func_arg1, ldv_func_arg2); disable_suitable_irq_1((int )ldv_func_arg1, ldv_func_arg2); return; } } __inline static int ldv_register_chrdev_23(unsigned int major___0 , char const *name , struct file_operations const *fops ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; { tmp = register_chrdev(major___0, name, fops); ldv_func_res = tmp; ldv_state_variable_6 = 1; ldv_file_operations_6(); return (ldv_func_res); } } __inline static void ldv_unregister_chrdev_24(unsigned int major___0 , char const *name ) { { unregister_chrdev(major___0, name); ldv_state_variable_6 = 0; return; } } int ldv_del_timer_sync_25(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; disable_suitable_timer_2(ldv_func_arg1); return (ldv_func_res); } } unsigned long ldv_strlen(char const *str ) ; __kernel_size_t strnlen(char const *s , __kernel_size_t count ) ; __inline static void ldv_stop___0(void) { { LDV_STOP: goto LDV_STOP; } } void ldv_check_ret_val(int res ) ; unsigned long ldv_strlen(char const *str ) { size_t res ; int tmp ; { tmp = ldv_undef_int(); res = tmp; ldv_check_ret_val(res); return (res); } } __kernel_size_t strnlen(char const *s , __kernel_size_t count ) { size_t res ; int tmp ; { tmp = ldv_undef_int(); res = tmp; ldv_check_ret_val(res); return (res); } } void ldv_check_len(long n ) { { if (n >= 0L) { } else { ldv_error(); } return; } } void ldv_check_ret_val(int res ) { { if (res >= 0) { } else { ldv_stop___0(); } return; } } #include "model/linux-stable-5934df9-1-111_1a-drivers--scsi--gdth.ko-entry_point_false-unreach-call.cil.out.env.c" #include "model/common.env.c"