extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); void reach_error() { __assert_fail("0", "drivers--isdn--mISDN--mISDN_core.ko_003.ce425a9.68_1.cil_true-unreach-call.i", 3, "reach_error"); } /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef unsigned int __kernel_mode_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid_t; typedef unsigned int __kernel_gid_t; typedef unsigned long __kernel_size_t; typedef long __kernel_ssize_t; typedef long __kernel_time_t; typedef long __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef long long __kernel_loff_t; typedef __kernel_uid_t __kernel_uid32_t; typedef __kernel_gid_t __kernel_gid32_t; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef long long __s64; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef unsigned short umode_t; typedef u64 dma_addr_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef __kernel_mode_t mode_t; typedef __kernel_pid_t pid_t; typedef __kernel_timer_t timer_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __kernel_clock_t clock_t; typedef unsigned char u_char; typedef unsigned int u_int; typedef unsigned long u_long; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef __u16 __be16; typedef __u32 __wsum; typedef unsigned int gfp_t; struct task_struct; struct mm_struct; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct info { long ___orig_eip ; long ___ebx ; long ___ecx ; long ___edx ; long ___esi ; long ___edi ; long ___ebp ; long ___eax ; long ___ds ; long ___es ; long ___fs ; long ___orig_eax ; long ___eip ; long ___cs ; long ___eflags ; long ___esp ; long ___ss ; long ___vm86_es ; long ___vm86_ds ; long ___vm86_fs ; long ___vm86_gs ; }; typedef __builtin_va_list __gnuc_va_list; typedef __gnuc_va_list va_list; struct module; struct bug_entry { unsigned long bug_addr ; char const *file ; unsigned short line ; unsigned short flags ; }; struct completion; struct pid; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; typedef unsigned long phys_addr_t; struct page; struct __anonstruct_pgd_t_8 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_8 pgd_t; struct __anonstruct_pgprot_t_9 { pgprotval_t pgprot ; }; typedef struct __anonstruct_pgprot_t_9 pgprot_t; struct __anonstruct____missing_field_name_13 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_14 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_12 { struct __anonstruct____missing_field_name_13 __annonCompField1 ; struct __anonstruct____missing_field_name_14 __annonCompField2 ; }; struct desc_struct { union __anonunion____missing_field_name_12 __annonCompField3 ; } __attribute__((__packed__)) ; struct __anonstruct_cpumask_t_17 { unsigned long bits[((8UL + 8UL * sizeof(long )) - 1UL) / (8UL * sizeof(long ))] ; }; typedef struct __anonstruct_cpumask_t_17 cpumask_t; struct thread_struct; struct raw_spinlock; struct exec_domain; struct map_segment; struct exec_domain { char const *name ; void (*handler)(int , struct pt_regs * ) ; unsigned char pers_low ; unsigned char pers_high ; unsigned long *signal_map ; unsigned long *signal_invmap ; struct map_segment *err_map ; struct map_segment *socktype_map ; struct map_segment *sockopt_map ; struct map_segment *af_map ; struct module *module ; struct exec_domain *next ; }; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20] ; u32 status ; }; struct __anonstruct____missing_field_name_21 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_22 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_20 { struct __anonstruct____missing_field_name_21 __annonCompField4 ; struct __anonstruct____missing_field_name_22 __annonCompField5 ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_20 __annonCompField6 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32] ; u32 xmm_space[64] ; u32 padding[24] ; } __attribute__((__aligned__(16))) ; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct info *info ; u32 entry_eip ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; }; struct kmem_cache; struct thread_struct { struct desc_struct tls_array[3] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long ip ; unsigned long fs ; unsigned long gs ; unsigned long debugreg0 ; unsigned long debugreg1 ; unsigned long debugreg2 ; unsigned long debugreg3 ; unsigned long debugreg6 ; unsigned long debugreg7 ; unsigned long cr2 ; unsigned long trap_no ; unsigned long error_code ; union thread_xstate *xstate ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned long debugctlmsr ; unsigned long ds_area_msr ; }; struct __anonstruct_mm_segment_t_23 { unsigned long seg ; }; typedef struct __anonstruct_mm_segment_t_23 mm_segment_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct timespec; struct compat_timespec; struct __anonstruct____missing_field_name_25 { unsigned long arg0 ; unsigned long arg1 ; unsigned long arg2 ; unsigned long arg3 ; }; struct __anonstruct_futex_26 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; }; struct __anonstruct_nanosleep_27 { clockid_t index ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; union __anonunion____missing_field_name_24 { struct __anonstruct____missing_field_name_25 __annonCompField7 ; struct __anonstruct_futex_26 futex ; struct __anonstruct_nanosleep_27 nanosleep ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_24 __annonCompField8 ; }; struct thread_info { struct task_struct *task ; struct exec_domain *exec_domain ; unsigned long flags ; __u32 status ; __u32 cpu ; int preempt_count ; mm_segment_t addr_limit ; struct restart_block restart_block ; void *sysenter_return ; }; struct raw_spinlock { unsigned int slock ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct_raw_rwlock_t_28 { unsigned int lock ; }; typedef struct __anonstruct_raw_rwlock_t_28 raw_rwlock_t; struct lockdep_map; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; enum lock_usage_bit { LOCK_USED = 0, LOCK_USED_IN_HARDIRQ = 1, LOCK_USED_IN_SOFTIRQ = 2, LOCK_ENABLED_SOFTIRQS = 3, LOCK_ENABLED_HARDIRQS = 4, LOCK_USED_IN_HARDIRQ_READ = 5, LOCK_USED_IN_SOFTIRQ_READ = 6, LOCK_ENABLED_SOFTIRQS_READ = 7, LOCK_ENABLED_HARDIRQS_READ = 8, LOCK_USAGE_STATES = 9 } ; struct lockdep_subclass_key { char __one_byte ; } __attribute__((__packed__)) ; struct lock_class_key { struct lockdep_subclass_key subkeys[8UL] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[LOCK_USAGE_STATES] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache ; char const *name ; int cpu ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; }; struct __anonstruct_spinlock_t_29 { raw_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_spinlock_t_29 spinlock_t; struct __anonstruct_rwlock_t_30 { raw_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct __anonstruct_atomic_t_31 { int counter ; }; typedef struct __anonstruct_atomic_t_31 atomic_t; struct __anonstruct_atomic64_t_32 { long counter ; }; typedef struct __anonstruct_atomic64_t_32 atomic64_t; typedef atomic64_t atomic_long_t; struct __anonstruct_seqlock_t_33 { unsigned int sequence ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_33 seqlock_t; struct timespec { time_t tv_sec ; long tv_nsec ; }; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; uid_t uid ; gid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t *wait , unsigned int mode , int sync , void *key ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct __anonstruct_nodemask_t_34 { unsigned long bits[(((unsigned long )(1 << 6) + 8UL * sizeof(long )) - 1UL) / (8UL * sizeof(long ))] ; }; typedef struct __anonstruct_nodemask_t_34 nodemask_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct thread_info *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; struct mutex *lock ; void *magic ; }; struct rw_semaphore; struct rw_semaphore { __s32 activity ; spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct ctl_table; struct file; struct device; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct pm_ops { int (*prepare)(struct device *dev ) ; void (*complete)(struct device *dev ) ; int (*suspend)(struct device *dev ) ; int (*resume)(struct device *dev ) ; int (*freeze)(struct device *dev ) ; int (*thaw)(struct device *dev ) ; int (*poweroff)(struct device *dev ) ; int (*restore)(struct device *dev ) ; }; struct pm_ext_ops { struct pm_ops base ; int (*suspend_noirq)(struct device *dev ) ; int (*resume_noirq)(struct device *dev ) ; int (*freeze_noirq)(struct device *dev ) ; int (*thaw_noirq)(struct device *dev ) ; int (*poweroff_noirq)(struct device *dev ) ; int (*restore_noirq)(struct device *dev ) ; }; enum dpm_state { DPM_INVALID = 0, DPM_ON = 1, DPM_PREPARING = 2, DPM_RESUMING = 3, DPM_SUSPENDING = 4, DPM_OFF = 5, DPM_OFF_IRQ = 6 } ; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int should_wakeup : 1 ; enum dpm_state status ; struct list_head entry ; }; struct __anonstruct_mm_context_t_82 { void *ldt ; rwlock_t ldtlock ; int size ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_82 mm_context_t; struct vm_area_struct; struct key; struct linux_binprm; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kobject; struct attribute { char const *name ; struct module *owner ; mode_t mode ; }; struct attribute_group { char const *name ; mode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct sysfs_dirent; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct sysfs_dirent *sd ; struct kref kref ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; }; struct kobj_type { void (*release)(struct kobject *kobj ) ; struct sysfs_ops *sysfs_ops ; struct attribute **default_attrs ; }; struct kobj_uevent_env { char *envp[32] ; int envp_idx ; char buf[2048] ; int buflen ; }; struct kset_uevent_ops { int (*filter)(struct kset *kset , struct kobject *kobj ) ; char const *(*name)(struct kset *kset , struct kobject *kobj ) ; int (*uevent)(struct kset *kset , struct kobject *kobj , struct kobj_uevent_env *env ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops *uevent_ops ; }; struct kernel_param; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_92 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; unsigned int perm ; int (*set)(char const *val , struct kernel_param *kp ) ; int (*get)(char *buffer , struct kernel_param *kp ) ; union __anonunion____missing_field_name_92 __annonCompField9 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int *num ; int (*set)(char const *val , struct kernel_param *kp ) ; int (*get)(char *buffer , struct kernel_param *kp ) ; unsigned int elemsize ; void *elem ; }; struct marker; typedef void marker_probe_func(void *probe_private , void *call_private , char const *fmt , va_list *args ); struct marker_probe_closure { marker_probe_func *func ; void *probe_private ; }; struct marker { char const *name ; char const *format ; char state ; char ptype ; void (*call)(struct marker const *mdata , void *call_private , ...) ; struct marker_probe_closure single ; struct marker_probe_closure *multi ; } __attribute__((__aligned__(8))) ; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; void (*function)(unsigned long ) ; unsigned long data ; struct tvec_base *base ; void *start_site ; char start_comm[16] ; int start_pid ; }; struct hrtimer; enum hrtimer_restart; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct *work ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; }; enum stat_item { ALLOC_FASTPATH = 0, ALLOC_SLOWPATH = 1, FREE_FASTPATH = 2, FREE_SLOWPATH = 3, FREE_FROZEN = 4, FREE_ADD_PARTIAL = 5, FREE_REMOVE_PARTIAL = 6, ALLOC_FROM_PARTIAL = 7, ALLOC_SLAB = 8, ALLOC_REFILL = 9, FREE_SLAB = 10, CPUSLAB_FLUSH = 11, DEACTIVATE_FULL = 12, DEACTIVATE_EMPTY = 13, DEACTIVATE_TO_HEAD = 14, DEACTIVATE_TO_TAIL = 15, DEACTIVATE_REMOTE_FREES = 16, ORDER_FALLBACK = 17, NR_SLUB_STAT_ITEMS = 18 } ; struct kmem_cache_cpu { void **freelist ; struct page *page ; int node ; unsigned int offset ; unsigned int objsize ; unsigned int stat[NR_SLUB_STAT_ITEMS] ; }; struct kmem_cache_node { spinlock_t list_lock ; unsigned long nr_partial ; unsigned long min_partial ; struct list_head partial ; atomic_long_t nr_slabs ; atomic_long_t total_objects ; struct list_head full ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct kmem_cache { unsigned long flags ; int size ; int objsize ; int offset ; struct kmem_cache_order_objects oo ; struct kmem_cache_node local_node ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; char const *name ; struct list_head list ; struct kobject kobj ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1 << 6] ; struct kmem_cache_cpu *cpu_slab[8] ; }; struct seq_operations; struct __anonstruct_local_t_93 { atomic_long_t a ; }; typedef struct __anonstruct_local_t_93 local_t; struct mod_arch_specific { }; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module * , char const * , size_t count ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; }; struct exception_table_entry; struct module_ref { local_t count ; } __attribute__((__aligned__((1) << (7) ))) ; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2 } ; struct module_param_attrs; struct module_sect_attrs; struct module_notes_attrs; struct module { enum module_state state ; struct list_head list ; char name[64UL - sizeof(unsigned long )] ; struct module_kobject mkobj ; struct module_param_attrs *param_attrs ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry const *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; void *unwind_info ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; unsigned int num_symtab ; char *strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; void *percpu ; char *args ; struct marker *markers ; unsigned int num_markers ; struct list_head modules_which_use_me ; struct task_struct *waiter ; void (*exit)(void) ; struct module_ref ref[8] ; }; struct device_driver; struct sockaddr; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct seq_file; typedef unsigned short sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct ucred { __u32 pid ; __u32 uid ; __u32 gid ; }; struct sockaddr_mISDN { sa_family_t family ; unsigned char dev ; unsigned char channel ; unsigned char sapi ; unsigned char tei ; }; enum __anonenum_socket_state_94 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum __anonenum_socket_state_94 socket_state; struct poll_table_struct; struct pipe_inode_info; struct inode; struct net; struct proto_ops; struct fasync_struct; struct sock; struct socket { socket_state state ; short type ; unsigned long flags ; struct proto_ops const *ops ; struct fasync_struct *fasync_list ; struct file *file ; struct sock *sk ; wait_queue_head_t wait ; }; struct kiocb; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket *sock ) ; int (*bind)(struct socket *sock , struct sockaddr *myaddr , int sockaddr_len ) ; int (*connect)(struct socket *sock , struct sockaddr *vaddr , int sockaddr_len , int flags ) ; int (*socketpair)(struct socket *sock1 , struct socket *sock2 ) ; int (*accept)(struct socket *sock , struct socket *newsock , int flags ) ; int (*getname)(struct socket *sock , struct sockaddr *addr , int *sockaddr_len , int peer ) ; unsigned int (*poll)(struct file *file , struct socket *sock , struct poll_table_struct *wait ) ; int (*ioctl)(struct socket *sock , unsigned int cmd , unsigned long arg ) ; int (*compat_ioctl)(struct socket *sock , unsigned int cmd , unsigned long arg ) ; int (*listen)(struct socket *sock , int len ) ; int (*shutdown)(struct socket *sock , int flags ) ; int (*setsockopt)(struct socket *sock , int level , int optname , char *optval , int optlen ) ; int (*getsockopt)(struct socket *sock , int level , int optname , char *optval , int *optlen ) ; int (*compat_setsockopt)(struct socket *sock , int level , int optname , char *optval , int optlen ) ; int (*compat_getsockopt)(struct socket *sock , int level , int optname , char *optval , int *optlen ) ; int (*sendmsg)(struct kiocb *iocb , struct socket *sock , struct msghdr *m , size_t total_len ) ; int (*recvmsg)(struct kiocb *iocb , struct socket *sock , struct msghdr *m , size_t total_len , int flags ) ; int (*mmap)(struct file *file , struct socket *sock , struct vm_area_struct *vma ) ; ssize_t (*sendpage)(struct socket *sock , struct page *page , int offset , size_t size , int flags ) ; ssize_t (*splice_read)(struct socket *sock , loff_t *ppos , struct pipe_inode_info *pipe , size_t len , unsigned int flags ) ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_set { struct list_head list ; struct ctl_table_set *parent ; int (*is_seen)(struct ctl_table_set * ) ; }; struct ctl_table_header; typedef int ctl_handler(struct ctl_table *table , int *name , int nlen , void *oldval , size_t *oldlenp , void *newval , size_t newlen ); typedef int proc_handler(struct ctl_table *ctl , int write , struct file *filp , void *buffer , size_t *lenp , loff_t *ppos ); struct ctl_table { int ctl_name ; char const *procname ; void *data ; int maxlen ; mode_t mode ; struct ctl_table *child ; struct ctl_table *parent ; proc_handler *proc_handler ; ctl_handler *strategy ; void *extra1 ; void *extra2 ; }; struct ctl_table_root { struct list_head root_list ; struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root *root , struct nsproxy *namespaces ) ; int (*permissions)(struct ctl_table_root *root , struct nsproxy *namespaces , struct ctl_table *table ) ; }; struct ctl_table_header { struct ctl_table *ctl_table ; struct list_head ctl_entry ; int used ; int count ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_table *attached_by ; struct ctl_table *attached_to ; struct ctl_table_header *parent ; }; struct exception_table_entry { unsigned long insn ; unsigned long fixup ; }; struct sk_buff; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct rcu_head { struct rcu_head *next ; void (*func)(struct rcu_head *head ) ; }; struct klist_node; struct klist { spinlock_t k_lock ; struct list_head k_list ; void (*get)(struct klist_node * ) ; void (*put)(struct klist_node * ) ; }; struct klist_node { struct klist *n_klist ; struct list_head n_node ; struct kref n_ref ; struct completion n_removed ; }; struct semaphore { spinlock_t lock ; unsigned int count ; struct list_head wait_list ; }; struct dma_mapping_ops; struct dev_archdata { void *acpi_handle ; struct dma_mapping_ops *dma_ops ; void *iommu ; }; struct driver_private; struct class; struct class_private; struct bus_type; struct bus_type_private; struct bus_attribute { struct attribute attr ; ssize_t (*show)(struct bus_type *bus , char *buf ) ; ssize_t (*store)(struct bus_type *bus , char const *buf , size_t count ) ; }; struct device_attribute; struct driver_attribute; struct bus_type { char const *name ; struct bus_attribute *bus_attrs ; struct device_attribute *dev_attrs ; struct driver_attribute *drv_attrs ; int (*match)(struct device *dev , struct device_driver *drv ) ; int (*uevent)(struct device *dev , struct kobj_uevent_env *env ) ; int (*probe)(struct device *dev ) ; int (*remove)(struct device *dev ) ; void (*shutdown)(struct device *dev ) ; int (*suspend)(struct device *dev , pm_message_t state ) ; int (*suspend_late)(struct device *dev , pm_message_t state ) ; int (*resume_early)(struct device *dev ) ; int (*resume)(struct device *dev ) ; struct pm_ext_ops *pm ; struct bus_type_private *p ; }; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; int (*probe)(struct device *dev ) ; int (*remove)(struct device *dev ) ; void (*shutdown)(struct device *dev ) ; int (*suspend)(struct device *dev , pm_message_t state ) ; int (*resume)(struct device *dev ) ; struct attribute_group **groups ; struct pm_ops *pm ; struct driver_private *p ; }; struct driver_attribute { struct attribute attr ; ssize_t (*show)(struct device_driver *driver , char *buf ) ; ssize_t (*store)(struct device_driver *driver , char const *buf , size_t count ) ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct device_attribute *dev_attrs ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device *dev , struct kobj_uevent_env *env ) ; void (*class_release)(struct class *class ) ; void (*dev_release)(struct device *dev ) ; int (*suspend)(struct device *dev , pm_message_t state ) ; int (*resume)(struct device *dev ) ; struct pm_ops *pm ; struct class_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class *class , char *buf ) ; ssize_t (*store)(struct class *class , char const *buf , size_t count ) ; }; struct device_type { char const *name ; struct attribute_group **groups ; int (*uevent)(struct device *dev , struct kobj_uevent_env *env ) ; void (*release)(struct device *dev ) ; int (*suspend)(struct device *dev , pm_message_t state ) ; int (*resume)(struct device *dev ) ; struct pm_ops *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device *dev , struct device_attribute *attr , char *buf ) ; ssize_t (*store)(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct device { struct klist klist_children ; struct klist_node knode_parent ; struct klist_node knode_driver ; struct klist_node knode_bus ; struct device *parent ; struct kobject kobj ; char bus_id[20] ; char const *init_name ; struct device_type *type ; unsigned int uevent_suppress : 1 ; struct semaphore sem ; struct bus_type *bus ; struct device_driver *driver ; void *driver_data ; void *platform_data ; struct dev_pm_info power ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; spinlock_t devres_lock ; struct list_head devres_head ; struct list_head node ; struct class *class ; dev_t devt ; struct attribute_group **groups ; void (*release)(struct device *dev ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct rb_node { unsigned long rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; } __attribute__((__aligned__(sizeof(long )))) ; struct rb_root { struct rb_node *rb_node ; }; struct prio_tree_node; struct raw_prio_tree_node { struct prio_tree_node *left ; struct prio_tree_node *right ; struct prio_tree_node *parent ; }; struct prio_tree_node { struct prio_tree_node *left ; struct prio_tree_node *right ; struct prio_tree_node *parent ; unsigned long start ; unsigned long last ; }; struct prio_tree_root { struct prio_tree_node *prio_tree_node ; unsigned short index_bits ; unsigned short raw ; }; struct address_space; typedef atomic_long_t mm_counter_t; struct __anonstruct____missing_field_name_151 { u16 inuse ; u16 objects ; }; union __anonunion____missing_field_name_150 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_151 __annonCompField10 ; }; struct __anonstruct____missing_field_name_153 { unsigned long private ; struct address_space *mapping ; }; union __anonunion____missing_field_name_152 { struct __anonstruct____missing_field_name_153 __annonCompField12 ; spinlock_t ptl ; struct kmem_cache *slab ; struct page *first_page ; }; union __anonunion____missing_field_name_154 { unsigned long index ; void *freelist ; }; struct page { unsigned long flags ; atomic_t _count ; union __anonunion____missing_field_name_150 __annonCompField11 ; union __anonunion____missing_field_name_152 __annonCompField13 ; union __anonunion____missing_field_name_154 __annonCompField14 ; struct list_head lru ; unsigned long page_cgroup ; }; struct __anonstruct_vm_set_156 { struct list_head list ; void *parent ; struct vm_area_struct *head ; }; union __anonunion_shared_155 { struct __anonstruct_vm_set_156 vm_set ; struct raw_prio_tree_node prio_tree_node ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { struct mm_struct *vm_mm ; unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct rb_node vm_rb ; union __anonunion_shared_155 shared ; struct list_head anon_vma_node ; struct anon_vma *anon_vma ; struct vm_operations_struct *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; unsigned long vm_truncate_count ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct kioctx; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file *filp , unsigned long addr , unsigned long len , unsigned long pgoff , unsigned long flags ) ; void (*unmap_area)(struct mm_struct *mm , unsigned long addr ) ; unsigned long mmap_base ; unsigned long task_size ; unsigned long cached_hole_size ; unsigned long free_area_cache ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; int map_count ; struct rw_semaphore mmap_sem ; spinlock_t page_table_lock ; struct list_head mmlist ; mm_counter_t _file_rss ; mm_counter_t _anon_rss ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long reserved_vm ; unsigned long def_flags ; unsigned long nr_ptes ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[2 * ((2 + 18) + 1)] ; cpumask_t cpu_vm_mask ; mm_context_t context ; unsigned int faultstamp ; unsigned int token_priority ; unsigned int last_interval ; unsigned long flags ; struct core_state *core_state ; rwlock_t ioctx_list_lock ; struct kioctx *ioctx_list ; struct task_struct *owner ; struct file *exe_file ; unsigned long num_exe_file_vmas ; struct mmu_notifier_mm *mmu_notifier_mm ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct *area ) ; void (*close)(struct vm_area_struct *area ) ; int (*fault)(struct vm_area_struct *vma , struct vm_fault *vmf ) ; int (*page_mkwrite)(struct vm_area_struct *vma , struct page *page ) ; int (*access)(struct vm_area_struct *vma , unsigned long addr , void *buf , int len , int write ) ; int (*set_policy)(struct vm_area_struct *vma , struct mempolicy *new ) ; struct mempolicy *(*get_policy)(struct vm_area_struct *vma , unsigned long addr ) ; int (*migrate)(struct vm_area_struct *vma , nodemask_t const *from , nodemask_t const *to , unsigned long flags ) ; }; struct dma_mapping_ops { int (*mapping_error)(struct device *dev , dma_addr_t dma_addr ) ; void *(*alloc_coherent)(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp ) ; void (*free_coherent)(struct device *dev , size_t size , void *vaddr , dma_addr_t dma_handle ) ; dma_addr_t (*map_single)(struct device *hwdev , phys_addr_t ptr , size_t size , int direction ) ; dma_addr_t (*map_simple)(struct device *hwdev , phys_addr_t ptr , size_t size , int direction ) ; void (*unmap_single)(struct device *dev , dma_addr_t addr , size_t size , int direction ) ; void (*sync_single_for_cpu)(struct device *hwdev , dma_addr_t dma_handle , size_t size , int direction ) ; void (*sync_single_for_device)(struct device *hwdev , dma_addr_t dma_handle , size_t size , int direction ) ; void (*sync_single_range_for_cpu)(struct device *hwdev , dma_addr_t dma_handle , unsigned long offset , size_t size , int direction ) ; void (*sync_single_range_for_device)(struct device *hwdev , dma_addr_t dma_handle , unsigned long offset , size_t size , int direction ) ; void (*sync_sg_for_cpu)(struct device *hwdev , struct scatterlist *sg , int nelems , int direction ) ; void (*sync_sg_for_device)(struct device *hwdev , struct scatterlist *sg , int nelems , int direction ) ; int (*map_sg)(struct device *hwdev , struct scatterlist *sg , int nents , int direction ) ; void (*unmap_sg)(struct device *hwdev , struct scatterlist *sg , int nents , int direction ) ; int (*dma_supported)(struct device *hwdev , u64 mask ) ; int is_phys ; }; typedef s32 dma_cookie_t; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; enum hrtimer_cb_mode { HRTIMER_CB_SOFTIRQ = 0, HRTIMER_CB_IRQSAFE = 1, HRTIMER_CB_IRQSAFE_NO_RESTART = 2, HRTIMER_CB_IRQSAFE_NO_SOFTIRQ = 3 } ; struct hrtimer { struct rb_node node ; ktime_t expires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; enum hrtimer_cb_mode cb_mode ; struct list_head cb_entry ; void *start_site ; char start_comm[16] ; int start_pid ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; clockid_t index ; struct rb_root active ; struct rb_node *first ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t (*get_softirq_time)(void) ; ktime_t softirq_time ; ktime_t offset ; int (*reprogram)(struct hrtimer *t , struct hrtimer_clock_base *b , ktime_t n ) ; }; struct hrtimer_cpu_base { spinlock_t lock ; struct hrtimer_clock_base clock_base[2] ; struct list_head cb_pending ; ktime_t expires_next ; int hres_active ; unsigned long nr_events ; }; struct net_device; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned int mask ; unsigned long data[32UL / sizeof(unsigned long )] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct dst_entry; struct rtable; union __anonunion____missing_field_name_161 { struct dst_entry *dst ; struct rtable *rtable ; }; struct sec_path; struct __anonstruct____missing_field_name_163 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_162 { __wsum csum ; struct __anonstruct____missing_field_name_163 __annonCompField16 ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; struct sock *sk ; ktime_t tstamp ; struct net_device *dev ; union __anonunion____missing_field_name_161 __annonCompField15 ; struct sec_path *sp ; char cb[48] ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_162 __annonCompField17 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff *skb ) ; struct nf_conntrack *nfct ; struct sk_buff *nfct_reasm ; struct nf_bridge_info *nf_bridge ; int iif ; __u16 queue_mapping ; __u16 tc_index ; __u16 tc_verd ; __u8 ndisc_nodetype : 2 ; __u8 do_not_encrypt : 1 ; dma_cookie_t dma_cookie ; __u32 secmark ; __u32 mark ; __u16 vlan_tci ; sk_buff_data_t transport_header ; sk_buff_data_t network_header ; sk_buff_data_t mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct __anonstruct_sync_serial_settings_164 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_164 sync_serial_settings; struct __anonstruct_te1_settings_165 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_165 te1_settings; struct __anonstruct_raw_hdlc_proto_166 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_166 raw_hdlc_proto; struct __anonstruct_fr_proto_167 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_167 fr_proto; struct __anonstruct_fr_proto_pvc_168 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_168 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_169 { unsigned int dlci ; char master[16] ; }; typedef struct __anonstruct_fr_proto_pvc_info_169 fr_proto_pvc_info; struct __anonstruct_cisco_proto_170 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_170 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_173 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_173 ifs_ifsu ; }; union __anonunion_ifr_ifrn_174 { char ifrn_name[16] ; }; union __anonunion_ifr_ifru_175 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16] ; char ifru_newname[16] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_174 ifr_ifrn ; union __anonunion_ifr_ifru_175 ifr_ifru ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; enum __anonenum_177 { IPSTATS_MIB_NUM = 0, IPSTATS_MIB_INRECEIVES = 1, IPSTATS_MIB_INHDRERRORS = 2, IPSTATS_MIB_INTOOBIGERRORS = 3, IPSTATS_MIB_INNOROUTES = 4, IPSTATS_MIB_INADDRERRORS = 5, IPSTATS_MIB_INUNKNOWNPROTOS = 6, IPSTATS_MIB_INTRUNCATEDPKTS = 7, IPSTATS_MIB_INDISCARDS = 8, IPSTATS_MIB_INDELIVERS = 9, IPSTATS_MIB_OUTFORWDATAGRAMS = 10, IPSTATS_MIB_OUTREQUESTS = 11, IPSTATS_MIB_OUTDISCARDS = 12, IPSTATS_MIB_OUTNOROUTES = 13, IPSTATS_MIB_REASMTIMEOUT = 14, IPSTATS_MIB_REASMREQDS = 15, IPSTATS_MIB_REASMOKS = 16, IPSTATS_MIB_REASMFAILS = 17, IPSTATS_MIB_FRAGOKS = 18, IPSTATS_MIB_FRAGFAILS = 19, IPSTATS_MIB_FRAGCREATES = 20, IPSTATS_MIB_INMCASTPKTS = 21, IPSTATS_MIB_OUTMCASTPKTS = 22, IPSTATS_MIB_INBCASTPKTS = 23, IPSTATS_MIB_OUTBCASTPKTS = 24, __IPSTATS_MIB_MAX = 25 } ; enum __anonenum_178 { ICMP_MIB_NUM = 0, ICMP_MIB_INMSGS = 1, ICMP_MIB_INERRORS = 2, ICMP_MIB_INDESTUNREACHS = 3, ICMP_MIB_INTIMEEXCDS = 4, ICMP_MIB_INPARMPROBS = 5, ICMP_MIB_INSRCQUENCHS = 6, ICMP_MIB_INREDIRECTS = 7, ICMP_MIB_INECHOS = 8, ICMP_MIB_INECHOREPS = 9, ICMP_MIB_INTIMESTAMPS = 10, ICMP_MIB_INTIMESTAMPREPS = 11, ICMP_MIB_INADDRMASKS = 12, ICMP_MIB_INADDRMASKREPS = 13, ICMP_MIB_OUTMSGS = 14, ICMP_MIB_OUTERRORS = 15, ICMP_MIB_OUTDESTUNREACHS = 16, ICMP_MIB_OUTTIMEEXCDS = 17, ICMP_MIB_OUTPARMPROBS = 18, ICMP_MIB_OUTSRCQUENCHS = 19, ICMP_MIB_OUTREDIRECTS = 20, ICMP_MIB_OUTECHOS = 21, ICMP_MIB_OUTECHOREPS = 22, ICMP_MIB_OUTTIMESTAMPS = 23, ICMP_MIB_OUTTIMESTAMPREPS = 24, ICMP_MIB_OUTADDRMASKS = 25, ICMP_MIB_OUTADDRMASKREPS = 26, __ICMP_MIB_MAX = 27 } ; enum __anonenum_180 { TCP_MIB_NUM = 0, TCP_MIB_RTOALGORITHM = 1, TCP_MIB_RTOMIN = 2, TCP_MIB_RTOMAX = 3, TCP_MIB_MAXCONN = 4, TCP_MIB_ACTIVEOPENS = 5, TCP_MIB_PASSIVEOPENS = 6, TCP_MIB_ATTEMPTFAILS = 7, TCP_MIB_ESTABRESETS = 8, TCP_MIB_CURRESTAB = 9, TCP_MIB_INSEGS = 10, TCP_MIB_OUTSEGS = 11, TCP_MIB_RETRANSSEGS = 12, TCP_MIB_INERRS = 13, TCP_MIB_OUTRSTS = 14, __TCP_MIB_MAX = 15 } ; enum __anonenum_181 { UDP_MIB_NUM = 0, UDP_MIB_INDATAGRAMS = 1, UDP_MIB_NOPORTS = 2, UDP_MIB_INERRORS = 3, UDP_MIB_OUTDATAGRAMS = 4, UDP_MIB_RCVBUFERRORS = 5, UDP_MIB_SNDBUFERRORS = 6, __UDP_MIB_MAX = 7 } ; enum __anonenum_182 { LINUX_MIB_NUM = 0, LINUX_MIB_SYNCOOKIESSENT = 1, LINUX_MIB_SYNCOOKIESRECV = 2, LINUX_MIB_SYNCOOKIESFAILED = 3, LINUX_MIB_EMBRYONICRSTS = 4, LINUX_MIB_PRUNECALLED = 5, LINUX_MIB_RCVPRUNED = 6, LINUX_MIB_OFOPRUNED = 7, LINUX_MIB_OUTOFWINDOWICMPS = 8, LINUX_MIB_LOCKDROPPEDICMPS = 9, LINUX_MIB_ARPFILTER = 10, LINUX_MIB_TIMEWAITED = 11, LINUX_MIB_TIMEWAITRECYCLED = 12, LINUX_MIB_TIMEWAITKILLED = 13, LINUX_MIB_PAWSPASSIVEREJECTED = 14, LINUX_MIB_PAWSACTIVEREJECTED = 15, LINUX_MIB_PAWSESTABREJECTED = 16, LINUX_MIB_DELAYEDACKS = 17, LINUX_MIB_DELAYEDACKLOCKED = 18, LINUX_MIB_DELAYEDACKLOST = 19, LINUX_MIB_LISTENOVERFLOWS = 20, LINUX_MIB_LISTENDROPS = 21, LINUX_MIB_TCPPREQUEUED = 22, LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG = 23, LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE = 24, LINUX_MIB_TCPPREQUEUEDROPPED = 25, LINUX_MIB_TCPHPHITS = 26, LINUX_MIB_TCPHPHITSTOUSER = 27, LINUX_MIB_TCPPUREACKS = 28, LINUX_MIB_TCPHPACKS = 29, LINUX_MIB_TCPRENORECOVERY = 30, LINUX_MIB_TCPSACKRECOVERY = 31, LINUX_MIB_TCPSACKRENEGING = 32, LINUX_MIB_TCPFACKREORDER = 33, LINUX_MIB_TCPSACKREORDER = 34, LINUX_MIB_TCPRENOREORDER = 35, LINUX_MIB_TCPTSREORDER = 36, LINUX_MIB_TCPFULLUNDO = 37, LINUX_MIB_TCPPARTIALUNDO = 38, LINUX_MIB_TCPDSACKUNDO = 39, LINUX_MIB_TCPLOSSUNDO = 40, LINUX_MIB_TCPLOSS = 41, LINUX_MIB_TCPLOSTRETRANSMIT = 42, LINUX_MIB_TCPRENOFAILURES = 43, LINUX_MIB_TCPSACKFAILURES = 44, LINUX_MIB_TCPLOSSFAILURES = 45, LINUX_MIB_TCPFASTRETRANS = 46, LINUX_MIB_TCPFORWARDRETRANS = 47, LINUX_MIB_TCPSLOWSTARTRETRANS = 48, LINUX_MIB_TCPTIMEOUTS = 49, LINUX_MIB_TCPRENORECOVERYFAIL = 50, LINUX_MIB_TCPSACKRECOVERYFAIL = 51, LINUX_MIB_TCPSCHEDULERFAILED = 52, LINUX_MIB_TCPRCVCOLLAPSED = 53, LINUX_MIB_TCPDSACKOLDSENT = 54, LINUX_MIB_TCPDSACKOFOSENT = 55, LINUX_MIB_TCPDSACKRECV = 56, LINUX_MIB_TCPDSACKOFORECV = 57, LINUX_MIB_TCPABORTONSYN = 58, LINUX_MIB_TCPABORTONDATA = 59, LINUX_MIB_TCPABORTONCLOSE = 60, LINUX_MIB_TCPABORTONMEMORY = 61, LINUX_MIB_TCPABORTONTIMEOUT = 62, LINUX_MIB_TCPABORTONLINGER = 63, LINUX_MIB_TCPABORTFAILED = 64, LINUX_MIB_TCPMEMORYPRESSURES = 65, LINUX_MIB_TCPSACKDISCARD = 66, LINUX_MIB_TCPDSACKIGNOREDOLD = 67, LINUX_MIB_TCPDSACKIGNOREDNOUNDO = 68, LINUX_MIB_TCPSPURIOUSRTOS = 69, LINUX_MIB_TCPMD5NOTFOUND = 70, LINUX_MIB_TCPMD5UNEXPECTED = 71, __LINUX_MIB_MAX = 72 } ; struct ipstats_mib { unsigned long mibs[__IPSTATS_MIB_MAX] ; } __attribute__((__aligned__((1) << (7) ))) ; struct icmp_mib { unsigned long mibs[__ICMP_MIB_MAX + 1] ; } __attribute__((__aligned__((1) << (7) ))) ; struct icmpmsg_mib { unsigned long mibs[512] ; } __attribute__((__aligned__((1) << (7) ))) ; struct tcp_mib { unsigned long mibs[__TCP_MIB_MAX] ; } __attribute__((__aligned__((1) << (7) ))) ; struct udp_mib { unsigned long mibs[__UDP_MIB_MAX] ; } __attribute__((__aligned__((1) << (7) ))) ; struct linux_mib { unsigned long mibs[__LINUX_MIB_MAX] ; }; struct netns_mib { struct tcp_mib *tcp_statistics[2] ; struct ipstats_mib *ip_statistics[2] ; struct linux_mib *net_statistics[2] ; struct udp_mib *udp_statistics[2] ; struct udp_mib *udplite_statistics[2] ; struct icmp_mib *icmp_statistics[2] ; struct icmpmsg_mib *icmpmsg_statistics[2] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { rwlock_t sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; atomic_t mem ; struct list_head lru_list ; int timeout ; int high_thresh ; int low_thresh ; }; struct ipv4_devconf; struct fib_rules_ops; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct sock *tcp_sock ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct timer_list rt_secret_timer ; atomic_t rt_genid ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *table ; struct ctl_table_header *frags_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int icmpv6_time ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct dst_ops; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops *ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct netns_xt { struct list_head tables[35] ; }; struct proc_dir_entry; struct net_generic; struct net { atomic_t count ; struct list_head list ; struct work_struct work ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct net_device *loopback_dev ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; struct list_head rules_ops ; spinlock_t rules_mod_lock ; struct sock *rtnl ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_dccp dccp ; struct netns_xt xt ; struct net_generic *gen ; }; struct path; struct dentry; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; loff_t index ; u64 version ; struct mutex lock ; struct seq_operations const *op ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file *m , loff_t *pos ) ; void (*stop)(struct seq_file *m , void *v ) ; void *(*next)(struct seq_file *m , void *v , loff_t *pos ) ; int (*show)(struct seq_file *m , void *v ) ; }; struct vlan_group; struct ethtool_ops; struct netpoll_info; struct wireless_dev; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neighbour; struct neigh_parms; struct dev_addr_list { struct dev_addr_list *next ; u8 da_addr[32] ; u8 da_addrlen ; u8 da_synced ; int da_users ; int da_gusers ; }; struct hh_cache { struct hh_cache *hh_next ; atomic_t hh_refcnt ; __be16 hh_type __attribute__((__aligned__((1) << (7) ))) ; u16 hh_len ; int (*hh_output)(struct sk_buff *skb ) ; seqlock_t hh_lock ; unsigned long hh_data[(unsigned long )((128 + (16 - 1)) & ~ (16 - 1)) / sizeof(long )] ; }; struct header_ops { int (*create)(struct sk_buff *skb , struct net_device *dev , unsigned short type , void const *daddr , void const *saddr , unsigned int len ) ; int (*parse)(struct sk_buff const *skb , unsigned char *haddr ) ; int (*rebuild)(struct sk_buff *skb ) ; int (*cache)(struct neighbour const *neigh , struct hh_cache *hh ) ; void (*cache_update)(struct hh_cache *hh , struct net_device const *dev , unsigned char const *haddr ) ; }; struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; unsigned long state ; spinlock_t _xmit_lock ; int xmit_lock_owner ; struct Qdisc *qdisc_sleeping ; } __attribute__((__aligned__((1) << (7) ))) ; struct iw_handler_def; struct iw_public_data; enum __anonenum_reg_state_186 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4 } ; struct net_bridge_port; struct macvlan_port; struct garp_port; struct rtnl_link_ops; struct net_device { char name[16] ; struct hlist_node name_hlist ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; unsigned int irq ; unsigned char if_port ; unsigned char dma ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; int (*init)(struct net_device *dev ) ; unsigned long features ; int ifindex ; int iflink ; struct net_device_stats *(*get_stats)(struct net_device *dev ) ; struct net_device_stats stats ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct ethtool_ops const *ethtool_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned short gflags ; unsigned short priv_flags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; struct net_device *master ; unsigned char perm_addr[32] ; unsigned char addr_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct dev_addr_list *uc_list ; int uc_count ; int uc_promisc ; struct dev_addr_list *mc_list ; int mc_count ; unsigned int promiscuity ; unsigned int allmulti ; void *atalk_ptr ; void *ip_ptr ; void *dn_ptr ; void *ip6_ptr ; void *ec_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char dev_addr[32] ; unsigned char broadcast[32] ; struct netdev_queue rx_queue ; struct netdev_queue *_tx __attribute__((__aligned__((1) << (7) ))) ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; void *priv ; int (*hard_start_xmit)(struct sk_buff *skb , struct net_device *dev ) ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; atomic_t refcnt __attribute__((__aligned__((1) << (7) ))) ; struct list_head todo_list ; struct hlist_node index_hlist ; struct net_device *link_watch_next ; enum __anonenum_reg_state_186 reg_state ; void (*uninit)(struct net_device *dev ) ; void (*destructor)(struct net_device *dev ) ; int (*open)(struct net_device *dev ) ; int (*stop)(struct net_device *dev ) ; void (*change_rx_flags)(struct net_device *dev , int flags ) ; void (*set_rx_mode)(struct net_device *dev ) ; void (*set_multicast_list)(struct net_device *dev ) ; int (*set_mac_address)(struct net_device *dev , void *addr ) ; int (*validate_addr)(struct net_device *dev ) ; int (*do_ioctl)(struct net_device *dev , struct ifreq *ifr , int cmd ) ; int (*set_config)(struct net_device *dev , struct ifmap *map ) ; int (*change_mtu)(struct net_device *dev , int new_mtu ) ; void (*tx_timeout)(struct net_device *dev ) ; void (*vlan_rx_register)(struct net_device *dev , struct vlan_group *grp ) ; void (*vlan_rx_add_vid)(struct net_device *dev , unsigned short vid ) ; void (*vlan_rx_kill_vid)(struct net_device *dev , unsigned short vid ) ; int (*neigh_setup)(struct net_device *dev , struct neigh_parms * ) ; struct netpoll_info *npinfo ; void (*poll_controller)(struct net_device *dev ) ; u16 (*select_queue)(struct net_device *dev , struct sk_buff *skb ) ; void *ml_priv ; struct net_bridge_port *br_port ; struct macvlan_port *macvlan_port ; struct garp_port *garp_port ; struct device dev ; struct attribute_group *sysfs_groups[3] ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned long vlan_features ; unsigned int gso_max_size ; }; struct kernel_cap_struct { __u32 cap[2] ; }; typedef struct kernel_cap_struct kernel_cap_t; typedef unsigned long cputime_t; struct sem_undo_list; struct sem_undo_list { atomic_t refcnt ; spinlock_t lock ; struct list_head list_proc ; }; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct siginfo; struct __anonstruct_sigset_t_188 { unsigned long sig[64 / 64] ; }; typedef struct __anonstruct_sigset_t_188 sigset_t; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_190 { pid_t _pid ; uid_t _uid ; }; struct __anonstruct__timer_191 { timer_t _tid ; int _overrun ; char _pad[sizeof(uid_t ) - sizeof(int )] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_192 { pid_t _pid ; uid_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_193 { pid_t _pid ; uid_t _uid ; int _status ; clock_t _utime ; clock_t _stime ; }; struct __anonstruct__sigfault_194 { void *_addr ; }; struct __anonstruct__sigpoll_195 { long _band ; int _fd ; }; union __anonunion__sifields_189 { int _pad[(128UL - 4UL * sizeof(int )) / sizeof(int )] ; struct __anonstruct__kill_190 _kill ; struct __anonstruct__timer_191 _timer ; struct __anonstruct__rt_192 _rt ; struct __anonstruct__sigchld_193 _sigchld ; struct __anonstruct__sigfault_194 _sigfault ; struct __anonstruct__sigpoll_195 _sigpoll ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_189 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct vfsmount; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct fs_struct { atomic_t count ; rwlock_t lock ; int umask ; struct path root ; struct path pwd ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[PIDTYPE_MAX] ; struct rcu_head rcu ; struct upid numbers[1] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct prop_local_single { unsigned long events ; int shift ; unsigned long period ; spinlock_t lock ; }; struct __anonstruct_seccomp_t_198 { int mode ; }; typedef struct __anonstruct_seccomp_t_198 seccomp_t; struct plist_head { struct list_head prio_list ; struct list_head node_list ; spinlock_t *lock ; }; struct rt_mutex_waiter; struct rlimit { unsigned long rlim_cur ; unsigned long rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct futex_pi_state; struct robust_list_head; struct bio; struct cfs_rq; struct task_group; struct io_event { __u64 data ; __u64 obj ; __s64 res ; __s64 res2 ; }; union __anonunion_ki_obj_200 { void *user ; struct task_struct *tsk ; }; struct kiocb { struct list_head ki_run_list ; unsigned long ki_flags ; int ki_users ; unsigned int ki_key ; struct file *ki_filp ; struct kioctx *ki_ctx ; int (*ki_cancel)(struct kiocb * , struct io_event * ) ; ssize_t (*ki_retry)(struct kiocb * ) ; void (*ki_dtor)(struct kiocb * ) ; union __anonunion_ki_obj_200 ki_obj ; __u64 ki_user_data ; wait_queue_t ki_wait ; loff_t ki_pos ; void *private ; unsigned short ki_opcode ; size_t ki_nbytes ; char *ki_buf ; size_t ki_left ; struct iovec ki_inline_vec ; struct iovec *ki_iovec ; unsigned long ki_nr_segs ; unsigned long ki_cur_seg ; struct list_head ki_list ; struct file *ki_eventfd ; }; struct aio_ring_info { unsigned long mmap_base ; unsigned long mmap_size ; struct page **ring_pages ; spinlock_t ring_lock ; long nr_pages ; unsigned int nr ; unsigned int tail ; struct page *internal_pages[8] ; }; struct kioctx { atomic_t users ; int dead ; struct mm_struct *mm ; unsigned long user_id ; struct kioctx *next ; wait_queue_head_t wait ; spinlock_t ctx_lock ; int reqs_active ; struct list_head active_reqs ; struct list_head run_list ; unsigned int max_reqs ; struct aio_ring_info ring_info ; struct delayed_work wq ; }; struct sighand_struct { atomic_t count ; struct k_sigaction action[64] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; union __anonunion____missing_field_name_201 { pid_t pgrp __attribute__((__deprecated__)) ; pid_t __pgrp ; }; union __anonunion____missing_field_name_202 { pid_t session __attribute__((__deprecated__)) ; pid_t __session ; }; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t count ; atomic_t live ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; struct task_struct *group_exit_task ; int notify_count ; int group_stop_count ; unsigned int flags ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; cputime_t it_prof_expires ; cputime_t it_virt_expires ; cputime_t it_prof_incr ; cputime_t it_virt_incr ; union __anonunion____missing_field_name_201 __annonCompField18 ; struct pid *tty_old_pgrp ; union __anonunion____missing_field_name_202 __annonCompField19 ; int leader ; struct tty_struct *tty ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16] ; struct list_head cpu_timers[3] ; struct key *session_keyring ; struct key *process_keyring ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; struct tty_audit_buf *tty_audit_buf ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; uid_t uid ; struct task_group *tg ; struct kobject kobj ; struct work_struct work ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long cpu_time ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; unsigned int bkl_count ; }; struct file_operations; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; enum cpu_idle_type { CPU_IDLE = 0, CPU_NOT_IDLE = 1, CPU_NEWLY_IDLE = 2, CPU_MAX_IDLE_TYPES = 3 } ; struct sched_group { struct sched_group *next ; cpumask_t cpumask ; unsigned int __cpu_power ; u32 reciprocal_cpu_power ; }; enum sched_domain_level { SD_LV_NONE = 0, SD_LV_SIBLING = 1, SD_LV_MC = 2, SD_LV_CPU = 3, SD_LV_NODE = 4, SD_LV_ALLNODES = 5, SD_LV_MAX = 6 } ; struct sched_domain { struct sched_domain *parent ; struct sched_domain *child ; struct sched_group *groups ; cpumask_t span ; unsigned long min_interval ; unsigned long max_interval ; unsigned int busy_factor ; unsigned int imbalance_pct ; unsigned int cache_nice_tries ; unsigned int busy_idx ; unsigned int idle_idx ; unsigned int newidle_idx ; unsigned int wake_idx ; unsigned int forkexec_idx ; int flags ; enum sched_domain_level level ; unsigned long last_balance ; unsigned int balance_interval ; unsigned int nr_balance_failed ; u64 last_update ; unsigned int lb_count[CPU_MAX_IDLE_TYPES] ; unsigned int lb_failed[CPU_MAX_IDLE_TYPES] ; unsigned int lb_balanced[CPU_MAX_IDLE_TYPES] ; unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES] ; unsigned int lb_gained[CPU_MAX_IDLE_TYPES] ; unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES] ; unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES] ; unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES] ; unsigned int alb_count ; unsigned int alb_failed ; unsigned int alb_pushed ; unsigned int sbe_count ; unsigned int sbe_balanced ; unsigned int sbe_pushed ; unsigned int sbf_count ; unsigned int sbf_balanced ; unsigned int sbf_pushed ; unsigned int ttwu_wake_remote ; unsigned int ttwu_move_affine ; unsigned int ttwu_move_balance ; }; struct io_context; struct group_info { int ngroups ; atomic_t usage ; gid_t small_block[32] ; int nblocks ; gid_t *blocks[0] ; }; struct audit_context; struct rq; struct sched_class { struct sched_class const *next ; void (*enqueue_task)(struct rq *rq , struct task_struct *p , int wakeup ) ; void (*dequeue_task)(struct rq *rq , struct task_struct *p , int sleep ) ; void (*yield_task)(struct rq *rq ) ; int (*select_task_rq)(struct task_struct *p , int sync ) ; void (*check_preempt_curr)(struct rq *rq , struct task_struct *p ) ; struct task_struct *(*pick_next_task)(struct rq *rq ) ; void (*put_prev_task)(struct rq *rq , struct task_struct *p ) ; unsigned long (*load_balance)(struct rq *this_rq , int this_cpu , struct rq *busiest , unsigned long max_load_move , struct sched_domain *sd , enum cpu_idle_type idle , int *all_pinned , int *this_best_prio ) ; int (*move_one_task)(struct rq *this_rq , int this_cpu , struct rq *busiest , struct sched_domain *sd , enum cpu_idle_type idle ) ; void (*pre_schedule)(struct rq *this_rq , struct task_struct *task ) ; void (*post_schedule)(struct rq *this_rq ) ; void (*task_wake_up)(struct rq *this_rq , struct task_struct *task ) ; void (*set_curr_task)(struct rq *rq ) ; void (*task_tick)(struct rq *rq , struct task_struct *p , int queued ) ; void (*task_new)(struct rq *rq , struct task_struct *p ) ; void (*set_cpus_allowed)(struct task_struct *p , cpumask_t const *newmask ) ; void (*rq_online)(struct rq *rq ) ; void (*rq_offline)(struct rq *rq ) ; void (*switched_from)(struct rq *this_rq , struct task_struct *task , int running ) ; void (*switched_to)(struct rq *this_rq , struct task_struct *task , int running ) ; void (*prio_changed)(struct rq *this_rq , struct task_struct *task , int oldprio , int running ) ; void (*moved_group)(struct task_struct *p ) ; }; struct load_weight { unsigned long weight ; unsigned long inv_weight ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 last_wakeup ; u64 avg_overlap ; u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_forced2_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned int time_slice ; unsigned long timeout ; int nr_cpus_allowed ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct linux_binfmt; struct files_struct; struct css_set; struct compat_robust_list_head; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; int lock_depth ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct hlist_head preempt_notifiers ; unsigned char fpu_counter ; s8 oomkilladj ; unsigned int btrace_seq ; unsigned int policy ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; struct linux_binfmt *binfmt ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int personality ; unsigned int did_exec : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[PIDTYPE_MAX] ; struct list_head thread_group ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; cputime_t prev_utime ; cputime_t prev_stime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; cputime_t it_prof_expires ; cputime_t it_virt_expires ; unsigned long long it_sched_expires ; struct list_head cpu_timers[3] ; uid_t uid ; uid_t euid ; uid_t suid ; uid_t fsuid ; gid_t gid ; gid_t egid ; gid_t sgid ; gid_t fsgid ; struct group_info *group_info ; kernel_cap_t cap_effective ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_bset ; struct user_struct *user ; unsigned int securebits ; unsigned char jit_keyring ; struct key *request_key_auth ; struct key *thread_keyring ; char comm[16] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_timestamp ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void *priv ) ; void *notifier_data ; sigset_t *notifier_mask ; void *security ; struct audit_context *audit_context ; uid_t loginuid ; unsigned int sessionid ; seccomp_t seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; spinlock_t pi_lock ; struct plist_head pi_waiters ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; int hardirqs_enabled ; unsigned long hardirq_enable_ip ; unsigned int hardirq_enable_event ; unsigned long hardirq_disable_ip ; unsigned int hardirq_disable_event ; int softirqs_enabled ; unsigned long softirq_disable_ip ; unsigned int softirq_disable_event ; unsigned long softirq_enable_ip ; unsigned int softirq_enable_event ; int hardirq_context ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48UL] ; void *journal_info ; struct bio *bio_list ; struct bio **bio_tail ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; int cpuset_mems_generation ; int cpuset_mem_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct mempolicy *mempolicy ; short il_next ; atomic_t fs_excl ; struct rcu_head rcu ; struct pipe_inode_info *splice_pipe ; struct task_delay_info *delays ; int make_it_fail ; struct prop_local_single dirties ; int latency_record_count ; struct latency_record latency_record[32] ; }; struct nameidata; struct qstr { unsigned int hash ; unsigned int len ; unsigned char const *name ; }; struct dcookie_struct; union __anonunion_d_u_206 { struct list_head d_child ; struct rcu_head d_rcu ; }; struct dentry_operations; struct super_block; struct dentry { atomic_t d_count ; unsigned int d_flags ; spinlock_t d_lock ; struct inode *d_inode ; struct hlist_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct list_head d_lru ; union __anonunion_d_u_206 d_u ; struct list_head d_subdirs ; struct list_head d_alias ; unsigned long d_time ; struct dentry_operations *d_op ; struct super_block *d_sb ; void *d_fsdata ; struct dcookie_struct *d_cookie ; int d_mounted ; unsigned char d_iname[36] ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , struct nameidata * ) ; int (*d_hash)(struct dentry * , struct qstr * ) ; int (*d_compare)(struct dentry * , struct qstr * , struct qstr * ) ; int (*d_delete)(struct dentry * ) ; void (*d_release)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct export_operations; struct kstatfs; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; uid_t ia_uid ; gid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct if_dqblk { __u64 dqb_bhardlimit ; __u64 dqb_bsoftlimit ; __u64 dqb_curspace ; __u64 dqb_ihardlimit ; __u64 dqb_isoftlimit ; __u64 dqb_curinodes ; __u64 dqb_btime ; __u64 dqb_itime ; __u32 dqb_valid ; }; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct v1_mem_dqinfo { }; struct v2_mem_dqinfo { unsigned int dqi_blocks ; unsigned int dqi_free_blk ; unsigned int dqi_free_entry ; }; typedef __kernel_uid32_t qid_t; typedef __u64 qsize_t; struct mem_dqblk { __u32 dqb_bhardlimit ; __u32 dqb_bsoftlimit ; qsize_t dqb_curspace ; __u32 dqb_ihardlimit ; __u32 dqb_isoftlimit ; __u32 dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; union __anonunion_u_209 { struct v1_mem_dqinfo v1_i ; struct v2_mem_dqinfo v2_i ; }; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; union __anonunion_u_209 u ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; unsigned int dq_id ; loff_t dq_off ; unsigned long dq_flags ; short dq_type ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block *sb , int type ) ; int (*read_file_info)(struct super_block *sb , int type ) ; int (*write_file_info)(struct super_block *sb , int type ) ; int (*free_file_info)(struct super_block *sb , int type ) ; int (*read_dqblk)(struct dquot *dquot ) ; int (*commit_dqblk)(struct dquot *dquot ) ; int (*release_dqblk)(struct dquot *dquot ) ; }; struct dquot_operations { int (*initialize)(struct inode * , int ) ; int (*drop)(struct inode * ) ; int (*alloc_space)(struct inode * , qsize_t , int ) ; int (*alloc_inode)(struct inode const * , unsigned long ) ; int (*free_space)(struct inode * , qsize_t ) ; int (*free_inode)(struct inode const * , unsigned long ) ; int (*transfer)(struct inode * , struct iattr * ) ; int (*write_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , char * , int ) ; int (*quota_off)(struct super_block * , int , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , int , qid_t , struct if_dqblk * ) ; int (*set_dqblk)(struct super_block * , int , qid_t , struct if_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xquota)(struct super_block * , int , qid_t , struct fs_disk_quota * ) ; int (*set_xquota)(struct super_block * , int , qid_t , struct fs_disk_quota * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2] ; struct mem_dqinfo info[2] ; struct quota_format_ops *ops[2] ; }; union __anonunion_arg_211 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_210 { size_t written ; size_t count ; union __anonunion_arg_211 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_210 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page *page , struct writeback_control *wbc ) ; int (*readpage)(struct file * , struct page * ) ; void (*sync_page)(struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page *page ) ; int (*readpages)(struct file *filp , struct address_space *mapping , struct list_head *pages , unsigned int nr_pages ) ; int (*prepare_write)(struct file * , struct page * , unsigned int , unsigned int ) ; int (*commit_write)(struct file * , struct page * , unsigned int , unsigned int ) ; int (*write_begin)(struct file * , struct address_space *mapping , loff_t pos , unsigned int len , unsigned int flags , struct page **pagep , void **fsdata ) ; int (*write_end)(struct file * , struct address_space *mapping , loff_t pos , unsigned int len , unsigned int copied , struct page *page , void *fsdata ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned long ) ; int (*releasepage)(struct page * , gfp_t ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const *iov , loff_t offset , unsigned long nr_segs ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct prio_tree_root i_mmap ; struct list_head i_mmap_nonlinear ; spinlock_t i_mmap_lock ; unsigned int truncate_count ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; struct address_space *assoc_mapping ; } __attribute__((__aligned__(sizeof(long )))) ; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; struct inode *bd_inode ; int bd_openers ; struct mutex bd_mutex ; struct semaphore bd_mount_sem ; struct list_head bd_inodes ; void *bd_holder ; int bd_holders ; struct list_head bd_holder_list ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct list_head bd_list ; struct backing_dev_info *bd_inode_backing_dev_info ; unsigned long bd_private ; }; struct inode_operations; struct file_lock; struct cdev; union __anonunion____missing_field_name_212 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct dnotify_struct; struct inode { struct hlist_node i_hash ; struct list_head i_list ; struct list_head i_sb_list ; struct list_head i_dentry ; unsigned long i_ino ; atomic_t i_count ; unsigned int i_nlink ; uid_t i_uid ; gid_t i_gid ; dev_t i_rdev ; u64 i_version ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned short i_bytes ; umode_t i_mode ; spinlock_t i_lock ; struct mutex i_mutex ; struct rw_semaphore i_alloc_sem ; struct inode_operations const *i_op ; struct file_operations const *i_fop ; struct super_block *i_sb ; struct file_lock *i_flock ; struct address_space *i_mapping ; struct address_space i_data ; struct dquot *i_dquot[2] ; struct list_head i_devices ; union __anonunion____missing_field_name_212 __annonCompField20 ; int i_cindex ; __u32 i_generation ; unsigned long i_dnotify_mask ; struct dnotify_struct *i_dnotify ; struct list_head inotify_watches ; struct mutex inotify_mutex ; unsigned long i_state ; unsigned long dirtied_when ; unsigned int i_flags ; atomic_t i_writecount ; void *i_security ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; uid_t uid ; uid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_213 { struct list_head fu_list ; struct rcu_head fu_rcuhead ; }; struct file { union __anonunion_f_u_213 f_u ; struct path f_path ; struct file_operations const *f_op ; atomic_long_t f_count ; unsigned int f_flags ; mode_t f_mode ; loff_t f_pos ; struct fown_struct f_owner ; unsigned int f_uid ; unsigned int f_gid ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; spinlock_t f_ep_lock ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*fl_compare_owner)(struct file_lock * , struct file_lock * ) ; void (*fl_notify)(struct file_lock * ) ; int (*fl_grant)(struct file_lock * , struct file_lock * , int ) ; void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; void (*fl_break)(struct file_lock * ) ; int (*fl_mylease)(struct file_lock * , struct file_lock * ) ; int (*fl_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct __anonstruct_afs_215 { struct list_head link ; int state ; }; union __anonunion_fl_u_214 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_215 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned char fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; struct file_lock_operations *fl_ops ; struct lock_manager_operations *fl_lmops ; union __anonunion_fl_u_214 fl_u ; }; struct fasync_struct { int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; }; struct file_system_type; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned long s_blocksize ; unsigned char s_blocksize_bits ; unsigned char s_dirt ; unsigned long long s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations *dq_op ; struct quotactl_ops *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; struct mutex s_lock ; int s_count ; int s_syncing ; int s_need_sync_fs ; atomic_t s_active ; void *s_security ; struct xattr_handler **s_xattr ; struct list_head s_inodes ; struct list_head s_dirty ; struct list_head s_io ; struct list_head s_more_io ; struct hlist_head s_anon ; struct list_head s_files ; struct list_head s_dentry_lru ; int s_nr_dentry_unused ; struct block_device *s_bdev ; struct mtd_info *s_mtd ; struct list_head s_instances ; struct quota_info s_dquot ; int s_frozen ; wait_queue_head_t s_wait_unfrozen ; char s_id[32] ; void *s_fs_info ; struct mutex s_vfs_rename_mutex ; u32 s_time_gran ; char *s_subtype ; char *s_options ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*readdir)(struct file * , void * , int (*)(void * , char const * , int , loff_t , u64 , unsigned int ) ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; int (*ioctl)(struct inode * , struct file * , unsigned int , unsigned long ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t id ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , struct dentry * , int datasync ) ; int (*aio_fsync)(struct kiocb * , int datasync ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*dir_notify)(struct file *filp , unsigned long arg ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; }; struct inode_operations { int (*create)(struct inode * , struct dentry * , int , struct nameidata * ) ; struct dentry *(*lookup)(struct inode * , struct dentry * , struct nameidata * ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , int ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , int , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*readlink)(struct dentry * , char * , int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; void (*truncate)(struct inode * ) ; int (*permission)(struct inode * , int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount *mnt , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; void (*truncate_range)(struct inode * , loff_t , loff_t ) ; long (*fallocate)(struct inode *inode , int mode , loff_t offset , loff_t len ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block *sb ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * ) ; int (*write_inode)(struct inode * , int ) ; void (*drop_inode)(struct inode * ) ; void (*delete_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; void (*write_super)(struct super_block * ) ; int (*sync_fs)(struct super_block *sb , int wait ) ; void (*write_super_lockfs)(struct super_block * ) ; void (*unlockfs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*clear_inode)(struct inode * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct vfsmount * ) ; int (*show_stats)(struct seq_file * , struct vfsmount * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; }; struct file_system_type { char const *name ; int fs_flags ; int (*get_sb)(struct file_system_type * , int , char const * , void * , struct vfsmount * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct list_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; struct lock_class_key i_alloc_sem_key ; }; struct linux_binprm { char buf[128] ; struct vm_area_struct *vma ; struct mm_struct *mm ; unsigned long p ; unsigned int sh_bang : 1 ; unsigned int misc_bang : 1 ; struct file *file ; int e_uid ; int e_gid ; kernel_cap_t cap_post_exec_permitted ; bool cap_effective ; void *security ; int argc ; int envc ; char *filename ; char *interp ; unsigned int interp_flags ; unsigned int interp_data ; unsigned long loader ; unsigned long exec ; }; struct linux_binfmt { struct list_head lh ; struct module *module ; int (*load_binary)(struct linux_binprm * , struct pt_regs *regs ) ; int (*load_shlib)(struct file * ) ; int (*core_dump)(long signr , struct pt_regs *regs , struct file *file , unsigned long limit ) ; unsigned long min_coredump ; int hasvdso ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key_type; struct keyring_list; struct key_user; union __anonunion_type_data_218 { struct list_head link ; unsigned long x[2] ; void *p[2] ; }; union __anonunion_payload_219 { unsigned long value ; void *data ; struct keyring_list *subscriptions ; }; struct key { atomic_t usage ; key_serial_t serial ; struct rb_node serial_node ; struct key_type *type ; struct rw_semaphore sem ; struct key_user *user ; void *security ; time_t expiry ; uid_t uid ; gid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; char *description ; union __anonunion_type_data_218 type_data ; union __anonunion_payload_219 payload ; }; struct xfrm_policy; struct xfrm_state; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; struct sk_filter { atomic_t refcnt ; unsigned int len ; struct rcu_head rcu ; struct sock_filter insns[0] ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; enum __anonenum_247 { RTAX_UNSPEC = 0, RTAX_LOCK = 1, RTAX_MTU = 2, RTAX_WINDOW = 3, RTAX_RTT = 4, RTAX_RTTVAR = 5, RTAX_SSTHRESH = 6, RTAX_CWND = 7, RTAX_ADVMSS = 8, RTAX_REORDERING = 9, RTAX_HOPLIMIT = 10, RTAX_INITCWND = 11, RTAX_FEATURES = 12, RTAX_RTO_MIN = 13, __RTAX_MAX = 14 } ; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device *dev ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr **tb , struct nlattr **data ) ; int (*newlink)(struct net_device *dev , struct nlattr **tb , struct nlattr **data ) ; int (*changelink)(struct net_device *dev , struct nlattr **tb , struct nlattr **data ) ; void (*dellink)(struct net_device *dev ) ; size_t (*get_size)(struct net_device const *dev ) ; int (*fill_info)(struct sk_buff *skb , struct net_device const *dev ) ; size_t (*get_xstats_size)(struct net_device const *dev ) ; int (*fill_xstats)(struct sk_buff *skb , struct net_device const *dev ) ; }; struct neigh_table; struct neigh_parms { struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct rcu_head rcu_head ; int base_reachable_time ; int retrans_time ; int gc_staletime ; int reachable_time ; int delay_probe_time ; int queue_len ; int ucast_probes ; int app_probes ; int mcast_probes ; int anycast_delay ; int proxy_delay ; int proxy_qlen ; int locktime ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; struct net_device *dev ; unsigned long used ; unsigned long confirmed ; unsigned long updated ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; atomic_t probes ; rwlock_t lock ; unsigned char ha[(32 + ((int )sizeof(unsigned long ) - 1)) & ~ ((int )sizeof(unsigned long ) - 1)] ; struct hh_cache *hh ; atomic_t refcnt ; int (*output)(struct sk_buff *skb ) ; struct sk_buff_head arp_queue ; struct timer_list timer ; struct neigh_ops *ops ; u8 primary_key[0] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; int (*connected_output)(struct sk_buff * ) ; int (*hh_output)(struct sk_buff * ) ; int (*queue_xmit)(struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net_device *dev ; u8 flags ; u8 key[0] ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const *pkey , struct net_device const * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff *skb ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct timer_list gc_timer ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct kmem_cache *kmem_cachep ; struct neigh_statistics *stats ; struct neighbour **hash_buckets ; unsigned int hash_mask ; __u32 hash_rnd ; unsigned int hash_chain_gc ; struct pneigh_entry **phash_buckets ; struct proc_dir_entry *pde ; }; struct dn_route; union __anonunion____missing_field_name_255 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct rcu_head rcu_head ; struct dst_entry *child ; struct net_device *dev ; short error ; short obsolete ; int flags ; unsigned long expires ; unsigned short header_len ; unsigned short trailer_len ; unsigned int rate_tokens ; unsigned long rate_last ; struct dst_entry *path ; struct neighbour *neighbour ; struct hh_cache *hh ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; struct dst_ops *ops ; u32 metrics[__RTAX_MAX - 1] ; __u32 tclassid ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_255 __annonCompField21 ; }; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops *ops ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 cookie ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device *dev , int how ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry *dst , u32 mtu ) ; int (*local_out)(struct sk_buff *skb ) ; int entry_size ; atomic_t entries ; struct kmem_cache *kmem_cachep ; struct net *dst_net ; }; struct __anonstruct_socket_lock_t_257 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_257 socket_lock_t; struct proto; struct sock_common { unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse ; int skc_bound_dev_if ; struct hlist_node skc_node ; struct hlist_node skc_bind_node ; atomic_t skc_refcnt ; unsigned int skc_hash ; struct proto *skc_prot ; }; struct __anonstruct_sk_backlog_258 { struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; unsigned char sk_shutdown : 2 ; unsigned char sk_no_check : 2 ; unsigned char sk_userlocks : 4 ; unsigned char sk_protocol ; unsigned short sk_type ; int sk_rcvbuf ; socket_lock_t sk_lock ; struct __anonstruct_sk_backlog_258 sk_backlog ; wait_queue_head_t *sk_sleep ; struct dst_entry *sk_dst_cache ; struct xfrm_policy *sk_policy[2] ; rwlock_t sk_dst_lock ; atomic_t sk_rmem_alloc ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_receive_queue ; struct sk_buff_head sk_write_queue ; struct sk_buff_head sk_async_wait_queue ; int sk_wmem_queued ; int sk_forward_alloc ; gfp_t sk_allocation ; int sk_route_caps ; int sk_gso_type ; unsigned int sk_gso_max_size ; int sk_rcvlowat ; unsigned long sk_flags ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; atomic_t sk_drops ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; struct ucred sk_peercred ; long sk_rcvtimeo ; long sk_sndtimeo ; struct sk_filter *sk_filter ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; struct socket *sk_socket ; void *sk_user_data ; struct page *sk_sndmsg_page ; struct sk_buff *sk_send_head ; __u32 sk_sndmsg_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; void (*sk_state_change)(struct sock *sk ) ; void (*sk_data_ready)(struct sock *sk , int bytes ) ; void (*sk_write_space)(struct sock *sk ) ; void (*sk_error_report)(struct sock *sk ) ; int (*sk_backlog_rcv)(struct sock *sk , struct sk_buff *skb ) ; void (*sk_destruct)(struct sock *sk ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; union __anonunion_h_259 { struct inet_hashinfo *hashinfo ; struct hlist_head *udp_hash ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock *sk , long timeout ) ; int (*connect)(struct sock *sk , struct sockaddr *uaddr , int addr_len ) ; int (*disconnect)(struct sock *sk , int flags ) ; struct sock *(*accept)(struct sock *sk , int flags , int *err ) ; int (*ioctl)(struct sock *sk , int cmd , unsigned long arg ) ; int (*init)(struct sock *sk ) ; void (*destroy)(struct sock *sk ) ; void (*shutdown)(struct sock *sk , int how ) ; int (*setsockopt)(struct sock *sk , int level , int optname , char *optval , int optlen ) ; int (*getsockopt)(struct sock *sk , int level , int optname , char *optval , int *option ) ; int (*compat_setsockopt)(struct sock *sk , int level , int optname , char *optval , int optlen ) ; int (*compat_getsockopt)(struct sock *sk , int level , int optname , char *optval , int *option ) ; int (*sendmsg)(struct kiocb *iocb , struct sock *sk , struct msghdr *msg , size_t len ) ; int (*recvmsg)(struct kiocb *iocb , struct sock *sk , struct msghdr *msg , size_t len , int noblock , int flags , int *addr_len ) ; int (*sendpage)(struct sock *sk , struct page *page , int offset , size_t size , int flags ) ; int (*bind)(struct sock *sk , struct sockaddr *uaddr , int addr_len ) ; int (*backlog_rcv)(struct sock *sk , struct sk_buff *skb ) ; void (*hash)(struct sock *sk ) ; void (*unhash)(struct sock *sk ) ; int (*get_port)(struct sock *sk , unsigned short snum ) ; unsigned int inuse_idx ; void (*enter_memory_pressure)(struct sock *sk ) ; atomic_t *memory_allocated ; atomic_t *sockets_allocated ; int *memory_pressure ; int *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; struct kmem_cache *slab ; unsigned int obj_size ; atomic_t *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_259 h ; struct module *owner ; char name[32] ; struct list_head node ; }; struct mISDNchannel; struct mISDNdevice; struct mISDNstack; struct channel_req { u_int protocol ; struct sockaddr_mISDN adr ; struct mISDNchannel *ch ; }; typedef int ctrl_func_t(struct mISDNchannel * , u_int , void * ); typedef int send_func_t(struct mISDNchannel * , struct sk_buff * ); typedef int create_func_t(struct channel_req * ); struct Bprotocol { struct list_head list ; char *name ; u_int Bprotocols ; create_func_t *create ; }; struct mISDNchannel { struct list_head list ; u_int protocol ; u_int nr ; u_long opt ; u_int addr ; struct mISDNstack *st ; struct mISDNchannel *peer ; send_func_t *send ; send_func_t *recv ; ctrl_func_t *ctrl ; }; struct mISDN_sock_list { struct hlist_head head ; rwlock_t lock ; }; struct mISDNdevice { struct mISDNchannel D ; u_int id ; char name[20] ; u_int Dprotocols ; u_int Bprotocols ; u_int nrbchan ; u_char channelmap[(127 + 1) >> 3] ; struct list_head bchannels ; struct mISDNchannel *teimgr ; struct device dev ; }; struct mISDNstack { u_long status ; struct mISDNdevice *dev ; struct task_struct *thread ; struct completion *notify ; wait_queue_head_t workq ; struct sk_buff_head msgq ; struct list_head layer2 ; struct mISDNchannel *layer1 ; struct mISDNchannel own ; struct mutex lmutex ; struct mISDN_sock_list l1sock ; }; struct FsmInst; typedef void (*FSMFNPTR)(struct FsmInst * , int , void * ); struct Fsm { FSMFNPTR *jumpmatrix ; int state_count ; int event_count ; char **strEvent ; char **strState ; }; struct FsmInst { struct Fsm *fsm ; int state ; int debug ; void *userdata ; int userint ; void (*printdebug)(struct FsmInst * , char * , ...) ; }; struct FsmNode { int state ; int event ; void (*routine)(struct FsmInst * , int , void * ) ; }; struct FsmTimer { struct FsmInst *fi ; struct timer_list tl ; int event ; void *arg ; }; typedef long __kernel_suseconds_t; typedef __kernel_suseconds_t suseconds_t; struct mISDNhead { unsigned int prim ; unsigned int id ; } __attribute__((__packed__)) ; struct mISDNversion { unsigned char major ; unsigned char minor ; unsigned short release ; }; struct mISDN_devinfo { u_int id ; u_int Dprotocols ; u_int Bprotocols ; u_int protocol ; u_char channelmap[(127 + 1) >> 3] ; u_int nrbchan ; char name[20] ; }; struct mISDN_ctrl_req { int op ; int channel ; int p1 ; int p2 ; }; struct timeval { time_t tv_sec ; suseconds_t tv_usec ; }; enum sock_type { SOCK_STREAM = 1, SOCK_DGRAM = 2, SOCK_RAW = 3, SOCK_RDM = 4, SOCK_SEQPACKET = 5, SOCK_DCCP = 6, SOCK_PACKET = 10 } ; struct net_proto_family { int family ; int (*create)(struct net *net , struct socket *sock , int protocol ) ; struct module *owner ; }; enum hrtimer_restart; enum __anonenum_177___0 { IPSTATS_MIB_NUM___0 = 0, IPSTATS_MIB_INRECEIVES___0 = 1, IPSTATS_MIB_INHDRERRORS___0 = 2, IPSTATS_MIB_INTOOBIGERRORS___0 = 3, IPSTATS_MIB_INNOROUTES___0 = 4, IPSTATS_MIB_INADDRERRORS___0 = 5, IPSTATS_MIB_INUNKNOWNPROTOS___0 = 6, IPSTATS_MIB_INTRUNCATEDPKTS___0 = 7, IPSTATS_MIB_INDISCARDS___0 = 8, IPSTATS_MIB_INDELIVERS___0 = 9, IPSTATS_MIB_OUTFORWDATAGRAMS___0 = 10, IPSTATS_MIB_OUTREQUESTS___0 = 11, IPSTATS_MIB_OUTDISCARDS___0 = 12, IPSTATS_MIB_OUTNOROUTES___0 = 13, IPSTATS_MIB_REASMTIMEOUT___0 = 14, IPSTATS_MIB_REASMREQDS___0 = 15, IPSTATS_MIB_REASMOKS___0 = 16, IPSTATS_MIB_REASMFAILS___0 = 17, IPSTATS_MIB_FRAGOKS___0 = 18, IPSTATS_MIB_FRAGFAILS___0 = 19, IPSTATS_MIB_FRAGCREATES___0 = 20, IPSTATS_MIB_INMCASTPKTS___0 = 21, IPSTATS_MIB_OUTMCASTPKTS___0 = 22, IPSTATS_MIB_INBCASTPKTS___0 = 23, IPSTATS_MIB_OUTBCASTPKTS___0 = 24, __IPSTATS_MIB_MAX___0 = 25 } ; enum __anonenum_178___0 { ICMP_MIB_NUM___0 = 0, ICMP_MIB_INMSGS___0 = 1, ICMP_MIB_INERRORS___0 = 2, ICMP_MIB_INDESTUNREACHS___0 = 3, ICMP_MIB_INTIMEEXCDS___0 = 4, ICMP_MIB_INPARMPROBS___0 = 5, ICMP_MIB_INSRCQUENCHS___0 = 6, ICMP_MIB_INREDIRECTS___0 = 7, ICMP_MIB_INECHOS___0 = 8, ICMP_MIB_INECHOREPS___0 = 9, ICMP_MIB_INTIMESTAMPS___0 = 10, ICMP_MIB_INTIMESTAMPREPS___0 = 11, ICMP_MIB_INADDRMASKS___0 = 12, ICMP_MIB_INADDRMASKREPS___0 = 13, ICMP_MIB_OUTMSGS___0 = 14, ICMP_MIB_OUTERRORS___0 = 15, ICMP_MIB_OUTDESTUNREACHS___0 = 16, ICMP_MIB_OUTTIMEEXCDS___0 = 17, ICMP_MIB_OUTPARMPROBS___0 = 18, ICMP_MIB_OUTSRCQUENCHS___0 = 19, ICMP_MIB_OUTREDIRECTS___0 = 20, ICMP_MIB_OUTECHOS___0 = 21, ICMP_MIB_OUTECHOREPS___0 = 22, ICMP_MIB_OUTTIMESTAMPS___0 = 23, ICMP_MIB_OUTTIMESTAMPREPS___0 = 24, ICMP_MIB_OUTADDRMASKS___0 = 25, ICMP_MIB_OUTADDRMASKREPS___0 = 26, __ICMP_MIB_MAX___0 = 27 } ; enum __anonenum_180___0 { TCP_MIB_NUM___0 = 0, TCP_MIB_RTOALGORITHM___0 = 1, TCP_MIB_RTOMIN___0 = 2, TCP_MIB_RTOMAX___0 = 3, TCP_MIB_MAXCONN___0 = 4, TCP_MIB_ACTIVEOPENS___0 = 5, TCP_MIB_PASSIVEOPENS___0 = 6, TCP_MIB_ATTEMPTFAILS___0 = 7, TCP_MIB_ESTABRESETS___0 = 8, TCP_MIB_CURRESTAB___0 = 9, TCP_MIB_INSEGS___0 = 10, TCP_MIB_OUTSEGS___0 = 11, TCP_MIB_RETRANSSEGS___0 = 12, TCP_MIB_INERRS___0 = 13, TCP_MIB_OUTRSTS___0 = 14, __TCP_MIB_MAX___0 = 15 } ; enum __anonenum_181___0 { UDP_MIB_NUM___0 = 0, UDP_MIB_INDATAGRAMS___0 = 1, UDP_MIB_NOPORTS___0 = 2, UDP_MIB_INERRORS___0 = 3, UDP_MIB_OUTDATAGRAMS___0 = 4, UDP_MIB_RCVBUFERRORS___0 = 5, UDP_MIB_SNDBUFERRORS___0 = 6, __UDP_MIB_MAX___0 = 7 } ; enum __anonenum_182___0 { LINUX_MIB_NUM___0 = 0, LINUX_MIB_SYNCOOKIESSENT___0 = 1, LINUX_MIB_SYNCOOKIESRECV___0 = 2, LINUX_MIB_SYNCOOKIESFAILED___0 = 3, LINUX_MIB_EMBRYONICRSTS___0 = 4, LINUX_MIB_PRUNECALLED___0 = 5, LINUX_MIB_RCVPRUNED___0 = 6, LINUX_MIB_OFOPRUNED___0 = 7, LINUX_MIB_OUTOFWINDOWICMPS___0 = 8, LINUX_MIB_LOCKDROPPEDICMPS___0 = 9, LINUX_MIB_ARPFILTER___0 = 10, LINUX_MIB_TIMEWAITED___0 = 11, LINUX_MIB_TIMEWAITRECYCLED___0 = 12, LINUX_MIB_TIMEWAITKILLED___0 = 13, LINUX_MIB_PAWSPASSIVEREJECTED___0 = 14, LINUX_MIB_PAWSACTIVEREJECTED___0 = 15, LINUX_MIB_PAWSESTABREJECTED___0 = 16, LINUX_MIB_DELAYEDACKS___0 = 17, LINUX_MIB_DELAYEDACKLOCKED___0 = 18, LINUX_MIB_DELAYEDACKLOST___0 = 19, LINUX_MIB_LISTENOVERFLOWS___0 = 20, LINUX_MIB_LISTENDROPS___0 = 21, LINUX_MIB_TCPPREQUEUED___0 = 22, LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG___0 = 23, LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE___0 = 24, LINUX_MIB_TCPPREQUEUEDROPPED___0 = 25, LINUX_MIB_TCPHPHITS___0 = 26, LINUX_MIB_TCPHPHITSTOUSER___0 = 27, LINUX_MIB_TCPPUREACKS___0 = 28, LINUX_MIB_TCPHPACKS___0 = 29, LINUX_MIB_TCPRENORECOVERY___0 = 30, LINUX_MIB_TCPSACKRECOVERY___0 = 31, LINUX_MIB_TCPSACKRENEGING___0 = 32, LINUX_MIB_TCPFACKREORDER___0 = 33, LINUX_MIB_TCPSACKREORDER___0 = 34, LINUX_MIB_TCPRENOREORDER___0 = 35, LINUX_MIB_TCPTSREORDER___0 = 36, LINUX_MIB_TCPFULLUNDO___0 = 37, LINUX_MIB_TCPPARTIALUNDO___0 = 38, LINUX_MIB_TCPDSACKUNDO___0 = 39, LINUX_MIB_TCPLOSSUNDO___0 = 40, LINUX_MIB_TCPLOSS___0 = 41, LINUX_MIB_TCPLOSTRETRANSMIT___0 = 42, LINUX_MIB_TCPRENOFAILURES___0 = 43, LINUX_MIB_TCPSACKFAILURES___0 = 44, LINUX_MIB_TCPLOSSFAILURES___0 = 45, LINUX_MIB_TCPFASTRETRANS___0 = 46, LINUX_MIB_TCPFORWARDRETRANS___0 = 47, LINUX_MIB_TCPSLOWSTARTRETRANS___0 = 48, LINUX_MIB_TCPTIMEOUTS___0 = 49, LINUX_MIB_TCPRENORECOVERYFAIL___0 = 50, LINUX_MIB_TCPSACKRECOVERYFAIL___0 = 51, LINUX_MIB_TCPSCHEDULERFAILED___0 = 52, LINUX_MIB_TCPRCVCOLLAPSED___0 = 53, LINUX_MIB_TCPDSACKOLDSENT___0 = 54, LINUX_MIB_TCPDSACKOFOSENT___0 = 55, LINUX_MIB_TCPDSACKRECV___0 = 56, LINUX_MIB_TCPDSACKOFORECV___0 = 57, LINUX_MIB_TCPABORTONSYN___0 = 58, LINUX_MIB_TCPABORTONDATA___0 = 59, LINUX_MIB_TCPABORTONCLOSE___0 = 60, LINUX_MIB_TCPABORTONMEMORY___0 = 61, LINUX_MIB_TCPABORTONTIMEOUT___0 = 62, LINUX_MIB_TCPABORTONLINGER___0 = 63, LINUX_MIB_TCPABORTFAILED___0 = 64, LINUX_MIB_TCPMEMORYPRESSURES___0 = 65, LINUX_MIB_TCPSACKDISCARD___0 = 66, LINUX_MIB_TCPDSACKIGNOREDOLD___0 = 67, LINUX_MIB_TCPDSACKIGNOREDNOUNDO___0 = 68, LINUX_MIB_TCPSPURIOUSRTOS___0 = 69, LINUX_MIB_TCPMD5NOTFOUND___0 = 70, LINUX_MIB_TCPMD5UNEXPECTED___0 = 71, __LINUX_MIB_MAX___0 = 72 } ; enum __anonenum_247___0 { RTAX_UNSPEC___0 = 0, RTAX_LOCK___0 = 1, RTAX_MTU___0 = 2, RTAX_WINDOW___0 = 3, RTAX_RTT___0 = 4, RTAX_RTTVAR___0 = 5, RTAX_SSTHRESH___0 = 6, RTAX_CWND___0 = 7, RTAX_ADVMSS___0 = 8, RTAX_REORDERING___0 = 9, RTAX_HOPLIMIT___0 = 10, RTAX_INITCWND___0 = 11, RTAX_FEATURES___0 = 12, RTAX_RTO_MIN___0 = 13, __RTAX_MAX___0 = 14 } ; enum sock_flags { SOCK_DEAD = 0, SOCK_DONE = 1, SOCK_URGINLINE = 2, SOCK_KEEPOPEN = 3, SOCK_LINGER = 4, SOCK_DESTROY = 5, SOCK_BROADCAST = 6, SOCK_TIMESTAMP = 7, SOCK_ZAPPED = 8, SOCK_USE_WRITE_QUEUE = 9, SOCK_DBG = 10, SOCK_RCVTSTAMP = 11, SOCK_RCVTSTAMPNS = 12, SOCK_LOCALROUTE = 13, SOCK_QUEUE_SHRUNK = 14 } ; struct mISDN_sock { struct sock sk ; struct mISDNchannel ch ; u_int cmask ; struct mISDNdevice *dev ; }; enum hrtimer_restart; enum __anonenum_177___1 { IPSTATS_MIB_NUM___1 = 0, IPSTATS_MIB_INRECEIVES___1 = 1, IPSTATS_MIB_INHDRERRORS___1 = 2, IPSTATS_MIB_INTOOBIGERRORS___1 = 3, IPSTATS_MIB_INNOROUTES___1 = 4, IPSTATS_MIB_INADDRERRORS___1 = 5, IPSTATS_MIB_INUNKNOWNPROTOS___1 = 6, IPSTATS_MIB_INTRUNCATEDPKTS___1 = 7, IPSTATS_MIB_INDISCARDS___1 = 8, IPSTATS_MIB_INDELIVERS___1 = 9, IPSTATS_MIB_OUTFORWDATAGRAMS___1 = 10, IPSTATS_MIB_OUTREQUESTS___1 = 11, IPSTATS_MIB_OUTDISCARDS___1 = 12, IPSTATS_MIB_OUTNOROUTES___1 = 13, IPSTATS_MIB_REASMTIMEOUT___1 = 14, IPSTATS_MIB_REASMREQDS___1 = 15, IPSTATS_MIB_REASMOKS___1 = 16, IPSTATS_MIB_REASMFAILS___1 = 17, IPSTATS_MIB_FRAGOKS___1 = 18, IPSTATS_MIB_FRAGFAILS___1 = 19, IPSTATS_MIB_FRAGCREATES___1 = 20, IPSTATS_MIB_INMCASTPKTS___1 = 21, IPSTATS_MIB_OUTMCASTPKTS___1 = 22, IPSTATS_MIB_INBCASTPKTS___1 = 23, IPSTATS_MIB_OUTBCASTPKTS___1 = 24, __IPSTATS_MIB_MAX___1 = 25 } ; enum __anonenum_178___1 { ICMP_MIB_NUM___1 = 0, ICMP_MIB_INMSGS___1 = 1, ICMP_MIB_INERRORS___1 = 2, ICMP_MIB_INDESTUNREACHS___1 = 3, ICMP_MIB_INTIMEEXCDS___1 = 4, ICMP_MIB_INPARMPROBS___1 = 5, ICMP_MIB_INSRCQUENCHS___1 = 6, ICMP_MIB_INREDIRECTS___1 = 7, ICMP_MIB_INECHOS___1 = 8, ICMP_MIB_INECHOREPS___1 = 9, ICMP_MIB_INTIMESTAMPS___1 = 10, ICMP_MIB_INTIMESTAMPREPS___1 = 11, ICMP_MIB_INADDRMASKS___1 = 12, ICMP_MIB_INADDRMASKREPS___1 = 13, ICMP_MIB_OUTMSGS___1 = 14, ICMP_MIB_OUTERRORS___1 = 15, ICMP_MIB_OUTDESTUNREACHS___1 = 16, ICMP_MIB_OUTTIMEEXCDS___1 = 17, ICMP_MIB_OUTPARMPROBS___1 = 18, ICMP_MIB_OUTSRCQUENCHS___1 = 19, ICMP_MIB_OUTREDIRECTS___1 = 20, ICMP_MIB_OUTECHOS___1 = 21, ICMP_MIB_OUTECHOREPS___1 = 22, ICMP_MIB_OUTTIMESTAMPS___1 = 23, ICMP_MIB_OUTTIMESTAMPREPS___1 = 24, ICMP_MIB_OUTADDRMASKS___1 = 25, ICMP_MIB_OUTADDRMASKREPS___1 = 26, __ICMP_MIB_MAX___1 = 27 } ; enum __anonenum_180___1 { TCP_MIB_NUM___1 = 0, TCP_MIB_RTOALGORITHM___1 = 1, TCP_MIB_RTOMIN___1 = 2, TCP_MIB_RTOMAX___1 = 3, TCP_MIB_MAXCONN___1 = 4, TCP_MIB_ACTIVEOPENS___1 = 5, TCP_MIB_PASSIVEOPENS___1 = 6, TCP_MIB_ATTEMPTFAILS___1 = 7, TCP_MIB_ESTABRESETS___1 = 8, TCP_MIB_CURRESTAB___1 = 9, TCP_MIB_INSEGS___1 = 10, TCP_MIB_OUTSEGS___1 = 11, TCP_MIB_RETRANSSEGS___1 = 12, TCP_MIB_INERRS___1 = 13, TCP_MIB_OUTRSTS___1 = 14, __TCP_MIB_MAX___1 = 15 } ; enum __anonenum_181___1 { UDP_MIB_NUM___1 = 0, UDP_MIB_INDATAGRAMS___1 = 1, UDP_MIB_NOPORTS___1 = 2, UDP_MIB_INERRORS___1 = 3, UDP_MIB_OUTDATAGRAMS___1 = 4, UDP_MIB_RCVBUFERRORS___1 = 5, UDP_MIB_SNDBUFERRORS___1 = 6, __UDP_MIB_MAX___1 = 7 } ; enum __anonenum_182___1 { LINUX_MIB_NUM___1 = 0, LINUX_MIB_SYNCOOKIESSENT___1 = 1, LINUX_MIB_SYNCOOKIESRECV___1 = 2, LINUX_MIB_SYNCOOKIESFAILED___1 = 3, LINUX_MIB_EMBRYONICRSTS___1 = 4, LINUX_MIB_PRUNECALLED___1 = 5, LINUX_MIB_RCVPRUNED___1 = 6, LINUX_MIB_OFOPRUNED___1 = 7, LINUX_MIB_OUTOFWINDOWICMPS___1 = 8, LINUX_MIB_LOCKDROPPEDICMPS___1 = 9, LINUX_MIB_ARPFILTER___1 = 10, LINUX_MIB_TIMEWAITED___1 = 11, LINUX_MIB_TIMEWAITRECYCLED___1 = 12, LINUX_MIB_TIMEWAITKILLED___1 = 13, LINUX_MIB_PAWSPASSIVEREJECTED___1 = 14, LINUX_MIB_PAWSACTIVEREJECTED___1 = 15, LINUX_MIB_PAWSESTABREJECTED___1 = 16, LINUX_MIB_DELAYEDACKS___1 = 17, LINUX_MIB_DELAYEDACKLOCKED___1 = 18, LINUX_MIB_DELAYEDACKLOST___1 = 19, LINUX_MIB_LISTENOVERFLOWS___1 = 20, LINUX_MIB_LISTENDROPS___1 = 21, LINUX_MIB_TCPPREQUEUED___1 = 22, LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG___1 = 23, LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE___1 = 24, LINUX_MIB_TCPPREQUEUEDROPPED___1 = 25, LINUX_MIB_TCPHPHITS___1 = 26, LINUX_MIB_TCPHPHITSTOUSER___1 = 27, LINUX_MIB_TCPPUREACKS___1 = 28, LINUX_MIB_TCPHPACKS___1 = 29, LINUX_MIB_TCPRENORECOVERY___1 = 30, LINUX_MIB_TCPSACKRECOVERY___1 = 31, LINUX_MIB_TCPSACKRENEGING___1 = 32, LINUX_MIB_TCPFACKREORDER___1 = 33, LINUX_MIB_TCPSACKREORDER___1 = 34, LINUX_MIB_TCPRENOREORDER___1 = 35, LINUX_MIB_TCPTSREORDER___1 = 36, LINUX_MIB_TCPFULLUNDO___1 = 37, LINUX_MIB_TCPPARTIALUNDO___1 = 38, LINUX_MIB_TCPDSACKUNDO___1 = 39, LINUX_MIB_TCPLOSSUNDO___1 = 40, LINUX_MIB_TCPLOSS___1 = 41, LINUX_MIB_TCPLOSTRETRANSMIT___1 = 42, LINUX_MIB_TCPRENOFAILURES___1 = 43, LINUX_MIB_TCPSACKFAILURES___1 = 44, LINUX_MIB_TCPLOSSFAILURES___1 = 45, LINUX_MIB_TCPFASTRETRANS___1 = 46, LINUX_MIB_TCPFORWARDRETRANS___1 = 47, LINUX_MIB_TCPSLOWSTARTRETRANS___1 = 48, LINUX_MIB_TCPTIMEOUTS___1 = 49, LINUX_MIB_TCPRENORECOVERYFAIL___1 = 50, LINUX_MIB_TCPSACKRECOVERYFAIL___1 = 51, LINUX_MIB_TCPSCHEDULERFAILED___1 = 52, LINUX_MIB_TCPRCVCOLLAPSED___1 = 53, LINUX_MIB_TCPDSACKOLDSENT___1 = 54, LINUX_MIB_TCPDSACKOFOSENT___1 = 55, LINUX_MIB_TCPDSACKRECV___1 = 56, LINUX_MIB_TCPDSACKOFORECV___1 = 57, LINUX_MIB_TCPABORTONSYN___1 = 58, LINUX_MIB_TCPABORTONDATA___1 = 59, LINUX_MIB_TCPABORTONCLOSE___1 = 60, LINUX_MIB_TCPABORTONMEMORY___1 = 61, LINUX_MIB_TCPABORTONTIMEOUT___1 = 62, LINUX_MIB_TCPABORTONLINGER___1 = 63, LINUX_MIB_TCPABORTFAILED___1 = 64, LINUX_MIB_TCPMEMORYPRESSURES___1 = 65, LINUX_MIB_TCPSACKDISCARD___1 = 66, LINUX_MIB_TCPDSACKIGNOREDOLD___1 = 67, LINUX_MIB_TCPDSACKIGNOREDNOUNDO___1 = 68, LINUX_MIB_TCPSPURIOUSRTOS___1 = 69, LINUX_MIB_TCPMD5NOTFOUND___1 = 70, LINUX_MIB_TCPMD5UNEXPECTED___1 = 71, __LINUX_MIB_MAX___1 = 72 } ; enum __anonenum_247___1 { RTAX_UNSPEC___1 = 0, RTAX_LOCK___1 = 1, RTAX_MTU___1 = 2, RTAX_WINDOW___1 = 3, RTAX_RTT___1 = 4, RTAX_RTTVAR___1 = 5, RTAX_SSTHRESH___1 = 6, RTAX_CWND___1 = 7, RTAX_ADVMSS___1 = 8, RTAX_REORDERING___1 = 9, RTAX_HOPLIMIT___1 = 10, RTAX_INITCWND___1 = 11, RTAX_FEATURES___1 = 12, RTAX_RTO_MIN___1 = 13, __RTAX_MAX___1 = 14 } ; struct dchannel { struct mISDNdevice dev ; u_long Flags ; struct work_struct workq ; void (*phfunc)(struct dchannel * ) ; u_int state ; void *l1 ; u_char (*read_reg)(void * , u_char ) ; void (*write_reg)(void * , u_char , u_char ) ; void (*read_fifo)(void * , u_char * , int ) ; void (*write_fifo)(void * , u_char * , int ) ; void *hw ; int slot ; struct timer_list timer ; struct sk_buff *rx_skb ; int maxlen ; struct sk_buff_head squeue ; struct sk_buff_head rqueue ; struct sk_buff *tx_skb ; int tx_idx ; int debug ; int err_crc ; int err_tx ; int err_rx ; }; struct bchannel { struct mISDNchannel ch ; int nr ; u_long Flags ; struct work_struct workq ; u_int state ; u_char (*read_reg)(void * , u_char ) ; void (*write_reg)(void * , u_char , u_char ) ; void (*read_fifo)(void * , u_char * , int ) ; void (*write_fifo)(void * , u_char * , int ) ; void *hw ; int slot ; struct timer_list timer ; struct sk_buff *rx_skb ; int maxlen ; struct sk_buff *next_skb ; struct sk_buff *tx_skb ; struct sk_buff_head rqueue ; int rcount ; int tx_idx ; int debug ; int err_crc ; int err_tx ; int err_rx ; }; struct x8664_pda { struct task_struct *pcurrent ; unsigned long data_offset ; unsigned long kernelstack ; unsigned long oldrsp ; int irqcount ; unsigned int cpunumber ; char *irqstackptr ; short nodenumber ; short in_bootmem ; unsigned int __softirq_pending ; unsigned int __nmi_count ; short mmu_state ; short isidle ; struct mm_struct *active_mm ; unsigned int apic_timer_irqs ; unsigned int irq0_irqs ; unsigned int irq_resched_count ; unsigned int irq_call_count ; unsigned int irq_tlb_count ; unsigned int irq_thermal_count ; unsigned int irq_threshold_count ; unsigned int irq_spurious_count ; } __attribute__((__aligned__((1) << (7) ))) ; enum hrtimer_restart; enum __anonenum_177___2 { IPSTATS_MIB_NUM___2 = 0, IPSTATS_MIB_INRECEIVES___2 = 1, IPSTATS_MIB_INHDRERRORS___2 = 2, IPSTATS_MIB_INTOOBIGERRORS___2 = 3, IPSTATS_MIB_INNOROUTES___2 = 4, IPSTATS_MIB_INADDRERRORS___2 = 5, IPSTATS_MIB_INUNKNOWNPROTOS___2 = 6, IPSTATS_MIB_INTRUNCATEDPKTS___2 = 7, IPSTATS_MIB_INDISCARDS___2 = 8, IPSTATS_MIB_INDELIVERS___2 = 9, IPSTATS_MIB_OUTFORWDATAGRAMS___2 = 10, IPSTATS_MIB_OUTREQUESTS___2 = 11, IPSTATS_MIB_OUTDISCARDS___2 = 12, IPSTATS_MIB_OUTNOROUTES___2 = 13, IPSTATS_MIB_REASMTIMEOUT___2 = 14, IPSTATS_MIB_REASMREQDS___2 = 15, IPSTATS_MIB_REASMOKS___2 = 16, IPSTATS_MIB_REASMFAILS___2 = 17, IPSTATS_MIB_FRAGOKS___2 = 18, IPSTATS_MIB_FRAGFAILS___2 = 19, IPSTATS_MIB_FRAGCREATES___2 = 20, IPSTATS_MIB_INMCASTPKTS___2 = 21, IPSTATS_MIB_OUTMCASTPKTS___2 = 22, IPSTATS_MIB_INBCASTPKTS___2 = 23, IPSTATS_MIB_OUTBCASTPKTS___2 = 24, __IPSTATS_MIB_MAX___2 = 25 } ; enum __anonenum_178___2 { ICMP_MIB_NUM___2 = 0, ICMP_MIB_INMSGS___2 = 1, ICMP_MIB_INERRORS___2 = 2, ICMP_MIB_INDESTUNREACHS___2 = 3, ICMP_MIB_INTIMEEXCDS___2 = 4, ICMP_MIB_INPARMPROBS___2 = 5, ICMP_MIB_INSRCQUENCHS___2 = 6, ICMP_MIB_INREDIRECTS___2 = 7, ICMP_MIB_INECHOS___2 = 8, ICMP_MIB_INECHOREPS___2 = 9, ICMP_MIB_INTIMESTAMPS___2 = 10, ICMP_MIB_INTIMESTAMPREPS___2 = 11, ICMP_MIB_INADDRMASKS___2 = 12, ICMP_MIB_INADDRMASKREPS___2 = 13, ICMP_MIB_OUTMSGS___2 = 14, ICMP_MIB_OUTERRORS___2 = 15, ICMP_MIB_OUTDESTUNREACHS___2 = 16, ICMP_MIB_OUTTIMEEXCDS___2 = 17, ICMP_MIB_OUTPARMPROBS___2 = 18, ICMP_MIB_OUTSRCQUENCHS___2 = 19, ICMP_MIB_OUTREDIRECTS___2 = 20, ICMP_MIB_OUTECHOS___2 = 21, ICMP_MIB_OUTECHOREPS___2 = 22, ICMP_MIB_OUTTIMESTAMPS___2 = 23, ICMP_MIB_OUTTIMESTAMPREPS___2 = 24, ICMP_MIB_OUTADDRMASKS___2 = 25, ICMP_MIB_OUTADDRMASKREPS___2 = 26, __ICMP_MIB_MAX___2 = 27 } ; enum __anonenum_180___2 { TCP_MIB_NUM___2 = 0, TCP_MIB_RTOALGORITHM___2 = 1, TCP_MIB_RTOMIN___2 = 2, TCP_MIB_RTOMAX___2 = 3, TCP_MIB_MAXCONN___2 = 4, TCP_MIB_ACTIVEOPENS___2 = 5, TCP_MIB_PASSIVEOPENS___2 = 6, TCP_MIB_ATTEMPTFAILS___2 = 7, TCP_MIB_ESTABRESETS___2 = 8, TCP_MIB_CURRESTAB___2 = 9, TCP_MIB_INSEGS___2 = 10, TCP_MIB_OUTSEGS___2 = 11, TCP_MIB_RETRANSSEGS___2 = 12, TCP_MIB_INERRS___2 = 13, TCP_MIB_OUTRSTS___2 = 14, __TCP_MIB_MAX___2 = 15 } ; enum __anonenum_181___2 { UDP_MIB_NUM___2 = 0, UDP_MIB_INDATAGRAMS___2 = 1, UDP_MIB_NOPORTS___2 = 2, UDP_MIB_INERRORS___2 = 3, UDP_MIB_OUTDATAGRAMS___2 = 4, UDP_MIB_RCVBUFERRORS___2 = 5, UDP_MIB_SNDBUFERRORS___2 = 6, __UDP_MIB_MAX___2 = 7 } ; enum __anonenum_182___2 { LINUX_MIB_NUM___2 = 0, LINUX_MIB_SYNCOOKIESSENT___2 = 1, LINUX_MIB_SYNCOOKIESRECV___2 = 2, LINUX_MIB_SYNCOOKIESFAILED___2 = 3, LINUX_MIB_EMBRYONICRSTS___2 = 4, LINUX_MIB_PRUNECALLED___2 = 5, LINUX_MIB_RCVPRUNED___2 = 6, LINUX_MIB_OFOPRUNED___2 = 7, LINUX_MIB_OUTOFWINDOWICMPS___2 = 8, LINUX_MIB_LOCKDROPPEDICMPS___2 = 9, LINUX_MIB_ARPFILTER___2 = 10, LINUX_MIB_TIMEWAITED___2 = 11, LINUX_MIB_TIMEWAITRECYCLED___2 = 12, LINUX_MIB_TIMEWAITKILLED___2 = 13, LINUX_MIB_PAWSPASSIVEREJECTED___2 = 14, LINUX_MIB_PAWSACTIVEREJECTED___2 = 15, LINUX_MIB_PAWSESTABREJECTED___2 = 16, LINUX_MIB_DELAYEDACKS___2 = 17, LINUX_MIB_DELAYEDACKLOCKED___2 = 18, LINUX_MIB_DELAYEDACKLOST___2 = 19, LINUX_MIB_LISTENOVERFLOWS___2 = 20, LINUX_MIB_LISTENDROPS___2 = 21, LINUX_MIB_TCPPREQUEUED___2 = 22, LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG___2 = 23, LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE___2 = 24, LINUX_MIB_TCPPREQUEUEDROPPED___2 = 25, LINUX_MIB_TCPHPHITS___2 = 26, LINUX_MIB_TCPHPHITSTOUSER___2 = 27, LINUX_MIB_TCPPUREACKS___2 = 28, LINUX_MIB_TCPHPACKS___2 = 29, LINUX_MIB_TCPRENORECOVERY___2 = 30, LINUX_MIB_TCPSACKRECOVERY___2 = 31, LINUX_MIB_TCPSACKRENEGING___2 = 32, LINUX_MIB_TCPFACKREORDER___2 = 33, LINUX_MIB_TCPSACKREORDER___2 = 34, LINUX_MIB_TCPRENOREORDER___2 = 35, LINUX_MIB_TCPTSREORDER___2 = 36, LINUX_MIB_TCPFULLUNDO___2 = 37, LINUX_MIB_TCPPARTIALUNDO___2 = 38, LINUX_MIB_TCPDSACKUNDO___2 = 39, LINUX_MIB_TCPLOSSUNDO___2 = 40, LINUX_MIB_TCPLOSS___2 = 41, LINUX_MIB_TCPLOSTRETRANSMIT___2 = 42, LINUX_MIB_TCPRENOFAILURES___2 = 43, LINUX_MIB_TCPSACKFAILURES___2 = 44, LINUX_MIB_TCPLOSSFAILURES___2 = 45, LINUX_MIB_TCPFASTRETRANS___2 = 46, LINUX_MIB_TCPFORWARDRETRANS___2 = 47, LINUX_MIB_TCPSLOWSTARTRETRANS___2 = 48, LINUX_MIB_TCPTIMEOUTS___2 = 49, LINUX_MIB_TCPRENORECOVERYFAIL___2 = 50, LINUX_MIB_TCPSACKRECOVERYFAIL___2 = 51, LINUX_MIB_TCPSCHEDULERFAILED___2 = 52, LINUX_MIB_TCPRCVCOLLAPSED___2 = 53, LINUX_MIB_TCPDSACKOLDSENT___2 = 54, LINUX_MIB_TCPDSACKOFOSENT___2 = 55, LINUX_MIB_TCPDSACKRECV___2 = 56, LINUX_MIB_TCPDSACKOFORECV___2 = 57, LINUX_MIB_TCPABORTONSYN___2 = 58, LINUX_MIB_TCPABORTONDATA___2 = 59, LINUX_MIB_TCPABORTONCLOSE___2 = 60, LINUX_MIB_TCPABORTONMEMORY___2 = 61, LINUX_MIB_TCPABORTONTIMEOUT___2 = 62, LINUX_MIB_TCPABORTONLINGER___2 = 63, LINUX_MIB_TCPABORTFAILED___2 = 64, LINUX_MIB_TCPMEMORYPRESSURES___2 = 65, LINUX_MIB_TCPSACKDISCARD___2 = 66, LINUX_MIB_TCPDSACKIGNOREDOLD___2 = 67, LINUX_MIB_TCPDSACKIGNOREDNOUNDO___2 = 68, LINUX_MIB_TCPSPURIOUSRTOS___2 = 69, LINUX_MIB_TCPMD5NOTFOUND___2 = 70, LINUX_MIB_TCPMD5UNEXPECTED___2 = 71, __LINUX_MIB_MAX___2 = 72 } ; enum __anonenum_247___2 { RTAX_UNSPEC___2 = 0, RTAX_LOCK___2 = 1, RTAX_MTU___2 = 2, RTAX_WINDOW___2 = 3, RTAX_RTT___2 = 4, RTAX_RTTVAR___2 = 5, RTAX_SSTHRESH___2 = 6, RTAX_CWND___2 = 7, RTAX_ADVMSS___2 = 8, RTAX_REORDERING___2 = 9, RTAX_HOPLIMIT___2 = 10, RTAX_INITCWND___2 = 11, RTAX_FEATURES___2 = 12, RTAX_RTO_MIN___2 = 13, __RTAX_MAX___2 = 14 } ; enum hrtimer_restart; enum __anonenum_177___3 { IPSTATS_MIB_NUM___3 = 0, IPSTATS_MIB_INRECEIVES___3 = 1, IPSTATS_MIB_INHDRERRORS___3 = 2, IPSTATS_MIB_INTOOBIGERRORS___3 = 3, IPSTATS_MIB_INNOROUTES___3 = 4, IPSTATS_MIB_INADDRERRORS___3 = 5, IPSTATS_MIB_INUNKNOWNPROTOS___3 = 6, IPSTATS_MIB_INTRUNCATEDPKTS___3 = 7, IPSTATS_MIB_INDISCARDS___3 = 8, IPSTATS_MIB_INDELIVERS___3 = 9, IPSTATS_MIB_OUTFORWDATAGRAMS___3 = 10, IPSTATS_MIB_OUTREQUESTS___3 = 11, IPSTATS_MIB_OUTDISCARDS___3 = 12, IPSTATS_MIB_OUTNOROUTES___3 = 13, IPSTATS_MIB_REASMTIMEOUT___3 = 14, IPSTATS_MIB_REASMREQDS___3 = 15, IPSTATS_MIB_REASMOKS___3 = 16, IPSTATS_MIB_REASMFAILS___3 = 17, IPSTATS_MIB_FRAGOKS___3 = 18, IPSTATS_MIB_FRAGFAILS___3 = 19, IPSTATS_MIB_FRAGCREATES___3 = 20, IPSTATS_MIB_INMCASTPKTS___3 = 21, IPSTATS_MIB_OUTMCASTPKTS___3 = 22, IPSTATS_MIB_INBCASTPKTS___3 = 23, IPSTATS_MIB_OUTBCASTPKTS___3 = 24, __IPSTATS_MIB_MAX___3 = 25 } ; enum __anonenum_178___3 { ICMP_MIB_NUM___3 = 0, ICMP_MIB_INMSGS___3 = 1, ICMP_MIB_INERRORS___3 = 2, ICMP_MIB_INDESTUNREACHS___3 = 3, ICMP_MIB_INTIMEEXCDS___3 = 4, ICMP_MIB_INPARMPROBS___3 = 5, ICMP_MIB_INSRCQUENCHS___3 = 6, ICMP_MIB_INREDIRECTS___3 = 7, ICMP_MIB_INECHOS___3 = 8, ICMP_MIB_INECHOREPS___3 = 9, ICMP_MIB_INTIMESTAMPS___3 = 10, ICMP_MIB_INTIMESTAMPREPS___3 = 11, ICMP_MIB_INADDRMASKS___3 = 12, ICMP_MIB_INADDRMASKREPS___3 = 13, ICMP_MIB_OUTMSGS___3 = 14, ICMP_MIB_OUTERRORS___3 = 15, ICMP_MIB_OUTDESTUNREACHS___3 = 16, ICMP_MIB_OUTTIMEEXCDS___3 = 17, ICMP_MIB_OUTPARMPROBS___3 = 18, ICMP_MIB_OUTSRCQUENCHS___3 = 19, ICMP_MIB_OUTREDIRECTS___3 = 20, ICMP_MIB_OUTECHOS___3 = 21, ICMP_MIB_OUTECHOREPS___3 = 22, ICMP_MIB_OUTTIMESTAMPS___3 = 23, ICMP_MIB_OUTTIMESTAMPREPS___3 = 24, ICMP_MIB_OUTADDRMASKS___3 = 25, ICMP_MIB_OUTADDRMASKREPS___3 = 26, __ICMP_MIB_MAX___3 = 27 } ; enum __anonenum_180___3 { TCP_MIB_NUM___3 = 0, TCP_MIB_RTOALGORITHM___3 = 1, TCP_MIB_RTOMIN___3 = 2, TCP_MIB_RTOMAX___3 = 3, TCP_MIB_MAXCONN___3 = 4, TCP_MIB_ACTIVEOPENS___3 = 5, TCP_MIB_PASSIVEOPENS___3 = 6, TCP_MIB_ATTEMPTFAILS___3 = 7, TCP_MIB_ESTABRESETS___3 = 8, TCP_MIB_CURRESTAB___3 = 9, TCP_MIB_INSEGS___3 = 10, TCP_MIB_OUTSEGS___3 = 11, TCP_MIB_RETRANSSEGS___3 = 12, TCP_MIB_INERRS___3 = 13, TCP_MIB_OUTRSTS___3 = 14, __TCP_MIB_MAX___3 = 15 } ; enum __anonenum_181___3 { UDP_MIB_NUM___3 = 0, UDP_MIB_INDATAGRAMS___3 = 1, UDP_MIB_NOPORTS___3 = 2, UDP_MIB_INERRORS___3 = 3, UDP_MIB_OUTDATAGRAMS___3 = 4, UDP_MIB_RCVBUFERRORS___3 = 5, UDP_MIB_SNDBUFERRORS___3 = 6, __UDP_MIB_MAX___3 = 7 } ; enum __anonenum_182___3 { LINUX_MIB_NUM___3 = 0, LINUX_MIB_SYNCOOKIESSENT___3 = 1, LINUX_MIB_SYNCOOKIESRECV___3 = 2, LINUX_MIB_SYNCOOKIESFAILED___3 = 3, LINUX_MIB_EMBRYONICRSTS___3 = 4, LINUX_MIB_PRUNECALLED___3 = 5, LINUX_MIB_RCVPRUNED___3 = 6, LINUX_MIB_OFOPRUNED___3 = 7, LINUX_MIB_OUTOFWINDOWICMPS___3 = 8, LINUX_MIB_LOCKDROPPEDICMPS___3 = 9, LINUX_MIB_ARPFILTER___3 = 10, LINUX_MIB_TIMEWAITED___3 = 11, LINUX_MIB_TIMEWAITRECYCLED___3 = 12, LINUX_MIB_TIMEWAITKILLED___3 = 13, LINUX_MIB_PAWSPASSIVEREJECTED___3 = 14, LINUX_MIB_PAWSACTIVEREJECTED___3 = 15, LINUX_MIB_PAWSESTABREJECTED___3 = 16, LINUX_MIB_DELAYEDACKS___3 = 17, LINUX_MIB_DELAYEDACKLOCKED___3 = 18, LINUX_MIB_DELAYEDACKLOST___3 = 19, LINUX_MIB_LISTENOVERFLOWS___3 = 20, LINUX_MIB_LISTENDROPS___3 = 21, LINUX_MIB_TCPPREQUEUED___3 = 22, LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG___3 = 23, LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE___3 = 24, LINUX_MIB_TCPPREQUEUEDROPPED___3 = 25, LINUX_MIB_TCPHPHITS___3 = 26, LINUX_MIB_TCPHPHITSTOUSER___3 = 27, LINUX_MIB_TCPPUREACKS___3 = 28, LINUX_MIB_TCPHPACKS___3 = 29, LINUX_MIB_TCPRENORECOVERY___3 = 30, LINUX_MIB_TCPSACKRECOVERY___3 = 31, LINUX_MIB_TCPSACKRENEGING___3 = 32, LINUX_MIB_TCPFACKREORDER___3 = 33, LINUX_MIB_TCPSACKREORDER___3 = 34, LINUX_MIB_TCPRENOREORDER___3 = 35, LINUX_MIB_TCPTSREORDER___3 = 36, LINUX_MIB_TCPFULLUNDO___3 = 37, LINUX_MIB_TCPPARTIALUNDO___3 = 38, LINUX_MIB_TCPDSACKUNDO___3 = 39, LINUX_MIB_TCPLOSSUNDO___3 = 40, LINUX_MIB_TCPLOSS___3 = 41, LINUX_MIB_TCPLOSTRETRANSMIT___3 = 42, LINUX_MIB_TCPRENOFAILURES___3 = 43, LINUX_MIB_TCPSACKFAILURES___3 = 44, LINUX_MIB_TCPLOSSFAILURES___3 = 45, LINUX_MIB_TCPFASTRETRANS___3 = 46, LINUX_MIB_TCPFORWARDRETRANS___3 = 47, LINUX_MIB_TCPSLOWSTARTRETRANS___3 = 48, LINUX_MIB_TCPTIMEOUTS___3 = 49, LINUX_MIB_TCPRENORECOVERYFAIL___3 = 50, LINUX_MIB_TCPSACKRECOVERYFAIL___3 = 51, LINUX_MIB_TCPSCHEDULERFAILED___3 = 52, LINUX_MIB_TCPRCVCOLLAPSED___3 = 53, LINUX_MIB_TCPDSACKOLDSENT___3 = 54, LINUX_MIB_TCPDSACKOFOSENT___3 = 55, LINUX_MIB_TCPDSACKRECV___3 = 56, LINUX_MIB_TCPDSACKOFORECV___3 = 57, LINUX_MIB_TCPABORTONSYN___3 = 58, LINUX_MIB_TCPABORTONDATA___3 = 59, LINUX_MIB_TCPABORTONCLOSE___3 = 60, LINUX_MIB_TCPABORTONMEMORY___3 = 61, LINUX_MIB_TCPABORTONTIMEOUT___3 = 62, LINUX_MIB_TCPABORTONLINGER___3 = 63, LINUX_MIB_TCPABORTFAILED___3 = 64, LINUX_MIB_TCPMEMORYPRESSURES___3 = 65, LINUX_MIB_TCPSACKDISCARD___3 = 66, LINUX_MIB_TCPDSACKIGNOREDOLD___3 = 67, LINUX_MIB_TCPDSACKIGNOREDNOUNDO___3 = 68, LINUX_MIB_TCPSPURIOUSRTOS___3 = 69, LINUX_MIB_TCPMD5NOTFOUND___3 = 70, LINUX_MIB_TCPMD5UNEXPECTED___3 = 71, __LINUX_MIB_MAX___3 = 72 } ; enum __anonenum_247___3 { RTAX_UNSPEC___3 = 0, RTAX_LOCK___3 = 1, RTAX_MTU___3 = 2, RTAX_WINDOW___3 = 3, RTAX_RTT___3 = 4, RTAX_RTTVAR___3 = 5, RTAX_SSTHRESH___3 = 6, RTAX_CWND___3 = 7, RTAX_ADVMSS___3 = 8, RTAX_REORDERING___3 = 9, RTAX_HOPLIMIT___3 = 10, RTAX_INITCWND___3 = 11, RTAX_FEATURES___3 = 12, RTAX_RTO_MIN___3 = 13, __RTAX_MAX___3 = 14 } ; typedef int dchannel_l1callback(struct dchannel * , u_int ); struct layer1; struct layer1 { u_long Flags ; struct FsmInst l1m ; struct FsmTimer timer ; int delay ; struct dchannel *dch ; dchannel_l1callback *dcb ; }; enum __anonenum_260 { ST_L1_F2 = 0, ST_L1_F3 = 1, ST_L1_F4 = 2, ST_L1_F5 = 3, ST_L1_F6 = 4, ST_L1_F7 = 5, ST_L1_F8 = 6 } ; enum __anonenum_261 { EV_PH_ACTIVATE = 0, EV_PH_DEACTIVATE = 1, EV_RESET_IND = 2, EV_DEACT_CNF = 3, EV_DEACT_IND = 4, EV_POWER_UP = 5, EV_ANYSIG_IND = 6, EV_INFO2_IND = 7, EV_INFO4_IND = 8, EV_TIMER_DEACT = 9, EV_TIMER_ACT = 10, EV_TIMER3 = 11 } ; enum hrtimer_restart; enum __anonenum_177___4 { IPSTATS_MIB_NUM___4 = 0, IPSTATS_MIB_INRECEIVES___4 = 1, IPSTATS_MIB_INHDRERRORS___4 = 2, IPSTATS_MIB_INTOOBIGERRORS___4 = 3, IPSTATS_MIB_INNOROUTES___4 = 4, IPSTATS_MIB_INADDRERRORS___4 = 5, IPSTATS_MIB_INUNKNOWNPROTOS___4 = 6, IPSTATS_MIB_INTRUNCATEDPKTS___4 = 7, IPSTATS_MIB_INDISCARDS___4 = 8, IPSTATS_MIB_INDELIVERS___4 = 9, IPSTATS_MIB_OUTFORWDATAGRAMS___4 = 10, IPSTATS_MIB_OUTREQUESTS___4 = 11, IPSTATS_MIB_OUTDISCARDS___4 = 12, IPSTATS_MIB_OUTNOROUTES___4 = 13, IPSTATS_MIB_REASMTIMEOUT___4 = 14, IPSTATS_MIB_REASMREQDS___4 = 15, IPSTATS_MIB_REASMOKS___4 = 16, IPSTATS_MIB_REASMFAILS___4 = 17, IPSTATS_MIB_FRAGOKS___4 = 18, IPSTATS_MIB_FRAGFAILS___4 = 19, IPSTATS_MIB_FRAGCREATES___4 = 20, IPSTATS_MIB_INMCASTPKTS___4 = 21, IPSTATS_MIB_OUTMCASTPKTS___4 = 22, IPSTATS_MIB_INBCASTPKTS___4 = 23, IPSTATS_MIB_OUTBCASTPKTS___4 = 24, __IPSTATS_MIB_MAX___4 = 25 } ; enum __anonenum_178___4 { ICMP_MIB_NUM___4 = 0, ICMP_MIB_INMSGS___4 = 1, ICMP_MIB_INERRORS___4 = 2, ICMP_MIB_INDESTUNREACHS___4 = 3, ICMP_MIB_INTIMEEXCDS___4 = 4, ICMP_MIB_INPARMPROBS___4 = 5, ICMP_MIB_INSRCQUENCHS___4 = 6, ICMP_MIB_INREDIRECTS___4 = 7, ICMP_MIB_INECHOS___4 = 8, ICMP_MIB_INECHOREPS___4 = 9, ICMP_MIB_INTIMESTAMPS___4 = 10, ICMP_MIB_INTIMESTAMPREPS___4 = 11, ICMP_MIB_INADDRMASKS___4 = 12, ICMP_MIB_INADDRMASKREPS___4 = 13, ICMP_MIB_OUTMSGS___4 = 14, ICMP_MIB_OUTERRORS___4 = 15, ICMP_MIB_OUTDESTUNREACHS___4 = 16, ICMP_MIB_OUTTIMEEXCDS___4 = 17, ICMP_MIB_OUTPARMPROBS___4 = 18, ICMP_MIB_OUTSRCQUENCHS___4 = 19, ICMP_MIB_OUTREDIRECTS___4 = 20, ICMP_MIB_OUTECHOS___4 = 21, ICMP_MIB_OUTECHOREPS___4 = 22, ICMP_MIB_OUTTIMESTAMPS___4 = 23, ICMP_MIB_OUTTIMESTAMPREPS___4 = 24, ICMP_MIB_OUTADDRMASKS___4 = 25, ICMP_MIB_OUTADDRMASKREPS___4 = 26, __ICMP_MIB_MAX___4 = 27 } ; enum __anonenum_180___4 { TCP_MIB_NUM___4 = 0, TCP_MIB_RTOALGORITHM___4 = 1, TCP_MIB_RTOMIN___4 = 2, TCP_MIB_RTOMAX___4 = 3, TCP_MIB_MAXCONN___4 = 4, TCP_MIB_ACTIVEOPENS___4 = 5, TCP_MIB_PASSIVEOPENS___4 = 6, TCP_MIB_ATTEMPTFAILS___4 = 7, TCP_MIB_ESTABRESETS___4 = 8, TCP_MIB_CURRESTAB___4 = 9, TCP_MIB_INSEGS___4 = 10, TCP_MIB_OUTSEGS___4 = 11, TCP_MIB_RETRANSSEGS___4 = 12, TCP_MIB_INERRS___4 = 13, TCP_MIB_OUTRSTS___4 = 14, __TCP_MIB_MAX___4 = 15 } ; enum __anonenum_181___4 { UDP_MIB_NUM___4 = 0, UDP_MIB_INDATAGRAMS___4 = 1, UDP_MIB_NOPORTS___4 = 2, UDP_MIB_INERRORS___4 = 3, UDP_MIB_OUTDATAGRAMS___4 = 4, UDP_MIB_RCVBUFERRORS___4 = 5, UDP_MIB_SNDBUFERRORS___4 = 6, __UDP_MIB_MAX___4 = 7 } ; enum __anonenum_182___4 { LINUX_MIB_NUM___4 = 0, LINUX_MIB_SYNCOOKIESSENT___4 = 1, LINUX_MIB_SYNCOOKIESRECV___4 = 2, LINUX_MIB_SYNCOOKIESFAILED___4 = 3, LINUX_MIB_EMBRYONICRSTS___4 = 4, LINUX_MIB_PRUNECALLED___4 = 5, LINUX_MIB_RCVPRUNED___4 = 6, LINUX_MIB_OFOPRUNED___4 = 7, LINUX_MIB_OUTOFWINDOWICMPS___4 = 8, LINUX_MIB_LOCKDROPPEDICMPS___4 = 9, LINUX_MIB_ARPFILTER___4 = 10, LINUX_MIB_TIMEWAITED___4 = 11, LINUX_MIB_TIMEWAITRECYCLED___4 = 12, LINUX_MIB_TIMEWAITKILLED___4 = 13, LINUX_MIB_PAWSPASSIVEREJECTED___4 = 14, LINUX_MIB_PAWSACTIVEREJECTED___4 = 15, LINUX_MIB_PAWSESTABREJECTED___4 = 16, LINUX_MIB_DELAYEDACKS___4 = 17, LINUX_MIB_DELAYEDACKLOCKED___4 = 18, LINUX_MIB_DELAYEDACKLOST___4 = 19, LINUX_MIB_LISTENOVERFLOWS___4 = 20, LINUX_MIB_LISTENDROPS___4 = 21, LINUX_MIB_TCPPREQUEUED___4 = 22, LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG___4 = 23, LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE___4 = 24, LINUX_MIB_TCPPREQUEUEDROPPED___4 = 25, LINUX_MIB_TCPHPHITS___4 = 26, LINUX_MIB_TCPHPHITSTOUSER___4 = 27, LINUX_MIB_TCPPUREACKS___4 = 28, LINUX_MIB_TCPHPACKS___4 = 29, LINUX_MIB_TCPRENORECOVERY___4 = 30, LINUX_MIB_TCPSACKRECOVERY___4 = 31, LINUX_MIB_TCPSACKRENEGING___4 = 32, LINUX_MIB_TCPFACKREORDER___4 = 33, LINUX_MIB_TCPSACKREORDER___4 = 34, LINUX_MIB_TCPRENOREORDER___4 = 35, LINUX_MIB_TCPTSREORDER___4 = 36, LINUX_MIB_TCPFULLUNDO___4 = 37, LINUX_MIB_TCPPARTIALUNDO___4 = 38, LINUX_MIB_TCPDSACKUNDO___4 = 39, LINUX_MIB_TCPLOSSUNDO___4 = 40, LINUX_MIB_TCPLOSS___4 = 41, LINUX_MIB_TCPLOSTRETRANSMIT___4 = 42, LINUX_MIB_TCPRENOFAILURES___4 = 43, LINUX_MIB_TCPSACKFAILURES___4 = 44, LINUX_MIB_TCPLOSSFAILURES___4 = 45, LINUX_MIB_TCPFASTRETRANS___4 = 46, LINUX_MIB_TCPFORWARDRETRANS___4 = 47, LINUX_MIB_TCPSLOWSTARTRETRANS___4 = 48, LINUX_MIB_TCPTIMEOUTS___4 = 49, LINUX_MIB_TCPRENORECOVERYFAIL___4 = 50, LINUX_MIB_TCPSACKRECOVERYFAIL___4 = 51, LINUX_MIB_TCPSCHEDULERFAILED___4 = 52, LINUX_MIB_TCPRCVCOLLAPSED___4 = 53, LINUX_MIB_TCPDSACKOLDSENT___4 = 54, LINUX_MIB_TCPDSACKOFOSENT___4 = 55, LINUX_MIB_TCPDSACKRECV___4 = 56, LINUX_MIB_TCPDSACKOFORECV___4 = 57, LINUX_MIB_TCPABORTONSYN___4 = 58, LINUX_MIB_TCPABORTONDATA___4 = 59, LINUX_MIB_TCPABORTONCLOSE___4 = 60, LINUX_MIB_TCPABORTONMEMORY___4 = 61, LINUX_MIB_TCPABORTONTIMEOUT___4 = 62, LINUX_MIB_TCPABORTONLINGER___4 = 63, LINUX_MIB_TCPABORTFAILED___4 = 64, LINUX_MIB_TCPMEMORYPRESSURES___4 = 65, LINUX_MIB_TCPSACKDISCARD___4 = 66, LINUX_MIB_TCPDSACKIGNOREDOLD___4 = 67, LINUX_MIB_TCPDSACKIGNOREDNOUNDO___4 = 68, LINUX_MIB_TCPSPURIOUSRTOS___4 = 69, LINUX_MIB_TCPMD5NOTFOUND___4 = 70, LINUX_MIB_TCPMD5UNEXPECTED___4 = 71, __LINUX_MIB_MAX___4 = 72 } ; enum __anonenum_247___4 { RTAX_UNSPEC___4 = 0, RTAX_LOCK___4 = 1, RTAX_MTU___4 = 2, RTAX_WINDOW___4 = 3, RTAX_RTT___4 = 4, RTAX_RTTVAR___4 = 5, RTAX_SSTHRESH___4 = 6, RTAX_CWND___4 = 7, RTAX_ADVMSS___4 = 8, RTAX_REORDERING___4 = 9, RTAX_HOPLIMIT___4 = 10, RTAX_INITCWND___4 = 11, RTAX_FEATURES___4 = 12, RTAX_RTO_MIN___4 = 13, __RTAX_MAX___4 = 14 } ; struct manager { struct mISDNchannel ch ; struct mISDNchannel bcast ; u_long options ; struct list_head layer2 ; rwlock_t lock ; struct FsmInst deact ; struct FsmTimer datimer ; struct sk_buff_head sendq ; struct mISDNchannel *up ; u_int nextid ; u_int lastid ; }; struct layer2; struct teimgr { int ri ; int rcnt ; struct FsmInst tei_m ; struct FsmTimer timer ; int tval ; int nval ; struct layer2 *l2 ; struct manager *mgr ; }; struct laddr { u_char A ; u_char B ; }; struct layer2 { struct list_head list ; struct mISDNchannel ch ; u_long flag ; int id ; struct mISDNchannel *up ; signed char sapi ; signed char tei ; struct laddr addr ; u_int maxlen ; struct teimgr *tm ; u_int vs ; u_int va ; u_int vr ; int rc ; u_int window ; u_int sow ; struct FsmInst l2m ; struct FsmTimer t200 ; struct FsmTimer t203 ; int T200 ; int N200 ; int T203 ; u_int next_id ; u_int down_id ; struct sk_buff *windowar[8] ; struct sk_buff_head i_queue ; struct sk_buff_head ui_queue ; struct sk_buff_head down_queue ; struct sk_buff_head tmp_queue ; }; enum __anonenum_260___0 { ST_L2_1 = 0, ST_L2_2 = 1, ST_L2_3 = 2, ST_L2_4 = 3, ST_L2_5 = 4, ST_L2_6 = 5, ST_L2_7 = 6, ST_L2_8 = 7 } ; enum __anonenum_261___0 { EV_L2_UI = 0, EV_L2_SABME = 1, EV_L2_DISC = 2, EV_L2_DM = 3, EV_L2_UA = 4, EV_L2_FRMR = 5, EV_L2_SUPER = 6, EV_L2_I = 7, EV_L2_DL_DATA = 8, EV_L2_ACK_PULL = 9, EV_L2_DL_UNITDATA = 10, EV_L2_DL_ESTABLISH_REQ = 11, EV_L2_DL_RELEASE_REQ = 12, EV_L2_MDL_ASSIGN = 13, EV_L2_MDL_REMOVE = 14, EV_L2_MDL_ERROR = 15, EV_L1_DEACTIVATE = 16, EV_L2_T200 = 17, EV_L2_T203 = 18, EV_L2_SET_OWN_BUSY = 19, EV_L2_CLEAR_OWN_BUSY = 20, EV_L2_FRAME_ERROR = 21 } ; enum hrtimer_restart; enum __anonenum_177___5 { IPSTATS_MIB_NUM___5 = 0, IPSTATS_MIB_INRECEIVES___5 = 1, IPSTATS_MIB_INHDRERRORS___5 = 2, IPSTATS_MIB_INTOOBIGERRORS___5 = 3, IPSTATS_MIB_INNOROUTES___5 = 4, IPSTATS_MIB_INADDRERRORS___5 = 5, IPSTATS_MIB_INUNKNOWNPROTOS___5 = 6, IPSTATS_MIB_INTRUNCATEDPKTS___5 = 7, IPSTATS_MIB_INDISCARDS___5 = 8, IPSTATS_MIB_INDELIVERS___5 = 9, IPSTATS_MIB_OUTFORWDATAGRAMS___5 = 10, IPSTATS_MIB_OUTREQUESTS___5 = 11, IPSTATS_MIB_OUTDISCARDS___5 = 12, IPSTATS_MIB_OUTNOROUTES___5 = 13, IPSTATS_MIB_REASMTIMEOUT___5 = 14, IPSTATS_MIB_REASMREQDS___5 = 15, IPSTATS_MIB_REASMOKS___5 = 16, IPSTATS_MIB_REASMFAILS___5 = 17, IPSTATS_MIB_FRAGOKS___5 = 18, IPSTATS_MIB_FRAGFAILS___5 = 19, IPSTATS_MIB_FRAGCREATES___5 = 20, IPSTATS_MIB_INMCASTPKTS___5 = 21, IPSTATS_MIB_OUTMCASTPKTS___5 = 22, IPSTATS_MIB_INBCASTPKTS___5 = 23, IPSTATS_MIB_OUTBCASTPKTS___5 = 24, __IPSTATS_MIB_MAX___5 = 25 } ; enum __anonenum_178___5 { ICMP_MIB_NUM___5 = 0, ICMP_MIB_INMSGS___5 = 1, ICMP_MIB_INERRORS___5 = 2, ICMP_MIB_INDESTUNREACHS___5 = 3, ICMP_MIB_INTIMEEXCDS___5 = 4, ICMP_MIB_INPARMPROBS___5 = 5, ICMP_MIB_INSRCQUENCHS___5 = 6, ICMP_MIB_INREDIRECTS___5 = 7, ICMP_MIB_INECHOS___5 = 8, ICMP_MIB_INECHOREPS___5 = 9, ICMP_MIB_INTIMESTAMPS___5 = 10, ICMP_MIB_INTIMESTAMPREPS___5 = 11, ICMP_MIB_INADDRMASKS___5 = 12, ICMP_MIB_INADDRMASKREPS___5 = 13, ICMP_MIB_OUTMSGS___5 = 14, ICMP_MIB_OUTERRORS___5 = 15, ICMP_MIB_OUTDESTUNREACHS___5 = 16, ICMP_MIB_OUTTIMEEXCDS___5 = 17, ICMP_MIB_OUTPARMPROBS___5 = 18, ICMP_MIB_OUTSRCQUENCHS___5 = 19, ICMP_MIB_OUTREDIRECTS___5 = 20, ICMP_MIB_OUTECHOS___5 = 21, ICMP_MIB_OUTECHOREPS___5 = 22, ICMP_MIB_OUTTIMESTAMPS___5 = 23, ICMP_MIB_OUTTIMESTAMPREPS___5 = 24, ICMP_MIB_OUTADDRMASKS___5 = 25, ICMP_MIB_OUTADDRMASKREPS___5 = 26, __ICMP_MIB_MAX___5 = 27 } ; enum __anonenum_180___5 { TCP_MIB_NUM___5 = 0, TCP_MIB_RTOALGORITHM___5 = 1, TCP_MIB_RTOMIN___5 = 2, TCP_MIB_RTOMAX___5 = 3, TCP_MIB_MAXCONN___5 = 4, TCP_MIB_ACTIVEOPENS___5 = 5, TCP_MIB_PASSIVEOPENS___5 = 6, TCP_MIB_ATTEMPTFAILS___5 = 7, TCP_MIB_ESTABRESETS___5 = 8, TCP_MIB_CURRESTAB___5 = 9, TCP_MIB_INSEGS___5 = 10, TCP_MIB_OUTSEGS___5 = 11, TCP_MIB_RETRANSSEGS___5 = 12, TCP_MIB_INERRS___5 = 13, TCP_MIB_OUTRSTS___5 = 14, __TCP_MIB_MAX___5 = 15 } ; enum __anonenum_181___5 { UDP_MIB_NUM___5 = 0, UDP_MIB_INDATAGRAMS___5 = 1, UDP_MIB_NOPORTS___5 = 2, UDP_MIB_INERRORS___5 = 3, UDP_MIB_OUTDATAGRAMS___5 = 4, UDP_MIB_RCVBUFERRORS___5 = 5, UDP_MIB_SNDBUFERRORS___5 = 6, __UDP_MIB_MAX___5 = 7 } ; enum __anonenum_182___5 { LINUX_MIB_NUM___5 = 0, LINUX_MIB_SYNCOOKIESSENT___5 = 1, LINUX_MIB_SYNCOOKIESRECV___5 = 2, LINUX_MIB_SYNCOOKIESFAILED___5 = 3, LINUX_MIB_EMBRYONICRSTS___5 = 4, LINUX_MIB_PRUNECALLED___5 = 5, LINUX_MIB_RCVPRUNED___5 = 6, LINUX_MIB_OFOPRUNED___5 = 7, LINUX_MIB_OUTOFWINDOWICMPS___5 = 8, LINUX_MIB_LOCKDROPPEDICMPS___5 = 9, LINUX_MIB_ARPFILTER___5 = 10, LINUX_MIB_TIMEWAITED___5 = 11, LINUX_MIB_TIMEWAITRECYCLED___5 = 12, LINUX_MIB_TIMEWAITKILLED___5 = 13, LINUX_MIB_PAWSPASSIVEREJECTED___5 = 14, LINUX_MIB_PAWSACTIVEREJECTED___5 = 15, LINUX_MIB_PAWSESTABREJECTED___5 = 16, LINUX_MIB_DELAYEDACKS___5 = 17, LINUX_MIB_DELAYEDACKLOCKED___5 = 18, LINUX_MIB_DELAYEDACKLOST___5 = 19, LINUX_MIB_LISTENOVERFLOWS___5 = 20, LINUX_MIB_LISTENDROPS___5 = 21, LINUX_MIB_TCPPREQUEUED___5 = 22, LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG___5 = 23, LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE___5 = 24, LINUX_MIB_TCPPREQUEUEDROPPED___5 = 25, LINUX_MIB_TCPHPHITS___5 = 26, LINUX_MIB_TCPHPHITSTOUSER___5 = 27, LINUX_MIB_TCPPUREACKS___5 = 28, LINUX_MIB_TCPHPACKS___5 = 29, LINUX_MIB_TCPRENORECOVERY___5 = 30, LINUX_MIB_TCPSACKRECOVERY___5 = 31, LINUX_MIB_TCPSACKRENEGING___5 = 32, LINUX_MIB_TCPFACKREORDER___5 = 33, LINUX_MIB_TCPSACKREORDER___5 = 34, LINUX_MIB_TCPRENOREORDER___5 = 35, LINUX_MIB_TCPTSREORDER___5 = 36, LINUX_MIB_TCPFULLUNDO___5 = 37, LINUX_MIB_TCPPARTIALUNDO___5 = 38, LINUX_MIB_TCPDSACKUNDO___5 = 39, LINUX_MIB_TCPLOSSUNDO___5 = 40, LINUX_MIB_TCPLOSS___5 = 41, LINUX_MIB_TCPLOSTRETRANSMIT___5 = 42, LINUX_MIB_TCPRENOFAILURES___5 = 43, LINUX_MIB_TCPSACKFAILURES___5 = 44, LINUX_MIB_TCPLOSSFAILURES___5 = 45, LINUX_MIB_TCPFASTRETRANS___5 = 46, LINUX_MIB_TCPFORWARDRETRANS___5 = 47, LINUX_MIB_TCPSLOWSTARTRETRANS___5 = 48, LINUX_MIB_TCPTIMEOUTS___5 = 49, LINUX_MIB_TCPRENORECOVERYFAIL___5 = 50, LINUX_MIB_TCPSACKRECOVERYFAIL___5 = 51, LINUX_MIB_TCPSCHEDULERFAILED___5 = 52, LINUX_MIB_TCPRCVCOLLAPSED___5 = 53, LINUX_MIB_TCPDSACKOLDSENT___5 = 54, LINUX_MIB_TCPDSACKOFOSENT___5 = 55, LINUX_MIB_TCPDSACKRECV___5 = 56, LINUX_MIB_TCPDSACKOFORECV___5 = 57, LINUX_MIB_TCPABORTONSYN___5 = 58, LINUX_MIB_TCPABORTONDATA___5 = 59, LINUX_MIB_TCPABORTONCLOSE___5 = 60, LINUX_MIB_TCPABORTONMEMORY___5 = 61, LINUX_MIB_TCPABORTONTIMEOUT___5 = 62, LINUX_MIB_TCPABORTONLINGER___5 = 63, LINUX_MIB_TCPABORTFAILED___5 = 64, LINUX_MIB_TCPMEMORYPRESSURES___5 = 65, LINUX_MIB_TCPSACKDISCARD___5 = 66, LINUX_MIB_TCPDSACKIGNOREDOLD___5 = 67, LINUX_MIB_TCPDSACKIGNOREDNOUNDO___5 = 68, LINUX_MIB_TCPSPURIOUSRTOS___5 = 69, LINUX_MIB_TCPMD5NOTFOUND___5 = 70, LINUX_MIB_TCPMD5UNEXPECTED___5 = 71, __LINUX_MIB_MAX___5 = 72 } ; enum __anonenum_247___5 { RTAX_UNSPEC___5 = 0, RTAX_LOCK___5 = 1, RTAX_MTU___5 = 2, RTAX_WINDOW___5 = 3, RTAX_RTT___5 = 4, RTAX_RTTVAR___5 = 5, RTAX_SSTHRESH___5 = 6, RTAX_CWND___5 = 7, RTAX_ADVMSS___5 = 8, RTAX_REORDERING___5 = 9, RTAX_HOPLIMIT___5 = 10, RTAX_INITCWND___5 = 11, RTAX_FEATURES___5 = 12, RTAX_RTO_MIN___5 = 13, __RTAX_MAX___5 = 14 } ; enum __anonenum_260___1 { ST_L2_1___0 = 0, ST_L2_2___0 = 1, ST_L2_3___0 = 2, ST_L2_4___0 = 3, ST_L2_5___0 = 4, ST_L2_6___0 = 5, ST_L2_7___0 = 6, ST_L2_8___0 = 7 } ; enum __anonenum_261___1 { ST_L1_DEACT = 0, ST_L1_DEACT_PENDING = 1, ST_L1_ACTIV = 2 } ; enum __anonenum_262 { EV_ACTIVATE = 0, EV_ACTIVATE_IND = 1, EV_DEACTIVATE = 2, EV_DEACTIVATE_IND = 3, EV_UI = 4, EV_DATIMER = 5 } ; enum __anonenum_263 { ST_TEI_NOP = 0, ST_TEI_IDREQ = 1, ST_TEI_IDVERIFY = 2 } ; enum __anonenum_264 { EV_IDREQ = 0, EV_ASSIGN = 1, EV_ASSIGN_REQ = 2, EV_DENIED = 3, EV_CHKREQ = 4, EV_CHKRESP = 5, EV_REMOVE = 6, EV_VERIFY = 7, EV_TIMER = 8 } ; enum hrtimer_restart; struct poll_table_struct { void (*qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; }; typedef struct poll_table_struct poll_table; struct miscdevice { int minor ; char const *name ; struct file_operations const *fops ; struct list_head list ; struct device *parent ; struct device *this_device ; }; struct mISDNtimerdev { int next_id ; struct list_head pending ; struct list_head expired ; wait_queue_head_t wait ; u_int work ; spinlock_t lock ; }; struct mISDNtimer { struct list_head list ; struct mISDNtimerdev *dev ; struct timer_list tl ; int id ; }; typedef __u16 __le16; enum hrtimer_restart; struct usb_device_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 bcdUSB ; __u8 bDeviceClass ; __u8 bDeviceSubClass ; __u8 bDeviceProtocol ; __u8 bMaxPacketSize0 ; __le16 idVendor ; __le16 idProduct ; __le16 bcdDevice ; __u8 iManufacturer ; __u8 iProduct ; __u8 iSerialNumber ; __u8 bNumConfigurations ; } __attribute__((__packed__)) ; struct usb_config_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumInterfaces ; __u8 bConfigurationValue ; __u8 iConfiguration ; __u8 bmAttributes ; __u8 bMaxPower ; } __attribute__((__packed__)) ; struct usb_interface_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bInterfaceNumber ; __u8 bAlternateSetting ; __u8 bNumEndpoints ; __u8 bInterfaceClass ; __u8 bInterfaceSubClass ; __u8 bInterfaceProtocol ; __u8 iInterface ; } __attribute__((__packed__)) ; struct usb_endpoint_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bEndpointAddress ; __u8 bmAttributes ; __le16 wMaxPacketSize ; __u8 bInterval ; __u8 bRefresh ; __u8 bSynchAddress ; } __attribute__((__packed__)) ; struct usb_interface_assoc_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bFirstInterface ; __u8 bInterfaceCount ; __u8 bFunctionClass ; __u8 bFunctionSubClass ; __u8 bFunctionProtocol ; __u8 iFunction ; } __attribute__((__packed__)) ; enum usb_device_speed { USB_SPEED_UNKNOWN = 0, USB_SPEED_LOW = 1, USB_SPEED_FULL = 2, USB_SPEED_HIGH = 3, USB_SPEED_VARIABLE = 4 } ; enum usb_device_state { USB_STATE_NOTATTACHED = 0, USB_STATE_ATTACHED = 1, USB_STATE_POWERED = 2, USB_STATE_UNAUTHENTICATED = 3, USB_STATE_RECONNECTING = 4, USB_STATE_DEFAULT = 5, USB_STATE_ADDRESS = 6, USB_STATE_CONFIGURED = 7, USB_STATE_SUSPENDED = 8 } ; struct usb_device; struct wusb_dev; struct ep_device; struct usb_host_endpoint { struct usb_endpoint_descriptor desc ; struct list_head urb_list ; void *hcpriv ; struct ep_device *ep_dev ; unsigned char *extra ; int extralen ; int enabled ; }; struct usb_host_interface { struct usb_interface_descriptor desc ; struct usb_host_endpoint *endpoint ; char *string ; unsigned char *extra ; int extralen ; }; enum usb_interface_condition { USB_INTERFACE_UNBOUND = 0, USB_INTERFACE_BINDING = 1, USB_INTERFACE_BOUND = 2, USB_INTERFACE_UNBINDING = 3 } ; struct usb_interface { struct usb_host_interface *altsetting ; struct usb_host_interface *cur_altsetting ; unsigned int num_altsetting ; struct usb_interface_assoc_descriptor *intf_assoc ; int minor ; enum usb_interface_condition condition ; unsigned int is_active : 1 ; unsigned int sysfs_files_created : 1 ; unsigned int needs_remote_wakeup : 1 ; unsigned int needs_altsetting0 : 1 ; unsigned int needs_binding : 1 ; struct device dev ; struct device *usb_dev ; int pm_usage_cnt ; }; struct usb_interface_cache { unsigned int num_altsetting ; struct kref ref ; struct usb_host_interface altsetting[0] ; }; struct usb_host_config { struct usb_config_descriptor desc ; char *string ; struct usb_interface_assoc_descriptor *intf_assoc[32 / 2] ; struct usb_interface *interface[32] ; struct usb_interface_cache *intf_cache[32] ; unsigned char *extra ; int extralen ; }; struct usb_devmap { unsigned long devicemap[128UL / (8UL * sizeof(unsigned long ))] ; }; struct mon_bus; struct usb_bus { struct device *controller ; int busnum ; char const *bus_name ; u8 uses_dma ; u8 otg_port ; unsigned int is_b_host : 1 ; unsigned int b_hnp_enable : 1 ; int devnum_next ; struct usb_devmap devmap ; struct usb_device *root_hub ; struct list_head bus_list ; int bandwidth_allocated ; int bandwidth_int_reqs ; int bandwidth_isoc_reqs ; struct dentry *usbfs_dentry ; struct device *dev ; struct mon_bus *mon_bus ; int monitored ; }; struct usb_tt; struct usb_device { int devnum ; char devpath[16] ; enum usb_device_state state ; enum usb_device_speed speed ; struct usb_tt *tt ; int ttport ; unsigned int toggle[2] ; struct usb_device *parent ; struct usb_bus *bus ; struct usb_host_endpoint ep0 ; struct device dev ; struct usb_device_descriptor descriptor ; struct usb_host_config *config ; struct usb_host_config *actconfig ; struct usb_host_endpoint *ep_in[16] ; struct usb_host_endpoint *ep_out[16] ; char **rawdescriptors ; unsigned short bus_mA ; u8 portnum ; u8 level ; unsigned int can_submit : 1 ; unsigned int discon_suspended : 1 ; unsigned int persist_enabled : 1 ; unsigned int have_langid : 1 ; unsigned int authorized : 1 ; unsigned int authenticated : 1 ; unsigned int wusb : 1 ; int string_langid ; char *product ; char *manufacturer ; char *serial ; struct list_head filelist ; struct device *usb_classdev ; struct dentry *usbfs_dentry ; int maxchild ; struct usb_device *children[31] ; int pm_usage_cnt ; u32 quirks ; atomic_t urbnum ; unsigned long active_duration ; struct delayed_work autosuspend ; struct mutex pm_mutex ; unsigned long last_busy ; int autosuspend_delay ; unsigned long connect_time ; unsigned int auto_pm : 1 ; unsigned int do_remote_wakeup : 1 ; unsigned int reset_resume : 1 ; unsigned int autosuspend_disabled : 1 ; unsigned int autoresume_disabled : 1 ; unsigned int skip_sys_resume : 1 ; struct wusb_dev *wusb_dev ; }; struct usb_iso_packet_descriptor { unsigned int offset ; unsigned int length ; unsigned int actual_length ; int status ; }; struct urb; struct usb_anchor { struct list_head urb_list ; wait_queue_head_t wait ; spinlock_t lock ; }; struct urb { struct kref kref ; void *hcpriv ; atomic_t use_count ; u8 reject ; int unlinked ; struct list_head urb_list ; struct list_head anchor_list ; struct usb_anchor *anchor ; struct usb_device *dev ; struct usb_host_endpoint *ep ; unsigned int pipe ; int status ; unsigned int transfer_flags ; void *transfer_buffer ; dma_addr_t transfer_dma ; int transfer_buffer_length ; int actual_length ; unsigned char *setup_packet ; dma_addr_t setup_dma ; int start_frame ; int number_of_packets ; int interval ; int error_count ; void *context ; void (*complete)(struct urb * ) ; struct usb_iso_packet_descriptor iso_frame_desc[0] ; }; void __builtin_prefetch(void const * , ...) ; __inline static int test_and_set_bit(int nr , unsigned long volatile *addr ) { int oldbit ; { __asm__ volatile (".section .smp_locks,\"a\"\n" " " ".balign 8" " " "\n" " " ".quad" " " "661f\n" ".previous\n" "661:\n\tlock; " "bts %2,%1\n\t" "sbb %0,%0": "=r" (oldbit), "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return (oldbit); } } __inline static int test_and_clear_bit(int nr , unsigned long volatile *addr ) { int oldbit ; { __asm__ volatile (".section .smp_locks,\"a\"\n" " " ".balign 8" " " "\n" " " ".quad" " " "661f\n" ".previous\n" "661:\n\tlock; " "btr %2,%1\n\t" "sbb %0,%0": "=r" (oldbit), "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return (oldbit); } } extern int ( /* format attribute */ sprintf)(char *buf , char const *fmt , ...) ; extern int ( /* format attribute */ printk)(char const *fmt , ...) ; extern char *strcpy(char *dest , char const *src ) ; extern void __list_add(struct list_head *new , struct list_head *prev , struct list_head *next ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { __list_add(new, head->prev, head); return; } } extern void list_del(struct list_head *entry ) ; __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )head->next == (unsigned long )head); } } extern void _read_lock(rwlock_t *lock ) __attribute__((__section__(".spinlock.text"))) ; extern unsigned long _write_lock_irqsave(rwlock_t *lock ) __attribute__((__section__(".spinlock.text"))) ; extern void _read_unlock(rwlock_t *lock ) __attribute__((__section__(".spinlock.text"))) ; extern void _write_unlock_irqrestore(rwlock_t *lock , unsigned long flags ) __attribute__((__section__(".spinlock.text"))) ; extern int param_set_uint(char const *val , struct kernel_param *kp ) ; extern int param_get_uint(char *buffer , struct kernel_param *kp ) ; int init_module(void) ; void cleanup_module(void) ; int mISDN_register_device(struct mISDNdevice *dev , char *name ) ; void mISDN_unregister_device(struct mISDNdevice *dev ) ; int mISDN_register_Bprotocol(struct Bprotocol *bp ) ; void mISDN_unregister_Bprotocol(struct Bprotocol *bp ) ; struct mISDNdevice *get_mdevice(u_int id ) ; int get_mdevice_count(void) ; int create_stack(struct mISDNdevice *dev ) ; void delete_stack(struct mISDNdevice *dev ) ; void mISDN_initstack(u_int *dp ) ; int misdn_sock_init(u_int *deb ) ; void misdn_sock_cleanup(void) ; u_int get_all_Bprotocols(void) ; struct Bprotocol *get_Bprotocol4mask(u_int m ) ; struct Bprotocol *get_Bprotocol4id(u_int id ) ; extern int mISDN_inittimer(int * ) ; void mISDN_timer_cleanup(void) ; int l1_init(u_int *deb ) ; void l1_cleanup(void) ; int Isdnl2_Init(u_int *deb ) ; void Isdnl2_cleanup(void) ; static u_int debug ; static char const __mod_author25[20] __attribute__((__used__, __unused__, __section__(".modinfo"))) = { 'a', 'u', 't', 'h', 'o', 'r', '=', 'K', 'a', 'r', 's', 't', 'e', 'n', ' ', 'K', 'e', 'i', 'l', '\000'}; static char const __mod_license26[12] __attribute__((__used__, __unused__, __section__(".modinfo"))) = { 'l', 'i', 'c', 'e', 'n', 's', 'e', '=', 'G', 'P', 'L', '\000'}; static char const __param_str_debug[6] = { 'd', 'e', 'b', 'u', 'g', '\000'}; static struct kernel_param const __param_debug __attribute__((__used__, __unused__, __section__("__param"), __aligned__(sizeof(void *)))) = {__param_str_debug, ((256 | 32) | 4) | 128, & param_set_uint, & param_get_uint, {& debug}}; static char const __mod_debugtype27[20] __attribute__((__used__, __unused__, __section__(".modinfo"))) = { 'p', 'a', 'r', 'm', 't', 'y', 'p', 'e', '=', 'd', 'e', 'b', 'u', 'g', ':', 'u', 'i', 'n', 't', '\000'}; static struct list_head devices = {& devices, & devices}; rwlock_t device_lock = {{16777216}, 3736018669U, -1, (void *)-1L, {0, 0, "device_lock", 0}}; static u64 device_ids ; static struct list_head Bprotocols = {& Bprotocols, & Bprotocols}; rwlock_t bp_lock = {{16777216}, 3736018669U, -1, (void *)-1L, {0, 0, "bp_lock", 0}}; struct mISDNdevice *get_mdevice(u_int id ) { struct mISDNdevice *dev ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { _read_lock(& device_lock); __mptr = devices.next; dev = (struct mISDNdevice *)((char *)__mptr - (unsigned int )(& ((struct mISDNdevice *)0)->D.list)); while (1) { __builtin_prefetch(dev->D.list.next); if ((unsigned long )(& dev->D.list) != (unsigned long )(& devices)) { } else { break; } if (dev->id == id) { _read_unlock(& device_lock); return (dev); } else { } __mptr___0 = dev->D.list.next; dev = (struct mISDNdevice *)((char *)__mptr___0 - (unsigned int )(& ((struct mISDNdevice *)0)->D.list)); } _read_unlock(& device_lock); return ((void *)0); } } int get_mdevice_count(void) { struct mISDNdevice *dev ; int cnt ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { cnt = 0; _read_lock(& device_lock); __mptr = devices.next; dev = (struct mISDNdevice *)((char *)__mptr - (unsigned int )(& ((struct mISDNdevice *)0)->D.list)); while (1) { __builtin_prefetch(dev->D.list.next); if ((unsigned long )(& dev->D.list) != (unsigned long )(& devices)) { } else { break; } cnt = cnt + 1; __mptr___0 = dev->D.list.next; dev = (struct mISDNdevice *)((char *)__mptr___0 - (unsigned int )(& ((struct mISDNdevice *)0)->D.list)); } _read_unlock(& device_lock); return (cnt); } } static int get_free_devid(void) { u_int i ; int tmp ; { i = 0; while (1) { if (i <= (u_int )63) { } else { break; } tmp = test_and_set_bit(i, (u_long *)(& device_ids)); if (tmp) { } else { return (i); } i = i + (u_int )1; } return (-1); } } int mISDN_register_device(struct mISDNdevice *dev , char *name ) { u_long flags ; int err ; int tmp ; { tmp = get_free_devid(); dev->id = tmp; if (dev->id < (u_int )0) { return (-16); } else { } if (name && *(name + 0)) { strcpy(dev->name, name); } else { sprintf(dev->name, "mISDN%d", dev->id); } if (debug & 255U) { printk("<7>mISDN_register %s %d\n", dev->name, dev->id); } else { } err = create_stack(dev); if (err) { return (err); } else { } while (1) { flags = _write_lock_irqsave(& device_lock); break; } list_add_tail(& dev->D.list, & devices); while (1) { _write_unlock_irqrestore(& device_lock, flags); break; } return (0); } } extern void *__crc_mISDN_register_device __attribute__((__weak__)) ; static unsigned long const __kcrctab_mISDN_register_device __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_mISDN_register_device); static char const __kstrtab_mISDN_register_device[22] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'm', 'I', 'S', 'D', 'N', '_', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '_', 'd', 'e', 'v', 'i', 'c', 'e', '\000'}; static struct kernel_symbol const __ksymtab_mISDN_register_device __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& mISDN_register_device), __kstrtab_mISDN_register_device}; void mISDN_unregister_device(struct mISDNdevice *dev ) { u_long flags ; { if (debug & 255U) { printk("<7>mISDN_unregister %s %d\n", dev->name, dev->id); } else { } while (1) { flags = _write_lock_irqsave(& device_lock); break; } list_del(& dev->D.list); while (1) { _write_unlock_irqrestore(& device_lock, flags); break; } test_and_clear_bit(dev->id, (u_long *)(& device_ids)); delete_stack(dev); return; } } extern void *__crc_mISDN_unregister_device __attribute__((__weak__)) ; static unsigned long const __kcrctab_mISDN_unregister_device __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_mISDN_unregister_device); static char const __kstrtab_mISDN_unregister_device[24] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'm', 'I', 'S', 'D', 'N', '_', 'u', 'n', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '_', 'd', 'e', 'v', 'i', 'c', 'e', '\000'}; static struct kernel_symbol const __ksymtab_mISDN_unregister_device __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& mISDN_unregister_device), __kstrtab_mISDN_unregister_device}; u_int get_all_Bprotocols(void) { struct Bprotocol *bp ; u_int m ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { m = 0; _read_lock(& bp_lock); __mptr = Bprotocols.next; bp = (struct Bprotocol *)((char *)__mptr - (unsigned int )(& ((struct Bprotocol *)0)->list)); while (1) { __builtin_prefetch(bp->list.next); if ((unsigned long )(& bp->list) != (unsigned long )(& Bprotocols)) { } else { break; } m = m | bp->Bprotocols; __mptr___0 = bp->list.next; bp = (struct Bprotocol *)((char *)__mptr___0 - (unsigned int )(& ((struct Bprotocol *)0)->list)); } _read_unlock(& bp_lock); return (m); } } struct Bprotocol *get_Bprotocol4mask(u_int m ) { struct Bprotocol *bp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { _read_lock(& bp_lock); __mptr = Bprotocols.next; bp = (struct Bprotocol *)((char *)__mptr - (unsigned int )(& ((struct Bprotocol *)0)->list)); while (1) { __builtin_prefetch(bp->list.next); if ((unsigned long )(& bp->list) != (unsigned long )(& Bprotocols)) { } else { break; } if (bp->Bprotocols & m) { _read_unlock(& bp_lock); return (bp); } else { } __mptr___0 = bp->list.next; bp = (struct Bprotocol *)((char *)__mptr___0 - (unsigned int )(& ((struct Bprotocol *)0)->list)); } _read_unlock(& bp_lock); return ((void *)0); } } struct Bprotocol *get_Bprotocol4id(u_int id ) { u_int m ; struct Bprotocol *tmp ; { if (id < (u_int )32 || id > (u_int )63) { printk("<4>%s id not in range %d\n", "get_Bprotocol4id", id); return ((void *)0); } else { } m = 1 << (id & 31U); tmp = get_Bprotocol4mask(m); return (tmp); } } int mISDN_register_Bprotocol(struct Bprotocol *bp ) { u_long flags ; struct Bprotocol *old ; { if (debug & 255U) { printk("<7>%s: %s/%x\n", "mISDN_register_Bprotocol", bp->name, bp->Bprotocols); } else { } old = get_Bprotocol4mask(bp->Bprotocols); if (old) { printk("<4>register duplicate protocol old %s/%x new %s/%x\n", old->name, old->Bprotocols, bp->name, bp->Bprotocols); return (-16); } else { } while (1) { flags = _write_lock_irqsave(& bp_lock); break; } list_add_tail(& bp->list, & Bprotocols); while (1) { _write_unlock_irqrestore(& bp_lock, flags); break; } return (0); } } extern void *__crc_mISDN_register_Bprotocol __attribute__((__weak__)) ; static unsigned long const __kcrctab_mISDN_register_Bprotocol __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_mISDN_register_Bprotocol); static char const __kstrtab_mISDN_register_Bprotocol[25] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'm', 'I', 'S', 'D', 'N', '_', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '_', 'B', 'p', 'r', 'o', 't', 'o', 'c', 'o', 'l', '\000'}; static struct kernel_symbol const __ksymtab_mISDN_register_Bprotocol __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& mISDN_register_Bprotocol), __kstrtab_mISDN_register_Bprotocol}; void mISDN_unregister_Bprotocol(struct Bprotocol *bp ) { u_long flags ; { if (debug & 255U) { printk("<7>%s: %s/%x\n", "mISDN_unregister_Bprotocol", bp->name, bp->Bprotocols); } else { } while (1) { flags = _write_lock_irqsave(& bp_lock); break; } list_del(& bp->list); while (1) { _write_unlock_irqrestore(& bp_lock, flags); break; } return; } } extern void *__crc_mISDN_unregister_Bprotocol __attribute__((__weak__)) ; static unsigned long const __kcrctab_mISDN_unregister_Bprotocol __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_mISDN_unregister_Bprotocol); static char const __kstrtab_mISDN_unregister_Bprotocol[27] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'm', 'I', 'S', 'D', 'N', '_', 'u', 'n', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '_', 'B', 'p', 'r', 'o', 't', 'o', 'c', 'o', 'l', '\000'}; static struct kernel_symbol const __ksymtab_mISDN_unregister_Bprotocol __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& mISDN_unregister_Bprotocol), __kstrtab_mISDN_unregister_Bprotocol}; int mISDNInit(void) { int err ; { printk("<6>Modular ISDN core version %d.%d.%d\n", 1, 0, 19); mISDN_initstack(& debug); err = mISDN_inittimer(& debug); if (err) { goto error; } else { } err = l1_init(& debug); if (err) { mISDN_timer_cleanup(); goto error; } else { } err = Isdnl2_Init(& debug); if (err) { mISDN_timer_cleanup(); l1_cleanup(); goto error; } else { } err = misdn_sock_init(& debug); if (err) { mISDN_timer_cleanup(); l1_cleanup(); Isdnl2_cleanup(); } else { } error: return (err); } } void mISDN_cleanup(void) { int tmp ; int tmp___0 ; { misdn_sock_cleanup(); mISDN_timer_cleanup(); l1_cleanup(); Isdnl2_cleanup(); tmp = list_empty(& devices); if (tmp) { } else { printk("<3>%s devices still registered\n", "mISDN_cleanup"); } tmp___0 = list_empty(& Bprotocols); if (tmp___0) { } else { printk("<3>%s Bprotocols still registered\n", "mISDN_cleanup"); } printk("<7>mISDNcore unloaded\n"); return; } } int init_module(void) { int tmp ; { tmp = mISDNInit(); return (tmp); } } void cleanup_module(void) { { mISDN_cleanup(); return; } } void ldv_check_final_state(void) ; extern void ldv_initialize(void) ; extern void ldv_handler_precall(void) ; extern int nondet_int(void) ; int LDV_IN_INTERRUPT ; int main(void) { int tmp ; int tmp___0 ; int tmp___1 ; { LDV_IN_INTERRUPT = 1; ldv_initialize(); ldv_handler_precall(); tmp = mISDNInit(); if (tmp) { goto ldv_final; } else { } while (1) { tmp___1 = nondet_int(); if (tmp___1) { } else { break; } tmp___0 = nondet_int(); switch (tmp___0) { default: break; } } ldv_handler_precall(); mISDN_cleanup(); ldv_final: ldv_check_final_state(); return 0; } } long ldv__builtin_expect(long exp , long c ) ; extern void kfree(void const * ) ; extern unsigned long volatile jiffies __attribute__((__section__(".data"))) ; extern void init_timer(struct timer_list *timer ) ; __inline static int timer_pending(struct timer_list const *timer ) { { return ((unsigned long )timer->entry.next != (unsigned long )((void *)0)); } } extern int del_timer(struct timer_list *timer ) ; extern int __mod_timer(struct timer_list *timer , unsigned long expires ) ; __inline static void add_timer(struct timer_list *timer ) { int tmp ; int tmp___0 ; long tmp___1 ; { while (1) { tmp = timer_pending(timer); if (tmp) { tmp___0 = 1; } else { tmp___0 = 0; } tmp___1 = ldv__builtin_expect(tmp___0, 0); if (tmp___1) { while (1) { __asm__ volatile ("1:\tud2\n" ".pushsection __bug_table,\"a\"\n" "2:\t.quad 1b, %c0\n" "\t.word %c1, 0\n" "\t.org 2b+%c2\n" ".popsection": : "i" ("include/linux/timer.h"), "i" (165), "i" (sizeof(struct bug_entry ))); while (1) { } break; } } else { } break; } __mod_timer(timer, timer->expires); return; } } extern void *__kmalloc(size_t size , gfp_t flags ) ; __inline static void *( __attribute__((__always_inline__)) kmalloc)(size_t size , gfp_t flags ) { void *tmp___2 ; { tmp___2 = __kmalloc(size, flags); return (tmp___2); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } void mISDN_FsmNew(struct Fsm *fsm , struct FsmNode *fnlist , int fncount ) ; void mISDN_FsmFree(struct Fsm *fsm ) ; int mISDN_FsmEvent(struct FsmInst *fi , int event , void *arg ) ; void mISDN_FsmChangeState(struct FsmInst *fi , int newstate ) ; void mISDN_FsmInitTimer(struct FsmInst *fi , struct FsmTimer *ft ) ; int mISDN_FsmAddTimer(struct FsmTimer *ft , int millisec , int event , void *arg , int where ) ; void mISDN_FsmRestartTimer(struct FsmTimer *ft , int millisec , int event , void *arg , int where ) ; void mISDN_FsmDelTimer(struct FsmTimer *ft , int where ) ; void mISDN_FsmNew(struct Fsm *fsm , struct FsmNode *fnlist , int fncount ) { int i ; void *tmp ; { tmp = kzalloc((sizeof(void (*)(struct FsmInst * , int , void * )) * (unsigned long )fsm->state_count) * (unsigned long )fsm->event_count, (16U | 64U) | 128U); fsm->jumpmatrix = tmp; i = 0; while (1) { if (i < fncount) { } else { break; } if ((fnlist + i)->state >= fsm->state_count || (fnlist + i)->event >= fsm->event_count) { printk("<3>mISDN_FsmNew Error: %d st(%ld/%ld) ev(%ld/%ld)\n", i, (long )(fnlist + i)->state, (long )fsm->state_count, (long )(fnlist + i)->event, (long )fsm->event_count); } else { *(fsm->jumpmatrix + (fsm->state_count * (fnlist + i)->event + (fnlist + i)->state)) = (fnlist + i)->routine; } i = i + 1; } return; } } extern void *__crc_mISDN_FsmNew __attribute__((__weak__)) ; static unsigned long const __kcrctab_mISDN_FsmNew __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_mISDN_FsmNew); static char const __kstrtab_mISDN_FsmNew[13] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'm', 'I', 'S', 'D', 'N', '_', 'F', 's', 'm', 'N', 'e', 'w', '\000'}; static struct kernel_symbol const __ksymtab_mISDN_FsmNew __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& mISDN_FsmNew), __kstrtab_mISDN_FsmNew}; void mISDN_FsmFree(struct Fsm *fsm ) { { kfree((void *)fsm->jumpmatrix); return; } } extern void *__crc_mISDN_FsmFree __attribute__((__weak__)) ; static unsigned long const __kcrctab_mISDN_FsmFree __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_mISDN_FsmFree); static char const __kstrtab_mISDN_FsmFree[14] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'm', 'I', 'S', 'D', 'N', '_', 'F', 's', 'm', 'F', 'r', 'e', 'e', '\000'}; static struct kernel_symbol const __ksymtab_mISDN_FsmFree __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& mISDN_FsmFree), __kstrtab_mISDN_FsmFree}; int mISDN_FsmEvent(struct FsmInst *fi , int event , void *arg ) { void (*r)(struct FsmInst * , int , void * ) ; { if (fi->state >= (fi->fsm)->state_count || event >= (fi->fsm)->event_count) { printk("<3>mISDN_FsmEvent Error st(%ld/%ld) ev(%d/%ld)\n", (long )fi->state, (long )(fi->fsm)->state_count, event, (long )(fi->fsm)->event_count); return (1); } else { } r = *((fi->fsm)->jumpmatrix + ((fi->fsm)->state_count * event + fi->state)); if (r) { if (fi->debug) { (*(fi->printdebug))(fi, "State %s Event %s", *((fi->fsm)->strState + fi->state), *((fi->fsm)->strEvent + event)); } else { } (*r)(fi, event, arg); return (0); } else { if (fi->debug) { (*(fi->printdebug))(fi, "State %s Event %s no action", *((fi->fsm)->strState + fi->state), *((fi->fsm)->strEvent + event)); } else { } return (1); } } } extern void *__crc_mISDN_FsmEvent __attribute__((__weak__)) ; static unsigned long const __kcrctab_mISDN_FsmEvent __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_mISDN_FsmEvent); static char const __kstrtab_mISDN_FsmEvent[15] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'm', 'I', 'S', 'D', 'N', '_', 'F', 's', 'm', 'E', 'v', 'e', 'n', 't', '\000'}; static struct kernel_symbol const __ksymtab_mISDN_FsmEvent __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& mISDN_FsmEvent), __kstrtab_mISDN_FsmEvent}; void mISDN_FsmChangeState(struct FsmInst *fi , int newstate ) { { fi->state = newstate; if (fi->debug) { (*(fi->printdebug))(fi, "ChangeState %s", *((fi->fsm)->strState + newstate)); } else { } return; } } extern void *__crc_mISDN_FsmChangeState __attribute__((__weak__)) ; static unsigned long const __kcrctab_mISDN_FsmChangeState __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_mISDN_FsmChangeState); static char const __kstrtab_mISDN_FsmChangeState[21] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'm', 'I', 'S', 'D', 'N', '_', 'F', 's', 'm', 'C', 'h', 'a', 'n', 'g', 'e', 'S', 't', 'a', 't', 'e', '\000'}; static struct kernel_symbol const __ksymtab_mISDN_FsmChangeState __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& mISDN_FsmChangeState), __kstrtab_mISDN_FsmChangeState}; static void FsmExpireTimer(struct FsmTimer *ft ) { { mISDN_FsmEvent(ft->fi, ft->event, ft->arg); return; } } void mISDN_FsmInitTimer(struct FsmInst *fi , struct FsmTimer *ft ) { { ft->fi = fi; ft->tl.function = (void *)(& FsmExpireTimer); ft->tl.data = (long )ft; init_timer(& ft->tl); return; } } extern void *__crc_mISDN_FsmInitTimer __attribute__((__weak__)) ; static unsigned long const __kcrctab_mISDN_FsmInitTimer __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_mISDN_FsmInitTimer); static char const __kstrtab_mISDN_FsmInitTimer[19] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'm', 'I', 'S', 'D', 'N', '_', 'F', 's', 'm', 'I', 'n', 'i', 't', 'T', 'i', 'm', 'e', 'r', '\000'}; static struct kernel_symbol const __ksymtab_mISDN_FsmInitTimer __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& mISDN_FsmInitTimer), __kstrtab_mISDN_FsmInitTimer}; void mISDN_FsmDelTimer(struct FsmTimer *ft , int where ) { { del_timer(& ft->tl); return; } } extern void *__crc_mISDN_FsmDelTimer __attribute__((__weak__)) ; static unsigned long const __kcrctab_mISDN_FsmDelTimer __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_mISDN_FsmDelTimer); static char const __kstrtab_mISDN_FsmDelTimer[18] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'm', 'I', 'S', 'D', 'N', '_', 'F', 's', 'm', 'D', 'e', 'l', 'T', 'i', 'm', 'e', 'r', '\000'}; static struct kernel_symbol const __ksymtab_mISDN_FsmDelTimer __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& mISDN_FsmDelTimer), __kstrtab_mISDN_FsmDelTimer}; int mISDN_FsmAddTimer(struct FsmTimer *ft , int millisec , int event , void *arg , int where ) { int tmp ; { tmp = timer_pending(& ft->tl); if (tmp) { if ((ft->fi)->debug) { printk("<4>mISDN_FsmAddTimer: timer already active!\n"); (*((ft->fi)->printdebug))(ft->fi, "mISDN_FsmAddTimer already active!"); } else { } return (-1); } else { } init_timer(& ft->tl); ft->event = event; ft->arg = arg; ft->tl.expires = jiffies + (unsigned long volatile )((millisec * 250) / 1000); add_timer(& ft->tl); return (0); } } extern void *__crc_mISDN_FsmAddTimer __attribute__((__weak__)) ; static unsigned long const __kcrctab_mISDN_FsmAddTimer __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_mISDN_FsmAddTimer); static char const __kstrtab_mISDN_FsmAddTimer[18] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'm', 'I', 'S', 'D', 'N', '_', 'F', 's', 'm', 'A', 'd', 'd', 'T', 'i', 'm', 'e', 'r', '\000'}; static struct kernel_symbol const __ksymtab_mISDN_FsmAddTimer __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& mISDN_FsmAddTimer), __kstrtab_mISDN_FsmAddTimer}; void mISDN_FsmRestartTimer(struct FsmTimer *ft , int millisec , int event , void *arg , int where ) { int tmp ; { tmp = timer_pending(& ft->tl); if (tmp) { del_timer(& ft->tl); } else { } init_timer(& ft->tl); ft->event = event; ft->arg = arg; ft->tl.expires = jiffies + (unsigned long volatile )((millisec * 250) / 1000); add_timer(& ft->tl); return; } } extern void *__crc_mISDN_FsmRestartTimer __attribute__((__weak__)) ; static unsigned long const __kcrctab_mISDN_FsmRestartTimer __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_mISDN_FsmRestartTimer); static char const __kstrtab_mISDN_FsmRestartTimer[22] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'm', 'I', 'S', 'D', 'N', '_', 'F', 's', 'm', 'R', 'e', 's', 't', 'a', 'r', 't', 'T', 'i', 'm', 'e', 'r', '\000'}; static struct kernel_symbol const __ksymtab_mISDN_FsmRestartTimer __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& mISDN_FsmRestartTimer), __kstrtab_mISDN_FsmRestartTimer}; void *memcpy(void * , void const * , unsigned long ) ; extern int memcpy_fromiovec(unsigned char *kdata , struct iovec *iov , int len ) ; extern int put_cmsg(struct msghdr * , int level , int type , int len , void *data ) ; __inline static void __set_bit(int nr , unsigned long volatile *addr ) { { __asm__ volatile ("bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void __clear_bit(int nr , unsigned long volatile *addr ) { { __asm__ volatile ("btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } extern void warn_on_slowpath(char const *file , int const line ) ; extern void *memcpy(void *to , void const *from , size_t len ) ; __inline static int hlist_unhashed(struct hlist_node const *h ) { { return (! h->pprev); } } __inline static void __hlist_del(struct hlist_node *n ) { struct hlist_node *next ; struct hlist_node **pprev ; { next = n->next; pprev = n->pprev; *pprev = next; if (next) { next->pprev = pprev; } else { } return; } } __inline static void hlist_add_head(struct hlist_node *n , struct hlist_head *h ) { struct hlist_node *first ; { first = h->first; n->next = first; if (first) { first->pprev = & n->next; } else { } h->first = n; n->pprev = & h->first; return; } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".section .smp_locks,\"a\"\n" " " ".balign 8" " " "\n" " " ".quad" " " "661f\n" ".previous\n" "661:\n\tlock; " "incl %0": "=m" (v->counter): "m" (v->counter)); return; } } __inline static void atomic_dec(atomic_t *v ) { { __asm__ volatile (".section .smp_locks,\"a\"\n" " " ".balign 8" " " "\n" " " ".quad" " " "661f\n" ".previous\n" "661:\n\tlock; " "decl %0": "=m" (v->counter): "m" (v->counter)); return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { unsigned char c ; { __asm__ volatile (".section .smp_locks,\"a\"\n" " " ".balign 8" " " "\n" " " ".quad" " " "661f\n" ".previous\n" "661:\n\tlock; " "decl %0; sete %1": "=m" (v->counter), "=qm" (c): "m" (v->counter): "memory"); return ((int )c != 0); } } extern void _write_lock_bh(rwlock_t *lock ) __attribute__((__section__(".spinlock.text"))) ; extern void _write_unlock_bh(rwlock_t *lock ) __attribute__((__section__(".spinlock.text"))) ; extern struct timeval ns_to_timeval(s64 const nsec ) ; extern unsigned int __invalid_size_argument_for_IOC ; extern int sock_register(struct net_proto_family const *fam ) ; extern void sock_unregister(int family ) ; extern struct module __this_module ; extern unsigned long ( __attribute__((__warn_unused_result__)) copy_to_user)(void *to , void const *from , unsigned int len ) ; extern unsigned long ( __attribute__((__warn_unused_result__)) copy_from_user)(void *to , void const *from , unsigned int len ) ; extern ktime_t ktime_get_real(void) ; extern void kfree_skb(struct sk_buff *skb ) ; extern struct sk_buff *__alloc_skb(unsigned int size , gfp_t priority , int fclone , int node ) ; __inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t priority ) { struct sk_buff *tmp ; { tmp = __alloc_skb(size, priority, 0, -1); return (tmp); } } extern void skb_queue_head(struct sk_buff_head *list , struct sk_buff *newsk ) ; extern unsigned char *skb_put(struct sk_buff *skb , unsigned int len ) ; extern unsigned char *skb_push(struct sk_buff *skb , unsigned int len ) ; extern unsigned char *skb_pull(struct sk_buff *skb , unsigned int len ) ; __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } extern void skb_queue_purge(struct sk_buff_head *list ) ; extern struct sk_buff *skb_recv_datagram(struct sock *sk , unsigned int flags , int noblock , int *err ) ; extern unsigned int datagram_poll(struct file *file , struct socket *sock , struct poll_table_struct *wait ) ; extern int skb_copy_datagram_iovec(struct sk_buff const *from , int offset , struct iovec *to , int size ) ; extern void skb_free_datagram(struct sock *sk , struct sk_buff *skb ) ; __inline static void skb_get_timestamp(struct sk_buff const *skb , struct timeval *stamp ) { { *stamp = ns_to_timeval(skb->tstamp.tv64); return; } } __inline static void __net_timestamp(struct sk_buff *skb ) { { skb->tstamp = ktime_get_real(); return; } } __inline static int sk_unhashed(struct sock const *sk ) { int tmp ; { tmp = hlist_unhashed(& sk->__sk_common.skc_node); return (tmp); } } __inline static int sk_hashed(struct sock const *sk ) { int tmp ; int tmp___0 ; { tmp = sk_unhashed(sk); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } return (tmp___0); } } __inline static void sk_node_init(struct hlist_node *node ) { { node->pprev = (void *)0; return; } } __inline static void __sk_del_node(struct sock *sk ) { { __hlist_del(& sk->__sk_common.skc_node); return; } } __inline static int __sk_del_node_init(struct sock *sk ) { int tmp ; { tmp = sk_hashed(sk); if (tmp) { __sk_del_node(sk); sk_node_init(& sk->__sk_common.skc_node); return (1); } else { } return (0); } } __inline static void sock_hold(struct sock *sk ) { { atomic_inc(& sk->__sk_common.skc_refcnt); return; } } __inline static void __sock_put(struct sock *sk ) { { atomic_dec(& sk->__sk_common.skc_refcnt); return; } } __inline static int sk_del_node_init(struct sock *sk ) { int rc ; int tmp ; int __ret_warn_on ; long tmp___0 ; { tmp = __sk_del_node_init(sk); rc = tmp; if (rc) { __ret_warn_on = ! (! (sk->__sk_common.skc_refcnt.counter == 1)); tmp___0 = ldv__builtin_expect(! (! __ret_warn_on), 0); if (tmp___0) { warn_on_slowpath("include/net/sock.h", 358); } else { } ldv__builtin_expect(! (! __ret_warn_on), 0); __sock_put(sk); } else { } return (rc); } } __inline static void __sk_add_node(struct sock *sk , struct hlist_head *list ) { { hlist_add_head(& sk->__sk_common.skc_node, list); return; } } __inline static void sk_add_node(struct sock *sk , struct hlist_head *list ) { { sock_hold(sk); __sk_add_node(sk, list); return; } } __inline static void sock_set_flag(struct sock *sk , enum sock_flags flag ) { { __set_bit(flag, & sk->sk_flags); return; } } __inline static void sock_reset_flag(struct sock *sk , enum sock_flags flag ) { { __clear_bit(flag, & sk->sk_flags); return; } } extern void lock_sock_nested(struct sock *sk , int subclass ) ; __inline static void lock_sock(struct sock *sk ) { { lock_sock_nested(sk, 0); return; } } extern void release_sock(struct sock *sk ) ; extern struct sock *sk_alloc(struct net *net , int family , gfp_t priority , struct proto *prot ) ; extern void sk_free(struct sock *sk ) ; extern int sock_no_connect(struct socket * , struct sockaddr * , int , int ) ; extern int sock_no_socketpair(struct socket * , struct socket * ) ; extern int sock_no_accept(struct socket * , struct socket * , int ) ; extern int sock_no_getname(struct socket * , struct sockaddr * , int * , int ) ; extern unsigned int sock_no_poll(struct file * , struct socket * , struct poll_table_struct * ) ; extern int sock_no_listen(struct socket * , int ) ; extern int sock_no_shutdown(struct socket * , int ) ; extern int sock_no_getsockopt(struct socket * , int , int , char * , int * ) ; extern int sock_no_setsockopt(struct socket * , int , int , char * , int ) ; extern int sock_no_sendmsg(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; extern int sock_no_recvmsg(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; extern int sock_no_mmap(struct file *file , struct socket *sock , struct vm_area_struct *vma ) ; extern void sock_init_data(struct socket *sock , struct sock *sk ) ; __inline static void sock_put(struct sock *sk ) { int tmp ; { tmp = atomic_dec_and_test(& sk->__sk_common.skc_refcnt); if (tmp) { sk_free(sk); } else { } return; } } __inline static void sk_set_socket(struct sock *sk , struct socket *sock ) { { sk->sk_socket = sock; return; } } __inline static void sock_orphan(struct sock *sk ) { { _write_lock_bh(& sk->sk_callback_lock); sock_set_flag(sk, SOCK_DEAD); sk_set_socket(sk, (void *)0); sk->sk_sleep = (void *)0; _write_unlock_bh(& sk->sk_callback_lock); return; } } extern int sock_queue_rcv_skb(struct sock *sk , struct sk_buff *skb ) ; int connect_Bstack(struct mISDNdevice *dev , struct mISDNchannel *ch , u_int protocol , struct sockaddr_mISDN *adr ) ; int connect_layer1(struct mISDNdevice *dev , struct mISDNchannel *ch , u_int protocol , struct sockaddr_mISDN *adr ) ; int create_l2entity(struct mISDNdevice *dev , struct mISDNchannel *ch , u_int protocol , struct sockaddr_mISDN *adr ) ; void delete_channel(struct mISDNchannel *ch ) ; static int *debug___0 ; static struct proto mISDN_proto = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0U, 0, 0, 0, 0, 0, 0, 0, 0, 0, sizeof(struct mISDN_sock ), 0, 0, 0, {0}, & __this_module, {'m', 'i', 's', 'd', 'n', '\000'}, {0, 0}}; static struct mISDN_sock_list data_sockets = {{0}, {{16777216}, 3736018669U, -1, (void *)-1L, {0, 0, "data_sockets.lock", 0}}}; static struct mISDN_sock_list base_sockets = {{0}, {{16777216}, 3736018669U, -1, (void *)-1L, {0, 0, "base_sockets.lock", 0}}}; __inline static struct sk_buff *_l2_alloc_skb(unsigned int len , gfp_t gfp_mask ) { struct sk_buff *skb ; long tmp ; { skb = alloc_skb(len + 4U, gfp_mask); tmp = ldv__builtin_expect(! (! skb), 1); if (tmp) { skb_reserve(skb, 4); } else { } return (skb); } } static void mISDN_sock_link(struct mISDN_sock_list *l , struct sock *sk ) { { _write_lock_bh(& l->lock); sk_add_node(sk, & l->head); _write_unlock_bh(& l->lock); return; } } static void mISDN_sock_unlink(struct mISDN_sock_list *l , struct sock *sk ) { { _write_lock_bh(& l->lock); sk_del_node_init(sk); _write_unlock_bh(& l->lock); return; } } static int mISDN_send(struct mISDNchannel *ch , struct sk_buff *skb ) { struct mISDN_sock *msk ; int err ; struct mISDNchannel const *__mptr ; { __mptr = ch; msk = (struct mISDN_sock *)((char *)__mptr - (unsigned int )(& ((struct mISDN_sock *)0)->ch)); if (*debug___0 & 4) { printk("<7>%s len %d %p\n", "mISDN_send", skb->len, skb); } else { } if ((int volatile )msk->sk.__sk_common.skc_state == (int volatile )3) { return (-49); } else { } __net_timestamp(skb); err = sock_queue_rcv_skb(& msk->sk, skb); if (err) { printk("<4>%s: error %d\n", "mISDN_send", err); } else { } return (err); } } static int mISDN_ctrl(struct mISDNchannel *ch , u_int cmd , void *arg ) { struct mISDN_sock *msk ; struct mISDNchannel const *__mptr ; { __mptr = ch; msk = (struct mISDN_sock *)((char *)__mptr - (unsigned int )(& ((struct mISDN_sock *)0)->ch)); if (*debug___0 & 4) { printk("<7>%s(%p, %x, %p)\n", "mISDN_ctrl", ch, cmd, arg); } else { } switch (cmd) { case (u_int )512: msk->sk.__sk_common.skc_state = 3; break; } return (0); } } __inline static void mISDN_sock_cmsg(struct sock *sk , struct msghdr *msg , struct sk_buff *skb ) { struct timeval tv ; { if (((struct mISDN_sock *)sk)->cmask & 1U) { skb_get_timestamp(skb, & tv); put_cmsg(msg, 0, 1, sizeof(tv), & tv); } else { } return; } } static int mISDN_sock_recvmsg(struct kiocb *iocb , struct socket *sock , struct msghdr *msg , size_t len , int flags ) { struct sk_buff *skb ; struct sock *sk ; struct sockaddr_mISDN *maddr ; int copied ; int err ; size_t __len ; void *__ret ; unsigned char *tmp ; unsigned char *tmp___0 ; { sk = sock->sk; if (*debug___0 & 4) { printk("<7>%s: len %d, flags %x ch.nr %d, proto %x\n", "mISDN_sock_recvmsg", (int )len, flags, ((struct mISDN_sock *)sk)->ch.nr, sk->sk_protocol); } else { } if (flags & 1) { return (-95); } else { } if ((int volatile )sk->__sk_common.skc_state == (int volatile )3) { return (0); } else { } skb = skb_recv_datagram(sk, flags, flags & 64, & err); if (! skb) { return (err); } else { } if ((unsigned long )msg->msg_namelen >= sizeof(struct sockaddr_mISDN )) { msg->msg_namelen = sizeof(struct sockaddr_mISDN ); maddr = (struct sockaddr_mISDN *)msg->msg_name; maddr->family = 34; maddr->dev = (((struct mISDN_sock *)sk)->dev)->id; if ((int )sk->sk_protocol == 16 || (int )sk->sk_protocol == 17) { maddr->channel = (((struct mISDNhead *)(& skb->cb[0]))->id >> 16) & 255U; maddr->tei = (((struct mISDNhead *)(& skb->cb[0]))->id >> 8) & 255U; maddr->sapi = ((struct mISDNhead *)(& skb->cb[0]))->id & 255U; } else { maddr->channel = ((struct mISDN_sock *)sk)->ch.nr; maddr->sapi = ((struct mISDN_sock *)sk)->ch.addr & 255U; maddr->tei = (((struct mISDN_sock *)sk)->ch.addr >> 8) & 255U; } } else { if (msg->msg_namelen) { printk("<4>%s: too small namelen %d\n", "mISDN_sock_recvmsg", msg->msg_namelen); } else { } msg->msg_namelen = 0; } copied = (unsigned long )skb->len + sizeof(struct mISDNhead ); if (len < (size_t )copied) { if (flags & 2) { atomic_dec(& skb->users); } else { skb_queue_head(& sk->sk_receive_queue, skb); } return (-28); } else { } __len = sizeof(struct mISDNhead ); if (__len >= (size_t )64) { tmp = skb_push(skb, sizeof(struct mISDNhead )); __ret = memcpy(tmp, (struct mISDNhead *)(& skb->cb[0]), __len); } else { tmp___0 = skb_push(skb, sizeof(struct mISDNhead )); __ret = memcpy(tmp___0, (struct mISDNhead *)(& skb->cb[0]), __len); } err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); mISDN_sock_cmsg(sk, msg, skb); skb_free_datagram(sk, skb); return (err ? err : copied); } } static int mISDN_sock_sendmsg(struct kiocb *iocb , struct socket *sock , struct msghdr *msg , size_t len ) { struct sock *sk ; struct sk_buff *skb ; int err ; struct sockaddr_mISDN *maddr ; unsigned char *tmp ; int tmp___0 ; size_t __len ; void *__ret ; { sk = sock->sk; err = -12; if (*debug___0 & 4) { printk("<7>%s: len %d flags %x ch %d proto %x\n", "mISDN_sock_sendmsg", (int )len, msg->msg_flags, ((struct mISDN_sock *)sk)->ch.nr, sk->sk_protocol); } else { } if (msg->msg_flags & 1U) { return (-95); } else { } if (msg->msg_flags & (unsigned int )(~ ((64 | 16384) | 8192))) { return (-22); } else { } if (len < sizeof(struct mISDNhead )) { return (-22); } else { } if ((int volatile )sk->__sk_common.skc_state != (int volatile )2) { return (-77); } else { } lock_sock(sk); skb = _l2_alloc_skb(len, (16U | 64U) | 128U); if (! skb) { goto done; } else { } tmp = skb_put(skb, len); tmp___0 = memcpy_fromiovec(tmp, msg->msg_iov, len); if (tmp___0) { err = -14; goto drop; } else { } __len = sizeof(struct mISDNhead ); if (__len >= (size_t )64) { __ret = memcpy((struct mISDNhead *)(& skb->cb[0]), skb->data, __len); } else { __ret = memcpy((struct mISDNhead *)(& skb->cb[0]), skb->data, __len); } skb_pull(skb, sizeof(struct mISDNhead )); if ((unsigned long )msg->msg_namelen >= sizeof(struct sockaddr_mISDN )) { maddr = (struct sockaddr_mISDN *)msg->msg_name; ((struct mISDNhead *)(& skb->cb[0]))->id = maddr->channel; } else if ((int )sk->sk_protocol == 16 || (int )sk->sk_protocol == 17) { ((struct mISDNhead *)(& skb->cb[0]))->id = ((struct mISDN_sock *)sk)->ch.nr; } else { } if (*debug___0 & 4) { printk("<7>%s: ID:%x\n", "mISDN_sock_sendmsg", ((struct mISDNhead *)(& skb->cb[0]))->id); } else { } err = -19; if (! ((struct mISDN_sock *)sk)->ch.peer) { goto drop; } else { err = (*(((struct mISDN_sock *)sk)->ch.recv))(((struct mISDN_sock *)sk)->ch.peer, skb); if (err) { goto drop; } else { } } err = len; done: release_sock(sk); return (err); drop: kfree_skb(skb); goto done; } } static int data_sock_release(struct socket *sock ) { struct sock *sk ; { sk = sock->sk; if (*debug___0 & 4) { printk("<7>%s(%p) sk=%p\n", "data_sock_release", sock, sk); } else { } if (! sk) { return (0); } else { } switch ((int )sk->sk_protocol) { case 4: case 3: case 2: case 1: if ((int volatile )sk->__sk_common.skc_state == (int volatile )2) { delete_channel(& ((struct mISDN_sock *)sk)->ch); } else { mISDN_sock_unlink(& data_sockets, sk); } break; case 38: case 37: case 36: case 35: case 34: case 33: case 17: case 16: delete_channel(& ((struct mISDN_sock *)sk)->ch); mISDN_sock_unlink(& data_sockets, sk); break; } lock_sock(sk); sock_orphan(sk); skb_queue_purge(& sk->sk_receive_queue); release_sock(sk); sock_put(sk); return (0); } } static int data_sock_ioctl_bound(struct sock *sk , unsigned int cmd , void *p ) { struct mISDN_ctrl_req cq ; int err ; int val ; struct mISDNchannel *bchan ; struct mISDNchannel *next ; unsigned long tmp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; unsigned long tmp___0 ; int __ret_gu ; unsigned long __val_gu ; { err = -22; lock_sock(sk); if (! ((struct mISDN_sock *)sk)->dev) { err = -19; goto done; } else { } switch (cmd) { case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(69 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): tmp = copy_from_user(& cq, p, sizeof(cq)); if (tmp) { err = -14; break; } else { } if (((int )sk->sk_protocol & ~ 31) == 32) { __mptr = (((struct mISDN_sock *)sk)->dev)->bchannels.next; bchan = (struct mISDNchannel *)((char *)__mptr - (unsigned int )(& ((struct mISDNchannel *)0)->list)); __mptr___0 = bchan->list.next; next = (struct mISDNchannel *)((char *)__mptr___0 - (unsigned int )(& ((struct mISDNchannel *)0)->list)); while (1) { if ((unsigned long )(& bchan->list) != (unsigned long )(& (((struct mISDN_sock *)sk)->dev)->bchannels)) { } else { break; } if (bchan->nr == (u_int )cq.channel) { err = (*(bchan->ctrl))(bchan, 768, & cq); break; } else { } bchan = next; __mptr___1 = next->list.next; next = (struct mISDNchannel *)((char *)__mptr___1 - (unsigned int )(& ((struct mISDNchannel *)0)->list)); } } else { err = (*((((struct mISDN_sock *)sk)->dev)->D.ctrl))(& (((struct mISDN_sock *)sk)->dev)->D, 768, & cq); } if (err) { break; } else { } tmp___0 = copy_to_user(p, & cq, sizeof(cq)); if (tmp___0) { err = -14; } else { } break; case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(70 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): if ((int )sk->sk_protocol != 17) { err = -22; break; } else { } switch (sizeof(*((int *)p))) { case 1UL: __asm__ volatile ("call __get_user_" "1": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)p)); break; case 2UL: __asm__ volatile ("call __get_user_" "2": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)p)); break; case 4UL: __asm__ volatile ("call __get_user_" "4": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)p)); break; case 8UL: __asm__ volatile ("call __get_user_" "8": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)p)); break; default: __asm__ volatile ("call __get_user_" "X": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)p)); break; } val = (int )__val_gu; if (__ret_gu) { err = -14; break; } else { } err = (*(((((struct mISDN_sock *)sk)->dev)->teimgr)->ctrl))((((struct mISDN_sock *)sk)->dev)->teimgr, 768, & val); break; default: err = -22; break; } done: release_sock(sk); return (err); } } static int data_sock_ioctl(struct socket *sock , unsigned int cmd , unsigned long arg ) { int err ; int id ; struct sock *sk ; struct mISDNdevice *dev ; struct mISDNversion ver ; unsigned long tmp ; int __ret_pu ; int __pu_val ; int __ret_gu ; unsigned long __val_gu ; struct mISDN_devinfo di ; u_int tmp___0 ; size_t __len ; void *__ret ; unsigned long tmp___1 ; { err = 0; sk = sock->sk; switch (cmd) { case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(66 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): ver.major = 1; ver.minor = 0; ver.release = 19; tmp = copy_to_user((void *)arg, & ver, sizeof(ver)); if (tmp) { err = -14; } else { } break; case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(67 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): id = get_mdevice_count(); __pu_val = id; switch (sizeof(*((int *)arg))) { case 1UL: __asm__ volatile ("call __put_user_" "1": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); break; case 2UL: __asm__ volatile ("call __put_user_" "2": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); break; case 4UL: __asm__ volatile ("call __put_user_" "4": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); break; case 8UL: __asm__ volatile ("call __put_user_" "8": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); break; default: __asm__ volatile ("call __put_user_" "X": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); break; } if (__ret_pu) { err = -14; } else { } break; case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(68 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): switch (sizeof(*((int *)arg))) { case 1UL: __asm__ volatile ("call __get_user_" "1": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); break; case 2UL: __asm__ volatile ("call __get_user_" "2": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); break; case 4UL: __asm__ volatile ("call __get_user_" "4": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); break; case 8UL: __asm__ volatile ("call __get_user_" "8": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); break; default: __asm__ volatile ("call __get_user_" "X": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); break; } id = (int )__val_gu; if (__ret_gu) { err = -14; break; } else { } dev = get_mdevice(id); if (dev) { di.id = dev->id; di.Dprotocols = dev->Dprotocols; tmp___0 = get_all_Bprotocols(); di.Bprotocols = dev->Bprotocols | tmp___0; di.protocol = dev->D.protocol; __len = sizeof(di.channelmap); if (__len >= (size_t )64) { __ret = memcpy(di.channelmap, dev->channelmap, __len); } else { __ret = memcpy(di.channelmap, dev->channelmap, __len); } di.nrbchan = dev->nrbchan; strcpy(di.name, dev->name); tmp___1 = copy_to_user((void *)arg, & di, sizeof(di)); if (tmp___1) { err = -14; } else { } } else { err = -19; } break; default: if ((int volatile )sk->__sk_common.skc_state == (int volatile )2) { err = data_sock_ioctl_bound(sk, cmd, (void *)arg); } else { err = -107; } } return (err); } } static int data_sock_setsockopt(struct socket *sock , int level , int optname , char *optval , int len ) { struct sock *sk ; int err ; int opt ; int __ret_gu ; unsigned long __val_gu ; { sk = sock->sk; err = 0; opt = 0; if (*debug___0 & 4) { printk("<7>%s(%p, %d, %x, %p, %d)\n", "data_sock_setsockopt", sock, level, optname, optval, len); } else { } lock_sock(sk); switch (optname) { case 1: switch (sizeof(*((int *)optval))) { case 1UL: __asm__ volatile ("call __get_user_" "1": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)optval)); break; case 2UL: __asm__ volatile ("call __get_user_" "2": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)optval)); break; case 4UL: __asm__ volatile ("call __get_user_" "4": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)optval)); break; case 8UL: __asm__ volatile ("call __get_user_" "8": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)optval)); break; default: __asm__ volatile ("call __get_user_" "X": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)optval)); break; } opt = (int )__val_gu; if (__ret_gu) { err = -14; break; } else { } if (opt) { ((struct mISDN_sock *)sk)->cmask = ((struct mISDN_sock *)sk)->cmask | 1U; } else { ((struct mISDN_sock *)sk)->cmask = ((struct mISDN_sock *)sk)->cmask & (unsigned int )(~ 1); } break; default: err = -92; break; } release_sock(sk); return (err); } } static int data_sock_getsockopt(struct socket *sock , int level , int optname , char *optval , int *optlen ) { struct sock *sk ; int len ; int opt ; int __ret_gu ; unsigned long __val_gu ; int __ret_pu ; char __pu_val ; { sk = sock->sk; switch (sizeof(*optlen)) { case 1UL: __asm__ volatile ("call __get_user_" "1": "=a" (__ret_gu), "=d" (__val_gu): "0" (optlen)); break; case 2UL: __asm__ volatile ("call __get_user_" "2": "=a" (__ret_gu), "=d" (__val_gu): "0" (optlen)); break; case 4UL: __asm__ volatile ("call __get_user_" "4": "=a" (__ret_gu), "=d" (__val_gu): "0" (optlen)); break; case 8UL: __asm__ volatile ("call __get_user_" "8": "=a" (__ret_gu), "=d" (__val_gu): "0" (optlen)); break; default: __asm__ volatile ("call __get_user_" "X": "=a" (__ret_gu), "=d" (__val_gu): "0" (optlen)); break; } len = (int )__val_gu; if (__ret_gu) { return (-14); } else { } switch (optname) { case 1: if (((struct mISDN_sock *)sk)->cmask & 1U) { opt = 1; } else { opt = 0; } __pu_val = opt; switch (sizeof(*optval)) { case 1UL: __asm__ volatile ("call __put_user_" "1": "=a" (__ret_pu): "0" (__pu_val), "c" (optval): "ebx"); break; case 2UL: __asm__ volatile ("call __put_user_" "2": "=a" (__ret_pu): "0" (__pu_val), "c" (optval): "ebx"); break; case 4UL: __asm__ volatile ("call __put_user_" "4": "=a" (__ret_pu): "0" (__pu_val), "c" (optval): "ebx"); break; case 8UL: __asm__ volatile ("call __put_user_" "8": "=a" (__ret_pu): "0" (__pu_val), "c" (optval): "ebx"); break; default: __asm__ volatile ("call __put_user_" "X": "=a" (__ret_pu): "0" (__pu_val), "c" (optval): "ebx"); break; } if (__ret_pu) { return (-14); } else { } break; default: return (-92); } return (0); } } static int data_sock_bind(struct socket *sock , struct sockaddr *addr , int addr_len ) { struct sockaddr_mISDN *maddr ; struct sock *sk ; int err ; { maddr = (struct sockaddr_mISDN *)addr; sk = sock->sk; err = 0; if (*debug___0 & 4) { printk("<7>%s(%p) sk=%p\n", "data_sock_bind", sock, sk); } else { } if ((unsigned long )addr_len != sizeof(struct sockaddr_mISDN )) { return (-22); } else { } if (! maddr || (int )maddr->family != 34) { return (-22); } else { } lock_sock(sk); if (((struct mISDN_sock *)sk)->dev) { err = -114; goto done; } else { } ((struct mISDN_sock *)sk)->dev = get_mdevice(maddr->dev); if (! ((struct mISDN_sock *)sk)->dev) { err = -19; goto done; } else { } ((struct mISDN_sock *)sk)->ch.send = & mISDN_send; ((struct mISDN_sock *)sk)->ch.ctrl = & mISDN_ctrl; switch ((int )sk->sk_protocol) { case 4: case 3: case 2: case 1: mISDN_sock_unlink(& data_sockets, sk); err = connect_layer1(((struct mISDN_sock *)sk)->dev, & ((struct mISDN_sock *)sk)->ch, sk->sk_protocol, maddr); if (err) { mISDN_sock_link(& data_sockets, sk); } else { } break; case 17: case 16: err = create_l2entity(((struct mISDN_sock *)sk)->dev, & ((struct mISDN_sock *)sk)->ch, sk->sk_protocol, maddr); break; case 38: case 37: case 36: case 35: case 34: case 33: err = connect_Bstack(((struct mISDN_sock *)sk)->dev, & ((struct mISDN_sock *)sk)->ch, sk->sk_protocol, maddr); break; default: err = -93; } if (err) { goto done; } else { } sk->__sk_common.skc_state = 2; ((struct mISDN_sock *)sk)->ch.protocol = sk->sk_protocol; done: release_sock(sk); return (err); } } static int data_sock_getname(struct socket *sock , struct sockaddr *addr , int *addr_len , int peer ) { struct sockaddr_mISDN *maddr ; struct sock *sk ; { maddr = (struct sockaddr_mISDN *)addr; sk = sock->sk; if (! ((struct mISDN_sock *)sk)->dev) { return (-77); } else { } lock_sock(sk); *addr_len = sizeof(*maddr); maddr->dev = (((struct mISDN_sock *)sk)->dev)->id; maddr->channel = ((struct mISDN_sock *)sk)->ch.nr; maddr->sapi = ((struct mISDN_sock *)sk)->ch.addr & 255U; maddr->tei = (((struct mISDN_sock *)sk)->ch.addr >> 8) & 255U; release_sock(sk); return (0); } } static struct proto_ops const data_sock_ops = {34, & __this_module, & data_sock_release, & data_sock_bind, & sock_no_connect, & sock_no_socketpair, & sock_no_accept, & data_sock_getname, & datagram_poll, & data_sock_ioctl, 0, & sock_no_listen, & sock_no_shutdown, & data_sock_setsockopt, & data_sock_getsockopt, 0, 0, & mISDN_sock_sendmsg, & mISDN_sock_recvmsg, & sock_no_mmap, 0, 0}; static int data_sock_create(struct net *net , struct socket *sock , int protocol ) { struct sock *sk ; { if ((int )sock->type != SOCK_DGRAM) { return (-94); } else { } sk = sk_alloc(net, 34, (16U | 64U) | 128U, & mISDN_proto); if (! sk) { return (-12); } else { } sock_init_data(sock, sk); sock->ops = & data_sock_ops; sock->state = SS_UNCONNECTED; sock_reset_flag(sk, SOCK_ZAPPED); sk->sk_protocol = protocol; sk->__sk_common.skc_state = 1; mISDN_sock_link(& data_sockets, sk); return (0); } } static int base_sock_release(struct socket *sock ) { struct sock *sk ; { sk = sock->sk; printk("<7>%s(%p) sk=%p\n", "base_sock_release", sock, sk); if (! sk) { return (0); } else { } mISDN_sock_unlink(& base_sockets, sk); sock_orphan(sk); sock_put(sk); return (0); } } static int base_sock_ioctl(struct socket *sock , unsigned int cmd , unsigned long arg ) { int err ; int id ; struct mISDNdevice *dev ; struct mISDNversion ver ; unsigned long tmp ; int __ret_pu ; int __pu_val ; int __ret_gu ; unsigned long __val_gu ; struct mISDN_devinfo di ; u_int tmp___0 ; size_t __len ; void *__ret ; unsigned long tmp___1 ; { err = 0; switch (cmd) { case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(66 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): ver.major = 1; ver.minor = 0; ver.release = 19; tmp = copy_to_user((void *)arg, & ver, sizeof(ver)); if (tmp) { err = -14; } else { } break; case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(67 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): id = get_mdevice_count(); __pu_val = id; switch (sizeof(*((int *)arg))) { case 1UL: __asm__ volatile ("call __put_user_" "1": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); break; case 2UL: __asm__ volatile ("call __put_user_" "2": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); break; case 4UL: __asm__ volatile ("call __put_user_" "4": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); break; case 8UL: __asm__ volatile ("call __put_user_" "8": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); break; default: __asm__ volatile ("call __put_user_" "X": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); break; } if (__ret_pu) { err = -14; } else { } break; case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(68 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): switch (sizeof(*((int *)arg))) { case 1UL: __asm__ volatile ("call __get_user_" "1": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); break; case 2UL: __asm__ volatile ("call __get_user_" "2": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); break; case 4UL: __asm__ volatile ("call __get_user_" "4": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); break; case 8UL: __asm__ volatile ("call __get_user_" "8": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); break; default: __asm__ volatile ("call __get_user_" "X": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); break; } id = (int )__val_gu; if (__ret_gu) { err = -14; break; } else { } dev = get_mdevice(id); if (dev) { di.id = dev->id; di.Dprotocols = dev->Dprotocols; tmp___0 = get_all_Bprotocols(); di.Bprotocols = dev->Bprotocols | tmp___0; di.protocol = dev->D.protocol; __len = sizeof(di.channelmap); if (__len >= (size_t )64) { __ret = memcpy(di.channelmap, dev->channelmap, __len); } else { __ret = memcpy(di.channelmap, dev->channelmap, __len); } di.nrbchan = dev->nrbchan; strcpy(di.name, dev->name); tmp___1 = copy_to_user((void *)arg, & di, sizeof(di)); if (tmp___1) { err = -14; } else { } } else { err = -19; } break; default: err = -22; } return (err); } } static int base_sock_bind(struct socket *sock , struct sockaddr *addr , int addr_len ) { struct sockaddr_mISDN *maddr ; struct sock *sk ; int err ; { maddr = (struct sockaddr_mISDN *)addr; sk = sock->sk; err = 0; if (! maddr || (int )maddr->family != 34) { return (-22); } else { } lock_sock(sk); if (((struct mISDN_sock *)sk)->dev) { err = -114; goto done; } else { } ((struct mISDN_sock *)sk)->dev = get_mdevice(maddr->dev); if (! ((struct mISDN_sock *)sk)->dev) { err = -19; goto done; } else { } sk->__sk_common.skc_state = 2; done: release_sock(sk); return (err); } } static struct proto_ops const base_sock_ops = {34, & __this_module, & base_sock_release, & base_sock_bind, & sock_no_connect, & sock_no_socketpair, & sock_no_accept, & sock_no_getname, & sock_no_poll, & base_sock_ioctl, 0, & sock_no_listen, & sock_no_shutdown, & sock_no_setsockopt, & sock_no_getsockopt, 0, 0, & sock_no_sendmsg, & sock_no_recvmsg, & sock_no_mmap, 0, 0}; static int base_sock_create(struct net *net , struct socket *sock , int protocol ) { struct sock *sk ; { if ((int )sock->type != SOCK_RAW) { return (-94); } else { } sk = sk_alloc(net, 34, (16U | 64U) | 128U, & mISDN_proto); if (! sk) { return (-12); } else { } sock_init_data(sock, sk); sock->ops = & base_sock_ops; sock->state = SS_UNCONNECTED; sock_reset_flag(sk, SOCK_ZAPPED); sk->sk_protocol = protocol; sk->__sk_common.skc_state = 1; mISDN_sock_link(& base_sockets, sk); return (0); } } static int mISDN_sock_create(struct net *net , struct socket *sock , int proto ) { int err ; { err = -93; switch (proto) { case 0: err = base_sock_create(net, sock, proto); break; case 38: case 37: case 36: case 35: case 34: case 33: case 17: case 16: case 4: case 3: case 2: case 1: err = data_sock_create(net, sock, proto); break; default: return (err); } return (err); } } static struct net_proto_family mISDN_sock_family_ops = {34, & mISDN_sock_create, & __this_module}; int misdn_sock_init(u_int *deb ) { int err ; { debug___0 = deb; err = sock_register(& mISDN_sock_family_ops); if (err) { printk("<3>%s: error(%d)\n", "misdn_sock_init", err); } else { } return (err); } } void misdn_sock_cleanup(void) { { sock_unregister(34); return; } } void ldv_main2_sequence_infinite_withcheck_stateful(void) { struct socket *var_group1 ; unsigned int var_data_sock_ioctl_10_p1 ; unsigned long var_data_sock_ioctl_10_p2 ; struct sockaddr *var_group2 ; int var_data_sock_bind_13_p2 ; int *var_data_sock_getname_14_p2 ; int var_data_sock_getname_14_p3 ; struct kiocb *var_group3 ; struct msghdr *var_mISDN_sock_sendmsg_7_p2 ; size_t var_mISDN_sock_sendmsg_7_p3 ; struct msghdr *var_mISDN_sock_recvmsg_6_p2 ; size_t var_mISDN_sock_recvmsg_6_p3 ; int var_mISDN_sock_recvmsg_6_p4 ; int var_data_sock_setsockopt_11_p1 ; int var_data_sock_setsockopt_11_p2 ; char *var_data_sock_setsockopt_11_p3 ; int var_data_sock_setsockopt_11_p4 ; int var_data_sock_getsockopt_12_p1 ; int var_data_sock_getsockopt_12_p2 ; char *var_data_sock_getsockopt_12_p3 ; int *var_data_sock_getsockopt_12_p4 ; unsigned int var_base_sock_ioctl_17_p1 ; unsigned long var_base_sock_ioctl_17_p2 ; int var_base_sock_bind_18_p2 ; struct net *var_group4 ; int var_mISDN_sock_create_20_p2 ; int ldv_s_data_sock_ops_proto_ops ; int ldv_s_base_sock_ops_proto_ops ; int tmp ; int tmp___0 ; { LDV_IN_INTERRUPT = 1; ldv_initialize(); ldv_s_data_sock_ops_proto_ops = 0; ldv_s_base_sock_ops_proto_ops = 0; while (1) { tmp___0 = nondet_int(); if ((tmp___0 || ! (ldv_s_data_sock_ops_proto_ops == 0)) || ! (ldv_s_base_sock_ops_proto_ops == 0)) { } else { break; } tmp = nondet_int(); switch (tmp) { case 0: if (ldv_s_data_sock_ops_proto_ops == 0) { ldv_handler_precall(); data_sock_release(var_group1); ldv_s_data_sock_ops_proto_ops = 0; } else { } break; case 1: ldv_handler_precall(); data_sock_ioctl(var_group1, var_data_sock_ioctl_10_p1, var_data_sock_ioctl_10_p2); break; case 2: ldv_handler_precall(); data_sock_bind(var_group1, var_group2, var_data_sock_bind_13_p2); break; case 3: ldv_handler_precall(); data_sock_getname(var_group1, var_group2, var_data_sock_getname_14_p2, var_data_sock_getname_14_p3); break; case 4: ldv_handler_precall(); mISDN_sock_sendmsg(var_group3, var_group1, var_mISDN_sock_sendmsg_7_p2, var_mISDN_sock_sendmsg_7_p3); break; case 5: ldv_handler_precall(); mISDN_sock_recvmsg(var_group3, var_group1, var_mISDN_sock_recvmsg_6_p2, var_mISDN_sock_recvmsg_6_p3, var_mISDN_sock_recvmsg_6_p4); break; case 6: ldv_handler_precall(); data_sock_setsockopt(var_group1, var_data_sock_setsockopt_11_p1, var_data_sock_setsockopt_11_p2, var_data_sock_setsockopt_11_p3, var_data_sock_setsockopt_11_p4); break; case 7: ldv_handler_precall(); data_sock_getsockopt(var_group1, var_data_sock_getsockopt_12_p1, var_data_sock_getsockopt_12_p2, var_data_sock_getsockopt_12_p3, var_data_sock_getsockopt_12_p4); break; case 8: if (ldv_s_base_sock_ops_proto_ops == 0) { ldv_handler_precall(); base_sock_release(var_group1); ldv_s_base_sock_ops_proto_ops = 0; } else { } break; case 9: ldv_handler_precall(); base_sock_ioctl(var_group1, var_base_sock_ioctl_17_p1, var_base_sock_ioctl_17_p2); break; case 10: ldv_handler_precall(); base_sock_bind(var_group1, var_group2, var_base_sock_bind_18_p2); break; case 11: ldv_handler_precall(); mISDN_sock_create(var_group4, var_group1, var_mISDN_sock_create_20_p2); break; default: break; } } ldv_check_final_state(); return; } } __inline static int constant_test_bit(int nr , unsigned long const volatile *addr ) { { return (((1UL << nr % 64) & *((unsigned long *)addr + nr / 64)) != 0UL); } } __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void lockdep_init_map(struct lockdep_map *lock , char const *name , struct lock_class_key *key , int subclass ) ; extern void __spin_lock_init(spinlock_t *lock , char const *name , struct lock_class_key *key ) ; extern void flush_scheduled_work(void) ; extern int schedule_work(struct work_struct *work ) ; __inline static void __skb_queue_head_init(struct sk_buff_head *list ) { struct sk_buff *tmp ; { tmp = (struct sk_buff *)list; list->next = tmp; list->prev = tmp; list->qlen = 0; return; } } static struct lock_class_key __key___1 ; __inline static void skb_queue_head_init(struct sk_buff_head *list ) { { while (1) { __spin_lock_init(& list->lock, "&list->lock", & __key___1); break; } __skb_queue_head_init(list); return; } } extern void skb_queue_tail(struct sk_buff_head *list , struct sk_buff *newsk ) ; extern struct sk_buff *skb_dequeue(struct sk_buff_head *list ) ; __inline static struct sk_buff *mI_alloc_skb(unsigned int len , gfp_t gfp_mask ) { struct sk_buff *skb ; long tmp ; { skb = alloc_skb((unsigned long )len + sizeof(struct mISDNhead ), gfp_mask); tmp = ldv__builtin_expect(! (! skb), 1); if (tmp) { skb_reserve(skb, sizeof(struct mISDNhead )); } else { } return (skb); } } __inline static struct sk_buff *_alloc_mISDN_skb(u_int prim , u_int id , u_int len , void *dp , gfp_t gfp_mask ) { struct sk_buff *skb ; struct sk_buff *tmp ; struct mISDNhead *hh ; size_t __len ; void *__ret ; unsigned char *tmp___1 ; { tmp = mI_alloc_skb(len, gfp_mask); skb = tmp; if (! skb) { return ((void *)0); } else { } if (len) { __len = len; tmp___1 = skb_put(skb, len); __ret = memcpy(tmp___1, dp, __len); } else { } hh = (struct mISDNhead *)(& skb->cb[0]); hh->prim = prim; hh->id = id; return (skb); } } __inline static void _queue_data(struct mISDNchannel *ch , u_int prim , u_int id , u_int len , void *dp , gfp_t gfp_mask ) { struct sk_buff *skb ; int tmp ; { if (! ch->peer) { return; } else { } skb = _alloc_mISDN_skb(prim, id, len, dp, gfp_mask); if (! skb) { return; } else { } tmp = (*(ch->recv))(ch->peer, skb); if (tmp) { kfree_skb(skb); } else { } return; } } int mISDN_initdchannel(struct dchannel *ch , int maxlen , void *phf ) ; int mISDN_initbchannel(struct bchannel *ch , int maxlen ) ; int mISDN_freedchannel(struct dchannel *ch ) ; int mISDN_freebchannel(struct bchannel *ch ) ; void queue_ch_frame(struct mISDNchannel *ch , u_int pr , int id , struct sk_buff *skb ) ; int dchannel_senddata(struct dchannel *ch , struct sk_buff *skb ) ; int bchannel_senddata(struct bchannel *ch , struct sk_buff *skb ) ; void recv_Dchannel(struct dchannel *dch ) ; void recv_Bchannel(struct bchannel *bch ) ; void recv_Dchannel_skb(struct dchannel *dch , struct sk_buff *skb ) ; void recv_Bchannel_skb(struct bchannel *bch , struct sk_buff *skb ) ; void confirm_Bsend(struct bchannel *bch ) ; int get_next_bframe(struct bchannel *bch ) ; int get_next_dframe(struct dchannel *dch ) ; static void dchannel_bh(struct work_struct *ws ) { struct dchannel *dch ; struct work_struct const *__mptr ; struct sk_buff *skb ; int err ; long tmp ; int tmp___0 ; int tmp___1 ; { __mptr = ws; dch = (struct dchannel *)((char *)__mptr - (unsigned int )(& ((struct dchannel *)0)->workq)); tmp___0 = test_and_clear_bit(30, & dch->Flags); if (tmp___0) { while (1) { skb = skb_dequeue(& dch->rqueue); if (skb) { } else { break; } tmp = ldv__builtin_expect(! (! dch->dev.D.peer), 1); if (tmp) { err = (*(dch->dev.D.recv))(dch->dev.D.peer, skb); if (err) { kfree_skb(skb); } else { } } else { kfree_skb(skb); } } } else { } tmp___1 = test_and_clear_bit(31, & dch->Flags); if (tmp___1) { if (dch->phfunc) { (*(dch->phfunc))(dch); } else { } } else { } return; } } static void bchannel_bh(struct work_struct *ws ) { struct bchannel *bch ; struct work_struct const *__mptr ; struct sk_buff *skb ; int err ; long tmp ; int tmp___0 ; { __mptr = ws; bch = (struct bchannel *)((char *)__mptr - (unsigned int )(& ((struct bchannel *)0)->workq)); tmp___0 = test_and_clear_bit(30, & bch->Flags); if (tmp___0) { while (1) { skb = skb_dequeue(& bch->rqueue); if (skb) { } else { break; } if (bch->rcount >= 64) { printk("<4>B-channel %p receive queue if full, but empties...\n", bch); } else { } bch->rcount = bch->rcount - 1; tmp = ldv__builtin_expect(! (! bch->ch.peer), 1); if (tmp) { err = (*(bch->ch.recv))(bch->ch.peer, skb); if (err) { kfree_skb(skb); } else { } } else { kfree_skb(skb); } } } else { } return; } } static struct lock_class_key __key___3 ; int mISDN_initdchannel(struct dchannel *ch , int maxlen , void *phf ) { atomic_long_t __constr_expr_0 ; { test_and_set_bit(13, & ch->Flags); ch->maxlen = maxlen; ch->hw = (void *)0; ch->rx_skb = (void *)0; ch->tx_skb = (void *)0; ch->tx_idx = 0; ch->phfunc = phf; skb_queue_head_init(& ch->squeue); skb_queue_head_init(& ch->rqueue); INIT_LIST_HEAD(& ch->dev.bchannels); while (1) { __constr_expr_0.counter = 0; ch->workq.data = __constr_expr_0; lockdep_init_map(& ch->workq.lockdep_map, "&ch->workq", & __key___3, 0); INIT_LIST_HEAD(& ch->workq.entry); while (1) { ch->workq.func = & dchannel_bh; break; } break; } return (0); } } extern void *__crc_mISDN_initdchannel __attribute__((__weak__)) ; static unsigned long const __kcrctab_mISDN_initdchannel __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_mISDN_initdchannel); static char const __kstrtab_mISDN_initdchannel[19] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'm', 'I', 'S', 'D', 'N', '_', 'i', 'n', 'i', 't', 'd', 'c', 'h', 'a', 'n', 'n', 'e', 'l', '\000'}; static struct kernel_symbol const __ksymtab_mISDN_initdchannel __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& mISDN_initdchannel), __kstrtab_mISDN_initdchannel}; static struct lock_class_key __key___4 ; int mISDN_initbchannel(struct bchannel *ch , int maxlen ) { atomic_long_t __constr_expr_0 ; { ch->Flags = 0; ch->maxlen = maxlen; ch->hw = (void *)0; ch->rx_skb = (void *)0; ch->tx_skb = (void *)0; ch->tx_idx = 0; skb_queue_head_init(& ch->rqueue); ch->rcount = 0; ch->next_skb = (void *)0; while (1) { __constr_expr_0.counter = 0; ch->workq.data = __constr_expr_0; lockdep_init_map(& ch->workq.lockdep_map, "&ch->workq", & __key___4, 0); INIT_LIST_HEAD(& ch->workq.entry); while (1) { ch->workq.func = & bchannel_bh; break; } break; } return (0); } } extern void *__crc_mISDN_initbchannel __attribute__((__weak__)) ; static unsigned long const __kcrctab_mISDN_initbchannel __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_mISDN_initbchannel); static char const __kstrtab_mISDN_initbchannel[19] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'm', 'I', 'S', 'D', 'N', '_', 'i', 'n', 'i', 't', 'b', 'c', 'h', 'a', 'n', 'n', 'e', 'l', '\000'}; static struct kernel_symbol const __ksymtab_mISDN_initbchannel __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& mISDN_initbchannel), __kstrtab_mISDN_initbchannel}; int mISDN_freedchannel(struct dchannel *ch ) { { if (ch->tx_skb) { kfree_skb(ch->tx_skb); ch->tx_skb = (void *)0; } else { } if (ch->rx_skb) { kfree_skb(ch->rx_skb); ch->rx_skb = (void *)0; } else { } skb_queue_purge(& ch->squeue); skb_queue_purge(& ch->rqueue); flush_scheduled_work(); return (0); } } extern void *__crc_mISDN_freedchannel __attribute__((__weak__)) ; static unsigned long const __kcrctab_mISDN_freedchannel __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_mISDN_freedchannel); static char const __kstrtab_mISDN_freedchannel[19] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'm', 'I', 'S', 'D', 'N', '_', 'f', 'r', 'e', 'e', 'd', 'c', 'h', 'a', 'n', 'n', 'e', 'l', '\000'}; static struct kernel_symbol const __ksymtab_mISDN_freedchannel __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& mISDN_freedchannel), __kstrtab_mISDN_freedchannel}; int mISDN_freebchannel(struct bchannel *ch ) { { if (ch->tx_skb) { kfree_skb(ch->tx_skb); ch->tx_skb = (void *)0; } else { } if (ch->rx_skb) { kfree_skb(ch->rx_skb); ch->rx_skb = (void *)0; } else { } if (ch->next_skb) { kfree_skb(ch->next_skb); ch->next_skb = (void *)0; } else { } skb_queue_purge(& ch->rqueue); ch->rcount = 0; flush_scheduled_work(); return (0); } } extern void *__crc_mISDN_freebchannel __attribute__((__weak__)) ; static unsigned long const __kcrctab_mISDN_freebchannel __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_mISDN_freebchannel); static char const __kstrtab_mISDN_freebchannel[19] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'm', 'I', 'S', 'D', 'N', '_', 'f', 'r', 'e', 'e', 'b', 'c', 'h', 'a', 'n', 'n', 'e', 'l', '\000'}; static struct kernel_symbol const __ksymtab_mISDN_freebchannel __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& mISDN_freebchannel), __kstrtab_mISDN_freebchannel}; __inline static u_int get_sapi_tei(u_char *p ) { u_int sapi ; u_int tei ; { sapi = (int )*p >> 2; tei = (int )*(p + 1) >> 1; return (sapi | (tei << 8)); } } void recv_Dchannel(struct dchannel *dch ) { struct mISDNhead *hh ; { if ((dch->rx_skb)->len < 2U) { kfree_skb(dch->rx_skb); dch->rx_skb = (void *)0; return; } else { } hh = (struct mISDNhead *)(& (dch->rx_skb)->cb[0]); hh->prim = 8194; hh->id = get_sapi_tei((dch->rx_skb)->data); skb_queue_tail(& dch->rqueue, dch->rx_skb); dch->rx_skb = (void *)0; while (1) { test_and_set_bit(30, & dch->Flags); schedule_work(& dch->workq); break; } return; } } extern void *__crc_recv_Dchannel __attribute__((__weak__)) ; static unsigned long const __kcrctab_recv_Dchannel __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_recv_Dchannel); static char const __kstrtab_recv_Dchannel[14] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'r', 'e', 'c', 'v', '_', 'D', 'c', 'h', 'a', 'n', 'n', 'e', 'l', '\000'}; static struct kernel_symbol const __ksymtab_recv_Dchannel __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& recv_Dchannel), __kstrtab_recv_Dchannel}; void recv_Bchannel(struct bchannel *bch ) { struct mISDNhead *hh ; { hh = (struct mISDNhead *)(& (bch->rx_skb)->cb[0]); hh->prim = 8194; hh->id = 65535; if (bch->rcount >= 64) { kfree_skb(bch->rx_skb); bch->rx_skb = (void *)0; return; } else { } bch->rcount = bch->rcount + 1; skb_queue_tail(& bch->rqueue, bch->rx_skb); bch->rx_skb = (void *)0; while (1) { test_and_set_bit(30, & bch->Flags); schedule_work(& bch->workq); break; } return; } } extern void *__crc_recv_Bchannel __attribute__((__weak__)) ; static unsigned long const __kcrctab_recv_Bchannel __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_recv_Bchannel); static char const __kstrtab_recv_Bchannel[14] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'r', 'e', 'c', 'v', '_', 'B', 'c', 'h', 'a', 'n', 'n', 'e', 'l', '\000'}; static struct kernel_symbol const __ksymtab_recv_Bchannel __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& recv_Bchannel), __kstrtab_recv_Bchannel}; void recv_Dchannel_skb(struct dchannel *dch , struct sk_buff *skb ) { { skb_queue_tail(& dch->rqueue, skb); while (1) { test_and_set_bit(30, & dch->Flags); schedule_work(& dch->workq); break; } return; } } extern void *__crc_recv_Dchannel_skb __attribute__((__weak__)) ; static unsigned long const __kcrctab_recv_Dchannel_skb __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_recv_Dchannel_skb); static char const __kstrtab_recv_Dchannel_skb[18] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'r', 'e', 'c', 'v', '_', 'D', 'c', 'h', 'a', 'n', 'n', 'e', 'l', '_', 's', 'k', 'b', '\000'}; static struct kernel_symbol const __ksymtab_recv_Dchannel_skb __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& recv_Dchannel_skb), __kstrtab_recv_Dchannel_skb}; void recv_Bchannel_skb(struct bchannel *bch , struct sk_buff *skb ) { { if (bch->rcount >= 64) { kfree_skb(skb); return; } else { } bch->rcount = bch->rcount + 1; skb_queue_tail(& bch->rqueue, skb); while (1) { test_and_set_bit(30, & bch->Flags); schedule_work(& bch->workq); break; } return; } } extern void *__crc_recv_Bchannel_skb __attribute__((__weak__)) ; static unsigned long const __kcrctab_recv_Bchannel_skb __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_recv_Bchannel_skb); static char const __kstrtab_recv_Bchannel_skb[18] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'r', 'e', 'c', 'v', '_', 'B', 'c', 'h', 'a', 'n', 'n', 'e', 'l', '_', 's', 'k', 'b', '\000'}; static struct kernel_symbol const __ksymtab_recv_Bchannel_skb __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& recv_Bchannel_skb), __kstrtab_recv_Bchannel_skb}; static void confirm_Dsend(struct dchannel *dch ) { struct sk_buff *skb ; { skb = _alloc_mISDN_skb(24578, ((struct mISDNhead *)(& (dch->tx_skb)->cb[0]))->id, 0, (void *)0, 32U); if (! skb) { printk("<3>%s: no skb id %x\n", "confirm_Dsend", ((struct mISDNhead *)(& (dch->tx_skb)->cb[0]))->id); return; } else { } skb_queue_tail(& dch->rqueue, skb); while (1) { test_and_set_bit(30, & dch->Flags); schedule_work(& dch->workq); break; } return; } } int get_next_dframe(struct dchannel *dch ) { { dch->tx_idx = 0; dch->tx_skb = skb_dequeue(& dch->squeue); if (dch->tx_skb) { confirm_Dsend(dch); return (1); } else { } dch->tx_skb = (void *)0; test_and_clear_bit(0, & dch->Flags); return (0); } } extern void *__crc_get_next_dframe __attribute__((__weak__)) ; static unsigned long const __kcrctab_get_next_dframe __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_get_next_dframe); static char const __kstrtab_get_next_dframe[16] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'g', 'e', 't', '_', 'n', 'e', 'x', 't', '_', 'd', 'f', 'r', 'a', 'm', 'e', '\000'}; static struct kernel_symbol const __ksymtab_get_next_dframe __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& get_next_dframe), __kstrtab_get_next_dframe}; void confirm_Bsend(struct bchannel *bch ) { struct sk_buff *skb ; { if (bch->rcount >= 64) { return; } else { } skb = _alloc_mISDN_skb(24578, ((struct mISDNhead *)(& (bch->tx_skb)->cb[0]))->id, 0, (void *)0, 32U); if (! skb) { printk("<3>%s: no skb id %x\n", "confirm_Bsend", ((struct mISDNhead *)(& (bch->tx_skb)->cb[0]))->id); return; } else { } bch->rcount = bch->rcount + 1; skb_queue_tail(& bch->rqueue, skb); while (1) { test_and_set_bit(30, & bch->Flags); schedule_work(& bch->workq); break; } return; } } extern void *__crc_confirm_Bsend __attribute__((__weak__)) ; static unsigned long const __kcrctab_confirm_Bsend __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_confirm_Bsend); static char const __kstrtab_confirm_Bsend[14] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'c', 'o', 'n', 'f', 'i', 'r', 'm', '_', 'B', 's', 'e', 'n', 'd', '\000'}; static struct kernel_symbol const __ksymtab_confirm_Bsend __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& confirm_Bsend), __kstrtab_confirm_Bsend}; int get_next_bframe(struct bchannel *bch ) { int tmp ; int tmp___1 ; { bch->tx_idx = 0; tmp___1 = constant_test_bit(1, & bch->Flags); if (tmp___1) { bch->tx_skb = bch->next_skb; if (bch->tx_skb) { bch->next_skb = (void *)0; test_and_clear_bit(1, & bch->Flags); tmp = constant_test_bit(12, & bch->Flags); if (tmp) { } else { confirm_Bsend(bch); } return (1); } else { test_and_clear_bit(1, & bch->Flags); printk("<4>B TX_NEXT without skb\n"); } } else { } bch->tx_skb = (void *)0; test_and_clear_bit(0, & bch->Flags); return (0); } } extern void *__crc_get_next_bframe __attribute__((__weak__)) ; static unsigned long const __kcrctab_get_next_bframe __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_get_next_bframe); static char const __kstrtab_get_next_bframe[16] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'g', 'e', 't', '_', 'n', 'e', 'x', 't', '_', 'b', 'f', 'r', 'a', 'm', 'e', '\000'}; static struct kernel_symbol const __ksymtab_get_next_bframe __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& get_next_bframe), __kstrtab_get_next_bframe}; void queue_ch_frame(struct mISDNchannel *ch , u_int pr , int id , struct sk_buff *skb ) { struct mISDNhead *hh ; int tmp ; { if (! skb) { _queue_data(ch, pr, id, 0, (void *)0, 32U); } else { if (ch->peer) { hh = (struct mISDNhead *)(& skb->cb[0]); hh->prim = pr; hh->id = id; tmp = (*(ch->recv))(ch->peer, skb); if (tmp) { } else { return; } } else { } kfree_skb(skb); } return; } } extern void *__crc_queue_ch_frame __attribute__((__weak__)) ; static unsigned long const __kcrctab_queue_ch_frame __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_queue_ch_frame); static char const __kstrtab_queue_ch_frame[15] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'q', 'u', 'e', 'u', 'e', '_', 'c', 'h', '_', 'f', 'r', 'a', 'm', 'e', '\000'}; static struct kernel_symbol const __ksymtab_queue_ch_frame __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& queue_ch_frame), __kstrtab_queue_ch_frame}; int dchannel_senddata(struct dchannel *ch , struct sk_buff *skb ) { int tmp ; { if (skb->len <= 0U) { printk("<4>%s: skb too small\n", "dchannel_senddata"); return (-22); } else { } if (skb->len > (unsigned int )ch->maxlen) { printk("<4>%s: skb too large(%d/%d)\n", "dchannel_senddata", skb->len, ch->maxlen); return (-22); } else { } tmp = test_and_set_bit(0, & ch->Flags); if (tmp) { skb_queue_tail(& ch->squeue, skb); return (0); } else { ch->tx_skb = skb; ch->tx_idx = 0; return (1); } } } extern void *__crc_dchannel_senddata __attribute__((__weak__)) ; static unsigned long const __kcrctab_dchannel_senddata __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_dchannel_senddata); static char const __kstrtab_dchannel_senddata[18] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'd', 'c', 'h', 'a', 'n', 'n', 'e', 'l', '_', 's', 'e', 'n', 'd', 'd', 'a', 't', 'a', '\000'}; static struct kernel_symbol const __ksymtab_dchannel_senddata __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& dchannel_senddata), __kstrtab_dchannel_senddata}; int bchannel_senddata(struct bchannel *ch , struct sk_buff *skb ) { int tmp ; { if (skb->len <= 0U) { printk("<4>%s: skb too small\n", "bchannel_senddata"); return (-22); } else { } if (skb->len > (unsigned int )ch->maxlen) { printk("<4>%s: skb too large(%d/%d)\n", "bchannel_senddata", skb->len, ch->maxlen); return (-22); } else { } if (ch->next_skb) { printk("<4>%s: next_skb exist ERROR (skb->len=%d next_skb->len=%d)\n", "bchannel_senddata", skb->len, (ch->next_skb)->len); return (-16); } else { } tmp = test_and_set_bit(0, & ch->Flags); if (tmp) { test_and_set_bit(1, & ch->Flags); ch->next_skb = skb; return (0); } else { ch->tx_skb = skb; ch->tx_idx = 0; return (1); } } } extern void *__crc_bchannel_senddata __attribute__((__weak__)) ; static unsigned long const __kcrctab_bchannel_senddata __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_bchannel_senddata); static char const __kstrtab_bchannel_senddata[18] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'b', 'c', 'h', 'a', 'n', 'n', 'e', 'l', '_', 's', 'e', 'n', 'd', 'd', 'a', 't', 'a', '\000'}; static struct kernel_symbol const __ksymtab_bchannel_senddata __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& bchannel_senddata), __kstrtab_bchannel_senddata}; __inline static int variable_test_bit(int nr , unsigned long const volatile *addr ) { int oldbit ; { __asm__ volatile ("bt %2,%1\n\t" "sbb %0,%0": "=r" (oldbit): "m" (*((unsigned long *)addr)), "Ir" (nr)); return (oldbit); } } extern void *memset(void *s , int c , size_t n ) ; extern __attribute__((__noreturn__)) void __bad_pda_field(void) ; extern struct x8664_pda _proxy_pda ; __inline static struct task_struct *( __attribute__((__always_inline__)) get_current)(void) { struct task_struct *ret__ ; { switch (sizeof(_proxy_pda.pcurrent)) { case 2UL: __asm__ ("mov" "w %%gs:%c1,%0": "=r" (ret__): "i" ((unsigned int )(& ((struct x8664_pda *)0)->pcurrent)), "m" (_proxy_pda.pcurrent)); break; case 4UL: __asm__ ("mov" "l %%gs:%c1,%0": "=r" (ret__): "i" ((unsigned int )(& ((struct x8664_pda *)0)->pcurrent)), "m" (_proxy_pda.pcurrent)); break; case 8UL: __asm__ ("mov" "q %%gs:%c1,%0": "=r" (ret__): "i" ((unsigned int )(& ((struct x8664_pda *)0)->pcurrent)), "m" (_proxy_pda.pcurrent)); break; default: __bad_pda_field(); } return (ret__); } } __inline static int list_is_last(struct list_head const *list , struct list_head const *head ) { { return ((unsigned long )list->next == (unsigned long )head); } } __inline static int hlist_empty(struct hlist_head const *h ) { { return (! h->first); } } __inline static int test_ti_thread_flag(struct thread_info *ti , int flag ) { int tmp___0 ; { tmp___0 = variable_test_bit(flag, & ti->flags); return (tmp___0); } } extern void __rwlock_init(rwlock_t *lock , char const *name , struct lock_class_key *key ) ; extern void init_waitqueue_head(wait_queue_head_t *q ) ; extern void __wake_up(wait_queue_head_t *q , unsigned int mode , int nr , void *key ) ; extern void prepare_to_wait(wait_queue_head_t *q , wait_queue_t *wait , int state ) ; extern void finish_wait(wait_queue_head_t *q , wait_queue_t *wait ) ; extern int autoremove_wake_function(wait_queue_t *wait , unsigned int mode , int sync , void *key ) ; extern void __mutex_init(struct mutex *lock , char const *name , struct lock_class_key *key ) ; extern void mutex_lock_nested(struct mutex *lock , unsigned int subclass ) ; extern void mutex_unlock(struct mutex *lock ) ; __inline static long PTR_ERR(void const *ptr ) { { return ((long )ptr); } } __inline static long IS_ERR(void const *ptr ) { long tmp ; { tmp = ldv__builtin_expect(! (! ((unsigned long )ptr >= 0xfffffffffffff001UL)), 0); return (tmp); } } __inline static void init_completion(struct completion *x ) { { x->done = 0; init_waitqueue_head(& x->wait); return; } } extern void wait_for_completion(struct completion * ) ; extern void complete(struct completion * ) ; extern struct sk_buff *skb_copy(struct sk_buff const *skb , gfp_t priority ) ; __inline static int skb_queue_empty(struct sk_buff_head const *list ) { { return ((unsigned long )list->next == (unsigned long )((struct sk_buff *)list)); } } static struct lock_class_key __key___5 ; __inline static void skb_queue_head_init___0(struct sk_buff_head *list ) { { while (1) { __spin_lock_init(& list->lock, "&list->lock", & __key___5); break; } __skb_queue_head_init(list); return; } } __inline static void sigfillset(sigset_t *set ) { { switch (64 / 64) { default: memset(set, -1, sizeof(sigset_t )); break; case 2: set->sig[1] = -1; case 1: set->sig[0] = -1; break; } return; } } extern void schedule(void) ; extern int wake_up_process(struct task_struct *tsk ) ; __inline static int test_tsk_thread_flag(struct task_struct *tsk , int flag ) { int tmp ; { tmp = test_ti_thread_flag((struct thread_info *)tsk->stack, flag); return (tmp); } } __inline static int signal_pending(struct task_struct *p ) { int tmp ; int tmp___0 ; long tmp___1 ; { tmp = test_tsk_thread_flag(p, 2); if (tmp) { tmp___0 = 1; } else { tmp___0 = 0; } tmp___1 = ldv__builtin_expect(tmp___0, 0); return (tmp___1); } } extern void lock_kernel(void) __attribute__((__section__(".spinlock.text"))) ; extern void unlock_kernel(void) __attribute__((__section__(".spinlock.text"))) ; void set_channel_address(struct mISDNchannel *ch , u_int sapi , u_int tei ) ; extern struct task_struct *( /* format attribute */ kthread_create)(int (*threadfn)(void *data ) , void *data , char const *namefmt , ...) ; int create_teimanager(struct mISDNdevice *dev ) ; void delete_teimanager(struct mISDNchannel *ch ) ; void add_layer2(struct mISDNchannel *ch , struct mISDNstack *st ) ; void __add_layer2(struct mISDNchannel *ch , struct mISDNstack *st ) ; static u_int *debug___1 ; __inline static void _queue_message(struct mISDNstack *st , struct sk_buff *skb ) { struct mISDNhead *hh ; int tmp ; int tmp___1 ; long tmp___2 ; { hh = (struct mISDNhead *)(& skb->cb[0]); if (*debug___1 & 64U) { printk("<7>%s prim(%x) id(%x) %p\n", "_queue_message", hh->prim, hh->id, skb); } else { } skb_queue_tail(& st->msgq, skb); tmp = constant_test_bit(16, & st->status); if (tmp) { tmp___1 = 0; } else { tmp___1 = 1; } tmp___2 = ldv__builtin_expect(tmp___1, 1); if (tmp___2) { test_and_set_bit(0, & st->status); __wake_up(& st->workq, 1, 1, (void *)0); } else { } return; } } int mISDN_queue_message(struct mISDNchannel *ch , struct sk_buff *skb ) { { _queue_message(ch->st, skb); return (0); } } static struct mISDNchannel *get_channel4id(struct mISDNstack *st , u_int id ) { struct mISDNchannel *ch ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { mutex_lock_nested(& st->lmutex, 0); __mptr = st->layer2.next; ch = (struct mISDNchannel *)((char *)__mptr - (unsigned int )(& ((struct mISDNchannel *)0)->list)); while (1) { __builtin_prefetch(ch->list.next); if ((unsigned long )(& ch->list) != (unsigned long )(& st->layer2)) { } else { break; } if (id == ch->nr) { goto unlock; } else { } __mptr___0 = ch->list.next; ch = (struct mISDNchannel *)((char *)__mptr___0 - (unsigned int )(& ((struct mISDNchannel *)0)->list)); } ch = (void *)0; unlock: mutex_unlock(& st->lmutex); return (ch); } } static void send_socklist(struct mISDN_sock_list *sl , struct sk_buff *skb ) { struct hlist_node *node ; struct sock *sk ; struct sk_buff *cskb ; int tmp ; struct hlist_node const *__mptr ; { cskb = (void *)0; _read_lock(& sl->lock); node = sl->head.first; while (1) { if (node) { __builtin_prefetch(node->next); __mptr = node; sk = (struct sock *)((char *)__mptr - (unsigned int )(& ((struct sock *)0)->__sk_common.skc_node)); } else { break; } if ((int volatile )sk->__sk_common.skc_state != (int volatile )2) { goto __Cont; } else { } if (! cskb) { cskb = skb_copy(skb, (16U | 64U) | 128U); } else { } if (! cskb) { printk("<4>%s no skb\n", "send_socklist"); break; } else { } tmp = sock_queue_rcv_skb(sk, cskb); if (tmp) { } else { cskb = (void *)0; } __Cont: /* CIL Label */ node = node->next; } _read_unlock(& sl->lock); if (cskb) { kfree_skb(cskb); } else { } return; } } static void send_layer2(struct mISDNstack *st , struct sk_buff *skb ) { struct sk_buff *cskb ; struct mISDNhead *hh ; struct mISDNchannel *ch ; int ret ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; int tmp ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; { hh = (struct mISDNhead *)(& skb->cb[0]); if (! st) { return; } else { } mutex_lock_nested(& st->lmutex, 0); if ((hh->id & 65535U) == 65535U) { __mptr = st->layer2.next; ch = (struct mISDNchannel *)((char *)__mptr - (unsigned int )(& ((struct mISDNchannel *)0)->list)); while (1) { __builtin_prefetch(ch->list.next); if ((unsigned long )(& ch->list) != (unsigned long )(& st->layer2)) { } else { break; } tmp = list_is_last(& ch->list, & st->layer2); if (tmp) { cskb = skb; skb = (void *)0; } else { cskb = skb_copy(skb, (16U | 64U) | 128U); } if (cskb) { ret = (*(ch->send))(ch, cskb); if (ret) { if (*debug___1 & 16U) { printk("<7>%s ch%d prim(%x) addr(%x) err %d\n", "send_layer2", ch->nr, hh->prim, ch->addr, ret); } else { } kfree_skb(cskb); } else { } } else { printk("<4>%s ch%d addr %x no mem\n", "send_layer2", ch->nr, ch->addr); goto out; } __mptr___0 = ch->list.next; ch = (struct mISDNchannel *)((char *)__mptr___0 - (unsigned int )(& ((struct mISDNchannel *)0)->list)); } } else { __mptr___1 = st->layer2.next; ch = (struct mISDNchannel *)((char *)__mptr___1 - (unsigned int )(& ((struct mISDNchannel *)0)->list)); while (1) { __builtin_prefetch(ch->list.next); if ((unsigned long )(& ch->list) != (unsigned long )(& st->layer2)) { } else { break; } if ((hh->id & 65535U) == ch->addr) { ret = (*(ch->send))(ch, skb); if (! ret) { skb = (void *)0; } else { } goto out; } else { } __mptr___2 = ch->list.next; ch = (struct mISDNchannel *)((char *)__mptr___2 - (unsigned int )(& ((struct mISDNchannel *)0)->list)); } ret = (*(((st->dev)->teimgr)->ctrl))((st->dev)->teimgr, 1024, skb); if (! ret) { skb = (void *)0; } else if (*debug___1 & 16U) { printk("<7>%s ch%d mgr prim(%x) addr(%x) err %d\n", "send_layer2", ch->nr, hh->prim, ch->addr, ret); } else { } } out: mutex_unlock(& st->lmutex); if (skb) { kfree_skb(skb); } else { } return; } } __inline static int send_msg_to_layer(struct mISDNstack *st , struct sk_buff *skb ) { struct mISDNhead *hh ; struct mISDNchannel *ch ; int lm ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int __ret_warn_on ; long tmp___3 ; int tmp___4 ; { hh = (struct mISDNhead *)(& skb->cb[0]); lm = hh->prim & 255U; if (*debug___1 & 64U) { printk("<7>%s prim(%x) id(%x) %p\n", "send_msg_to_layer", hh->prim, hh->id, skb); } else { } if (lm == 1) { tmp = hlist_empty(& st->l1sock.head); if (tmp) { } else { __net_timestamp(skb); send_socklist(& st->l1sock, skb); } tmp___0 = (*((st->layer1)->send))(st->layer1, skb); return (tmp___0); } else if (lm == 2) { tmp___1 = hlist_empty(& st->l1sock.head); if (tmp___1) { } else { send_socklist(& st->l1sock, skb); } send_layer2(st, skb); return (0); } else if (lm == 4) { ch = get_channel4id(st, hh->id); if (ch) { tmp___2 = (*(ch->send))(ch, skb); return (tmp___2); } else { printk("<4>%s: dev(%s) prim(%x) id(%x) no channel\n", "send_msg_to_layer", (st->dev)->name, hh->prim, hh->id); } } else if (lm == 8) { __ret_warn_on = ! (! (lm == 8)); tmp___3 = ldv__builtin_expect(! (! __ret_warn_on), 0); if (tmp___3) { warn_on_slowpath("/work/ldvuser/novikov/work/current--X--drivers/isdn/mISDN/mISDN_core.ko--X--defaultlinux--X--68_1--X--cpachecker/linux/csd_deg_dscv/29/dscv_tempdir/dscv/ri/68_1/drivers/isdn/mISDN/stack.c", 177); } else { } ldv__builtin_expect(! (! __ret_warn_on), 0); ch = get_channel4id(st, hh->id); if (ch) { tmp___4 = (*(ch->send))(ch, skb); return (tmp___4); } else { printk("<4>%s: dev(%s) prim(%x) id(%x) no channel\n", "send_msg_to_layer", (st->dev)->name, hh->prim, hh->id); } } else { printk("<4>%s: dev(%s) prim %x not delivered\n", "send_msg_to_layer", (st->dev)->name, hh->prim); } return (-3); } } static void do_clear_stack(struct mISDNstack *st ) { { return; } } static int mISDNStackd(void *data ) { struct mISDNstack *st ; int err ; struct task_struct *tmp ; struct sk_buff *skb ; int tmp___0 ; int tmp___2 ; long tmp___3 ; long tmp___4 ; int tmp___5 ; int tmp___7 ; long tmp___8 ; int tmp___9 ; int tmp___11 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int __ret ; wait_queue_t __wait ; struct task_struct *tmp___17 ; struct task_struct *tmp___18 ; int tmp___19 ; int tmp___20 ; { st = data; err = 0; lock_kernel(); tmp = get_current(); sigfillset(& tmp->blocked); unlock_kernel(); if (*debug___1 & 32U) { printk("<7>mISDNStackd %s started\n", (st->dev)->name); } else { } if ((unsigned long )st->notify != (unsigned long )((void *)0)) { complete(st->notify); st->notify = (void *)0; } else { } while (1) { tmp___0 = constant_test_bit(16, & st->status); if (tmp___0) { tmp___2 = 1; } else { tmp___2 = 0; } tmp___3 = ldv__builtin_expect(tmp___2, 0); if (tmp___3) { test_and_clear_bit(0, & st->status); test_and_clear_bit(30, & st->status); } else { test_and_set_bit(30, & st->status); } while (1) { tmp___9 = constant_test_bit(0, & st->status); if (tmp___9) { } else { break; } skb = skb_dequeue(& st->msgq); if (! skb) { test_and_clear_bit(0, & st->status); skb = skb_dequeue(& st->msgq); if (! skb) { continue; } else { } test_and_set_bit(0, & st->status); } else { } err = send_msg_to_layer(st, skb); tmp___4 = ldv__builtin_expect(! (! err), 0); if (tmp___4) { if (*debug___1 & 16U) { printk("<7>%s: %s prim(%x) id(%x) send call(%d)\n", "mISDNStackd", (st->dev)->name, ((struct mISDNhead *)(& skb->cb[0]))->prim, ((struct mISDNhead *)(& skb->cb[0]))->id, err); } else { } kfree_skb(skb); continue; } else { } tmp___5 = constant_test_bit(16, & st->status); if (tmp___5) { tmp___7 = 1; } else { tmp___7 = 0; } tmp___8 = ldv__builtin_expect(tmp___7, 0); if (tmp___8) { test_and_clear_bit(0, & st->status); test_and_clear_bit(30, & st->status); break; } else { } } tmp___11 = constant_test_bit(2, & st->status); if (tmp___11) { test_and_set_bit(16, & st->status); test_and_clear_bit(30, & st->status); do_clear_stack(st); test_and_clear_bit(2, & st->status); test_and_set_bit(3, & st->status); } else { } tmp___14 = test_and_clear_bit(3, & st->status); if (tmp___14) { test_and_clear_bit(16, & st->status); test_and_set_bit(30, & st->status); tmp___13 = skb_queue_empty(& st->msgq); if (tmp___13) { } else { test_and_set_bit(0, & st->status); } } else { } tmp___15 = constant_test_bit(15, & st->status); if (tmp___15) { break; } else { } if ((unsigned long )st->notify != (unsigned long )((void *)0)) { complete(st->notify); st->notify = (void *)0; } else { } test_and_clear_bit(29, & st->status); __ret = 0; if (! (st->status & 65535UL)) { while (1) { tmp___17 = get_current(); __wait.flags = 0U; __wait.private = tmp___17; __wait.func = & autoremove_wake_function; __wait.task_list.next = & __wait.task_list; __wait.task_list.prev = & __wait.task_list; while (1) { prepare_to_wait(& st->workq, & __wait, 1); if (st->status & 65535UL) { break; } else { } tmp___18 = get_current(); tmp___19 = signal_pending(tmp___18); if (tmp___19) { } else { schedule(); goto __Cont; } __ret = -512; break; __Cont: /* CIL Label */ ; } finish_wait(& st->workq, & __wait); break; } } else { } if (*debug___1 & 32U) { printk("<7>%s: %s wake status %08lx\n", "mISDNStackd", (st->dev)->name, st->status); } else { } test_and_set_bit(29, & st->status); test_and_clear_bit(4, & st->status); tmp___20 = constant_test_bit(16, & st->status); if (tmp___20) { test_and_clear_bit(30, & st->status); } else { } } test_and_set_bit(31, & st->status); test_and_clear_bit(30, & st->status); test_and_clear_bit(29, & st->status); test_and_clear_bit(15, & st->status); skb_queue_purge(& st->msgq); st->thread = (void *)0; if ((unsigned long )st->notify != (unsigned long )((void *)0)) { complete(st->notify); st->notify = (void *)0; } else { } return (0); } } static int l1_receive(struct mISDNchannel *ch , struct sk_buff *skb ) { { if (! ch->st) { return (-19); } else { } __net_timestamp(skb); _queue_message(ch->st, skb); return (0); } } void set_channel_address(struct mISDNchannel *ch , u_int sapi , u_int tei ) { { ch->addr = sapi | (tei << 8); return; } } void __add_layer2(struct mISDNchannel *ch , struct mISDNstack *st ) { { list_add_tail(& ch->list, & st->layer2); return; } } void add_layer2(struct mISDNchannel *ch , struct mISDNstack *st ) { { mutex_lock_nested(& st->lmutex, 0); __add_layer2(ch, st); mutex_unlock(& st->lmutex); return; } } static int st_own_ctrl(struct mISDNchannel *ch , u_int cmd , void *arg ) { int tmp ; { if (! ch->st || (ch->st)->layer1) { return (-22); } else { } tmp = (*(((ch->st)->layer1)->ctrl))((ch->st)->layer1, cmd, arg); return (tmp); } } static struct lock_class_key __key___6 ; static struct lock_class_key __key___7 ; int create_stack(struct mISDNdevice *dev ) { struct mISDNstack *newst ; int err ; struct completion done ; void *tmp ; struct task_struct *__k ; struct task_struct *tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; { init_completion(& done); done = done; tmp = kzalloc(sizeof(struct mISDNstack ), (16U | 64U) | 128U); newst = tmp; if (! newst) { printk("<3>kmalloc mISDN_stack failed\n"); return (-12); } else { } newst->dev = dev; INIT_LIST_HEAD(& newst->layer2); newst->l1sock.head.first = (void *)0; while (1) { __rwlock_init(& newst->l1sock.lock, "&newst->l1sock.lock", & __key___6); break; } init_waitqueue_head(& newst->workq); skb_queue_head_init___0(& newst->msgq); while (1) { __mutex_init(& newst->lmutex, "&newst->lmutex", & __key___7); break; } dev->D.st = newst; err = create_teimanager(dev); if (err) { printk("<3>kmalloc teimanager failed\n"); kfree(newst); return (err); } else { } (dev->teimgr)->peer = & newst->own; (dev->teimgr)->recv = & mISDN_queue_message; (dev->teimgr)->st = newst; newst->layer1 = & dev->D; dev->D.recv = & l1_receive; dev->D.peer = & newst->own; newst->own.st = newst; newst->own.ctrl = & st_own_ctrl; newst->own.send = & mISDN_queue_message; newst->own.recv = & mISDN_queue_message; if (*debug___1 & 2U) { printk("<7>%s: st(%s)\n", "create_stack", (newst->dev)->name); } else { } newst->notify = & done; tmp___0 = kthread_create(& mISDNStackd, (void *)newst, "mISDN_%s", (newst->dev)->name); __k = tmp___0; tmp___1 = IS_ERR(__k); if (tmp___1) { } else { wake_up_process(__k); } newst->thread = __k; tmp___3 = IS_ERR(newst->thread); if (tmp___3) { tmp___2 = PTR_ERR(newst->thread); err = tmp___2; printk("<3>mISDN:cannot create kernel thread for %s (%d)\n", (newst->dev)->name, err); delete_teimanager(dev->teimgr); kfree(newst); } else { wait_for_completion(& done); } return (err); } } int connect_layer1(struct mISDNdevice *dev , struct mISDNchannel *ch , u_int protocol , struct sockaddr_mISDN *adr ) { struct mISDN_sock *msk ; struct mISDNchannel const *__mptr ; struct channel_req rq ; int err ; { __mptr = ch; msk = (struct mISDN_sock *)((char *)__mptr - (unsigned int )(& ((struct mISDN_sock *)0)->ch)); if (*debug___1 & 2U) { printk("<7>%s: %s proto(%x) adr(%d %d %d %d)\n", "connect_layer1", dev->name, protocol, adr->dev, adr->channel, adr->sapi, adr->tei); } else { } switch (protocol) { case (u_int )3: case (u_int )1: case (u_int )4: case (u_int )2: ch->recv = & mISDN_queue_message; ch->peer = & (dev->D.st)->own; ch->st = dev->D.st; rq.protocol = protocol; rq.adr.channel = 0; err = (*(dev->D.ctrl))(& dev->D, 256, & rq); printk("<7>%s: ret 1 %d\n", "connect_layer1", err); if (err) { return (err); } else { } _write_lock_bh(& (dev->D.st)->l1sock.lock); sk_add_node(& msk->sk, & (dev->D.st)->l1sock.head); _write_unlock_bh(& (dev->D.st)->l1sock.lock); break; default: return (-92); } return (0); } } int connect_Bstack(struct mISDNdevice *dev , struct mISDNchannel *ch , u_int protocol , struct sockaddr_mISDN *adr ) { struct channel_req rq ; struct channel_req rq2 ; int pmask ; int err ; struct Bprotocol *bp ; { if (*debug___1 & 2U) { printk("<7>%s: %s proto(%x) adr(%d %d %d %d)\n", "connect_Bstack", dev->name, protocol, adr->dev, adr->channel, adr->sapi, adr->tei); } else { } ch->st = dev->D.st; pmask = 1 << (protocol & 31U); if ((unsigned int )pmask & dev->Bprotocols) { rq.protocol = protocol; rq.adr = *adr; err = (*(dev->D.ctrl))(& dev->D, 256, & rq); if (err) { return (err); } else { } ch->recv = (rq.ch)->send; ch->peer = rq.ch; (rq.ch)->recv = ch->send; (rq.ch)->peer = ch; (rq.ch)->st = dev->D.st; } else { bp = get_Bprotocol4mask(pmask); if (! bp) { return (-92); } else { } rq2.protocol = protocol; rq2.adr = *adr; rq2.ch = ch; err = (*(bp->create))(& rq2); if (err) { return (err); } else { } ch->recv = (rq2.ch)->send; ch->peer = rq2.ch; (rq2.ch)->st = dev->D.st; rq.protocol = rq2.protocol; rq.adr = *adr; err = (*(dev->D.ctrl))(& dev->D, 256, & rq); if (err) { (*((rq2.ch)->ctrl))(rq2.ch, 512, (void *)0); return (err); } else { } (rq2.ch)->recv = (rq.ch)->send; (rq2.ch)->peer = rq.ch; (rq.ch)->recv = (rq2.ch)->send; (rq.ch)->peer = rq2.ch; (rq.ch)->st = dev->D.st; } ch->protocol = protocol; ch->nr = (rq.ch)->nr; return (0); } } int create_l2entity(struct mISDNdevice *dev , struct mISDNchannel *ch , u_int protocol , struct sockaddr_mISDN *adr ) { struct channel_req rq ; int err ; { if (*debug___1 & 2U) { printk("<7>%s: %s proto(%x) adr(%d %d %d %d)\n", "create_l2entity", dev->name, protocol, adr->dev, adr->channel, adr->sapi, adr->tei); } else { } rq.protocol = 1; if (dev->Dprotocols & (unsigned int )(1 << 3)) { rq.protocol = 3; } else { } switch (protocol) { case (u_int )17: rq.protocol = 2; if (dev->Dprotocols & (unsigned int )(1 << 4)) { rq.protocol = 4; } else { } case (u_int )16: ch->recv = & mISDN_queue_message; ch->peer = & (dev->D.st)->own; ch->st = dev->D.st; rq.adr.channel = 0; err = (*(dev->D.ctrl))(& dev->D, 256, & rq); printk("<7>%s: ret 1 %d\n", "create_l2entity", err); if (err) { break; } else { } rq.protocol = protocol; rq.adr = *adr; rq.ch = ch; err = (*((dev->teimgr)->ctrl))(dev->teimgr, 256, & rq); printk("<7>%s: ret 2 %d\n", "create_l2entity", err); if (! err) { if (protocol == (u_int )17 && ! rq.ch) { break; } else { } add_layer2(rq.ch, dev->D.st); (rq.ch)->recv = & mISDN_queue_message; (rq.ch)->peer = & (dev->D.st)->own; (*((rq.ch)->ctrl))(rq.ch, 256, (void *)0); } else { } break; default: err = -93; } return (err); } } void delete_channel(struct mISDNchannel *ch ) { struct mISDN_sock *msk ; struct mISDNchannel const *__mptr ; struct mISDNchannel *pch ; { __mptr = ch; msk = (struct mISDN_sock *)((char *)__mptr - (unsigned int )(& ((struct mISDN_sock *)0)->ch)); if (! ch->st) { printk("<4>%s: no stack\n", "delete_channel"); return; } else { } if (*debug___1 & 2U) { printk("<7>%s: st(%s) protocol(%x)\n", "delete_channel", ((ch->st)->dev)->name, ch->protocol); } else { } if (ch->protocol >= (u_int )32) { if (ch->peer) { (*((ch->peer)->ctrl))(ch->peer, 512, (void *)0); ch->peer = (void *)0; } else { } return; } else { } switch (ch->protocol) { case (u_int )3: case (u_int )4: case (u_int )1: case (u_int )2: _write_lock_bh(& (ch->st)->l1sock.lock); sk_del_node_init(& msk->sk); _write_unlock_bh(& (ch->st)->l1sock.lock); (*(((ch->st)->dev)->D.ctrl))(& ((ch->st)->dev)->D, 512, (void *)0); break; case (u_int )16: pch = get_channel4id(ch->st, ch->nr); if (pch) { mutex_lock_nested(& (ch->st)->lmutex, 0); list_del(& pch->list); mutex_unlock(& (ch->st)->lmutex); (*(pch->ctrl))(pch, 512, (void *)0); pch = ((ch->st)->dev)->teimgr; (*(pch->ctrl))(pch, 512, (void *)0); } else { printk("<4>%s: no l2 channel\n", "delete_channel"); } break; case (u_int )17: pch = ((ch->st)->dev)->teimgr; if (pch) { (*(pch->ctrl))(pch, 512, (void *)0); } else { printk("<4>%s: no l2 channel\n", "delete_channel"); } break; default: break; } return; } } void delete_stack(struct mISDNdevice *dev ) { struct mISDNstack *st ; struct completion done ; int tmp ; int tmp___0 ; { st = dev->D.st; init_completion(& done); done = done; if (*debug___1 & 2U) { printk("<7>%s: st(%s)\n", "delete_stack", (st->dev)->name); } else { } if (dev->teimgr) { delete_teimanager(dev->teimgr); } else { } if (st->thread) { if (st->notify) { printk("<4>%s: notifier in use\n", "delete_stack"); complete(st->notify); } else { } st->notify = & done; test_and_set_bit(15, & st->status); test_and_set_bit(4, & st->status); __wake_up(& st->workq, 1, 1, (void *)0); wait_for_completion(& done); } else { } tmp = list_empty(& st->layer2); if (tmp) { } else { printk("<4>%s: layer2 list not empty\n", "delete_stack"); } tmp___0 = hlist_empty(& st->l1sock.head); if (tmp___0) { } else { printk("<4>%s: layer1 list not empty\n", "delete_stack"); } kfree(st); return; } } void mISDN_initstack(u_int *dp ) { { debug___1 = dp; return; } } void ldv__builtin_va_end(__builtin_va_list ) ; void ldv__builtin_va_start(__builtin_va_list ) ; extern int ( /* format attribute */ vprintk)(char const *fmt , va_list args ) ; __inline static void local_inc(local_t *l ) { { __asm__ volatile (" " "incq" " " "%0": "+m" (l->a.counter)); return; } } extern unsigned int module_refcount(struct module *mod ) ; __inline static void __module_get(struct module *module ) { unsigned int tmp ; int tmp___0 ; long tmp___1 ; unsigned int ret__ ; { if (module) { while (1) { tmp = module_refcount(module); if (tmp == 0U) { tmp___0 = 1; } else { tmp___0 = 0; } tmp___1 = ldv__builtin_expect(tmp___0, 0); if (tmp___1) { while (1) { __asm__ volatile ("1:\tud2\n" ".pushsection __bug_table,\"a\"\n" "2:\t.quad 1b, %c0\n" "\t.word %c1, 0\n" "\t.org 2b+%c2\n" ".popsection": : "i" ("include/linux/module.h"), "i" (390), "i" (sizeof(struct bug_entry ))); while (1) { } break; } } else { } break; } while (1) { break; } switch (sizeof(_proxy_pda.cpunumber)) { case 2UL: __asm__ ("mov" "w %%gs:%c1,%0": "=r" (ret__): "i" ((unsigned int )(& ((struct x8664_pda *)0)->cpunumber)), "m" (_proxy_pda.cpunumber)); break; case 4UL: __asm__ ("mov" "l %%gs:%c1,%0": "=r" (ret__): "i" ((unsigned int )(& ((struct x8664_pda *)0)->cpunumber)), "m" (_proxy_pda.cpunumber)); break; case 8UL: __asm__ ("mov" "q %%gs:%c1,%0": "=r" (ret__): "i" ((unsigned int )(& ((struct x8664_pda *)0)->cpunumber)), "m" (_proxy_pda.cpunumber)); break; default: __bad_pda_field(); } local_inc(& module->ref[ret__].count); while (1) { break; } } else { } return; } } extern void module_put(struct module *module ) ; int create_l1(struct dchannel *dch , dchannel_l1callback *dcb ) ; int l1_event(struct layer1 *l1 , u_int event ) ; static int *debug___2 ; static struct Fsm l1fsm_s = {(void *)0, 0, 0, (void *)0, (void *)0}; static char *strL1SState[7] = { "ST_L1_F2", "ST_L1_F3", "ST_L1_F4", "ST_L1_F5", "ST_L1_F6", "ST_L1_F7", "ST_L1_F8"}; static char *strL1Event[12] = { "EV_PH_ACTIVATE", "EV_PH_DEACTIVATE", "EV_RESET_IND", "EV_DEACT_CNF", "EV_DEACT_IND", "EV_POWER_UP", "EV_ANYSIG_IND", "EV_INFO2_IND", "EV_INFO4_IND", "EV_TIMER_DEACT", "EV_TIMER_ACT", "EV_TIMER3"}; static void l1m_debug(struct FsmInst *fi , char *fmt , ...) { struct layer1 *l1 ; va_list va ; { l1 = fi->userdata; ldv__builtin_va_start(va); printk("<7>%s: ", (l1->dch)->dev.name); vprintk(fmt, va); printk("\n"); ldv__builtin_va_end(va); return; } } static void l1_reset(struct FsmInst *fi , int event , void *arg ) { { mISDN_FsmChangeState(fi, ST_L1_F3); return; } } static void l1_deact_cnf(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; int tmp ; { l1 = fi->userdata; mISDN_FsmChangeState(fi, ST_L1_F3); tmp = constant_test_bit(1, & l1->Flags); if (tmp) { (*(l1->dcb))(l1->dch, 35586); } else { } return; } } static void l1_deact_req_s(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; { l1 = fi->userdata; mISDN_FsmChangeState(fi, ST_L1_F3); mISDN_FsmRestartTimer(& l1->timer, 550, EV_TIMER_DEACT, (void *)0, 2); test_and_set_bit(3, & l1->Flags); return; } } static void l1_power_up_s(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; int tmp ; { l1 = fi->userdata; tmp = constant_test_bit(1, & l1->Flags); if (tmp) { mISDN_FsmChangeState(fi, ST_L1_F4); (*(l1->dcb))(l1->dch, 33538); } else { mISDN_FsmChangeState(fi, ST_L1_F3); } return; } } static void l1_go_F5(struct FsmInst *fi , int event , void *arg ) { { mISDN_FsmChangeState(fi, ST_L1_F5); return; } } static void l1_go_F8(struct FsmInst *fi , int event , void *arg ) { { mISDN_FsmChangeState(fi, ST_L1_F8); return; } } static void l1_info2_ind(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; { l1 = fi->userdata; mISDN_FsmChangeState(fi, ST_L1_F6); (*(l1->dcb))(l1->dch, 33538); return; } } static void l1_info4_ind(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; int tmp ; int tmp___0 ; int tmp___1 ; { l1 = fi->userdata; mISDN_FsmChangeState(fi, ST_L1_F7); (*(l1->dcb))(l1->dch, 33538); tmp = test_and_clear_bit(3, & l1->Flags); if (tmp) { mISDN_FsmDelTimer(& l1->timer, 4); } else { } tmp___1 = constant_test_bit(2, & l1->Flags); if (tmp___1) { } else { tmp___0 = test_and_clear_bit(5, & l1->Flags); if (tmp___0) { mISDN_FsmDelTimer(& l1->timer, 3); } else { } mISDN_FsmRestartTimer(& l1->timer, 110, EV_TIMER_ACT, (void *)0, 2); test_and_set_bit(4, & l1->Flags); } return; } } static void l1_timer3(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; int tmp ; int tmp___0 ; { l1 = fi->userdata; test_and_clear_bit(5, & l1->Flags); tmp___0 = test_and_clear_bit(1, & l1->Flags); if (tmp___0) { tmp = test_and_clear_bit(8, & l1->Flags); if (tmp) { (*(l1->dcb))(l1->dch, 36610); } else { } (*(l1->dcb))(l1->dch, 514); } else { } if (l1->l1m.state != ST_L1_F6) { mISDN_FsmChangeState(fi, ST_L1_F3); (*(l1->dcb))(l1->dch, 35586); } else { } return; } } static void l1_timer_act(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; { l1 = fi->userdata; test_and_clear_bit(4, & l1->Flags); test_and_set_bit(2, & l1->Flags); (*(l1->dcb))(l1->dch, 258); return; } } static void l1_timer_deact(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; int tmp ; { l1 = fi->userdata; test_and_clear_bit(3, & l1->Flags); test_and_clear_bit(2, & l1->Flags); tmp = test_and_clear_bit(8, & l1->Flags); if (tmp) { (*(l1->dcb))(l1->dch, 36610); } else { } (*(l1->dcb))(l1->dch, 514); (*(l1->dcb))(l1->dch, 35842); return; } } static void l1_activate_s(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; { l1 = fi->userdata; mISDN_FsmRestartTimer(& l1->timer, 7000, EV_TIMER3, (void *)0, 2); test_and_set_bit(5, & l1->Flags); (*(l1->dcb))(l1->dch, 35330); return; } } static void l1_activate_no(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; int tmp ; int tmp___0 ; int tmp___2 ; { l1 = fi->userdata; tmp___0 = constant_test_bit(3, & l1->Flags); if (tmp___0) { } else { tmp___2 = constant_test_bit(5, & l1->Flags); if (tmp___2) { } else { test_and_clear_bit(1, & l1->Flags); tmp = test_and_clear_bit(8, & l1->Flags); if (tmp) { (*(l1->dcb))(l1->dch, 36610); } else { } (*(l1->dcb))(l1->dch, 514); } } return; } } static struct FsmNode L1SFnList[44] = { {ST_L1_F3, EV_PH_ACTIVATE, & l1_activate_s}, {ST_L1_F6, EV_PH_ACTIVATE, & l1_activate_no}, {ST_L1_F8, EV_PH_ACTIVATE, & l1_activate_no}, {ST_L1_F3, EV_RESET_IND, & l1_reset}, {ST_L1_F4, EV_RESET_IND, & l1_reset}, {ST_L1_F5, EV_RESET_IND, & l1_reset}, {ST_L1_F6, EV_RESET_IND, & l1_reset}, {ST_L1_F7, EV_RESET_IND, & l1_reset}, {ST_L1_F8, EV_RESET_IND, & l1_reset}, {ST_L1_F3, EV_DEACT_CNF, & l1_deact_cnf}, {ST_L1_F4, EV_DEACT_CNF, & l1_deact_cnf}, {ST_L1_F5, EV_DEACT_CNF, & l1_deact_cnf}, {ST_L1_F6, EV_DEACT_CNF, & l1_deact_cnf}, {ST_L1_F7, EV_DEACT_CNF, & l1_deact_cnf}, {ST_L1_F8, EV_DEACT_CNF, & l1_deact_cnf}, {ST_L1_F6, EV_DEACT_IND, & l1_deact_req_s}, {ST_L1_F7, EV_DEACT_IND, & l1_deact_req_s}, {ST_L1_F8, EV_DEACT_IND, & l1_deact_req_s}, {ST_L1_F3, EV_POWER_UP, & l1_power_up_s}, {ST_L1_F4, EV_ANYSIG_IND, & l1_go_F5}, {ST_L1_F6, EV_ANYSIG_IND, & l1_go_F8}, {ST_L1_F7, EV_ANYSIG_IND, & l1_go_F8}, {ST_L1_F3, EV_INFO2_IND, & l1_info2_ind}, {ST_L1_F4, EV_INFO2_IND, & l1_info2_ind}, {ST_L1_F5, EV_INFO2_IND, & l1_info2_ind}, {ST_L1_F7, EV_INFO2_IND, & l1_info2_ind}, {ST_L1_F8, EV_INFO2_IND, & l1_info2_ind}, {ST_L1_F3, EV_INFO4_IND, & l1_info4_ind}, {ST_L1_F4, EV_INFO4_IND, & l1_info4_ind}, {ST_L1_F5, EV_INFO4_IND, & l1_info4_ind}, {ST_L1_F6, EV_INFO4_IND, & l1_info4_ind}, {ST_L1_F8, EV_INFO4_IND, & l1_info4_ind}, {ST_L1_F3, EV_TIMER3, & l1_timer3}, {ST_L1_F4, EV_TIMER3, & l1_timer3}, {ST_L1_F5, EV_TIMER3, & l1_timer3}, {ST_L1_F6, EV_TIMER3, & l1_timer3}, {ST_L1_F8, EV_TIMER3, & l1_timer3}, {ST_L1_F7, EV_TIMER_ACT, & l1_timer_act}, {ST_L1_F3, EV_TIMER_DEACT, & l1_timer_deact}, {ST_L1_F4, EV_TIMER_DEACT, & l1_timer_deact}, {ST_L1_F5, EV_TIMER_DEACT, & l1_timer_deact}, {ST_L1_F6, EV_TIMER_DEACT, & l1_timer_deact}, {ST_L1_F7, EV_TIMER_DEACT, & l1_timer_deact}, {ST_L1_F8, EV_TIMER_DEACT, & l1_timer_deact}}; static void release_l1(struct layer1 *l1 ) { { mISDN_FsmDelTimer(& l1->timer, 0); if (l1->dch) { (l1->dch)->l1 = (void *)0; } else { } module_put(& __this_module); kfree(l1); return; } } int l1_event(struct layer1 *l1 , u_int event ) { int err ; int tmp ; { err = 0; if (! l1) { return (-22); } else { } switch (event) { case (u_int )36866: mISDN_FsmEvent(& l1->l1m, EV_RESET_IND, (void *)0); break; case (u_int )37378: mISDN_FsmEvent(& l1->l1m, EV_DEACT_IND, (void *)0); break; case (u_int )37122: mISDN_FsmEvent(& l1->l1m, EV_POWER_UP, (void *)0); break; case (u_int )37890: mISDN_FsmEvent(& l1->l1m, EV_DEACT_CNF, (void *)0); break; case (u_int )34818: mISDN_FsmEvent(& l1->l1m, EV_ANYSIG_IND, (void *)0); break; case (u_int )34562: mISDN_FsmEvent(& l1->l1m, EV_ANYSIG_IND, (void *)0); break; case (u_int )33282: mISDN_FsmEvent(& l1->l1m, EV_INFO2_IND, (void *)0); break; case (u_int )34050: mISDN_FsmEvent(& l1->l1m, EV_INFO4_IND, (void *)0); break; case (u_int )34306: mISDN_FsmEvent(& l1->l1m, EV_INFO4_IND, (void *)0); break; case (u_int )257: tmp = constant_test_bit(2, & l1->Flags); if (tmp) { (*(l1->dcb))(l1->dch, 258); } else { test_and_set_bit(1, & l1->Flags); mISDN_FsmEvent(& l1->l1m, EV_PH_ACTIVATE, (void *)0); } break; case (u_int )512: release_l1(l1); break; default: if (*debug___2 & 65280) { printk("<7>%s %x unhandled\n", "l1_event", event); } else { } err = -22; } return (err); } } extern void *__crc_l1_event __attribute__((__weak__)) ; static unsigned long const __kcrctab_l1_event __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_l1_event); static char const __kstrtab_l1_event[9] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'l', '1', '_', 'e', 'v', 'e', 'n', 't', '\000'}; static struct kernel_symbol const __ksymtab_l1_event __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& l1_event), __kstrtab_l1_event}; int create_l1(struct dchannel *dch , dchannel_l1callback *dcb ) { struct layer1 *nl1 ; void *tmp ; { tmp = kzalloc(sizeof(struct layer1 ), 32U); nl1 = tmp; if (! nl1) { printk("<3>kmalloc struct layer1 failed\n"); return (-12); } else { } nl1->l1m.fsm = & l1fsm_s; nl1->l1m.state = ST_L1_F3; nl1->Flags = 0; nl1->l1m.debug = *debug___2 & 512; nl1->l1m.userdata = nl1; nl1->l1m.userint = 0; nl1->l1m.printdebug = & l1m_debug; nl1->dch = dch; nl1->dcb = dcb; mISDN_FsmInitTimer(& nl1->l1m, & nl1->timer); __module_get(& __this_module); dch->l1 = nl1; return (0); } } extern void *__crc_create_l1 __attribute__((__weak__)) ; static unsigned long const __kcrctab_create_l1 __attribute__((__used__, __unused__, __section__("__kcrctab"))) = (unsigned long )(& __crc_create_l1); static char const __kstrtab_create_l1[10] __attribute__((__section__("__ksymtab_strings"), __aligned__(1))) = { 'c', 'r', 'e', 'a', 't', 'e', '_', 'l', '1', '\000'}; static struct kernel_symbol const __ksymtab_create_l1 __attribute__((__used__, __unused__, __section__("__ksymtab"))) = {(unsigned long )(& create_l1), __kstrtab_create_l1}; int l1_init(u_int *deb ) { { debug___2 = deb; l1fsm_s.state_count = ST_L1_F8 + 1; l1fsm_s.event_count = EV_TIMER3 + 1; l1fsm_s.strEvent = strL1Event; l1fsm_s.strState = strL1SState; mISDN_FsmNew(& l1fsm_s, L1SFnList, sizeof(L1SFnList) / sizeof(L1SFnList[0]) + (sizeof(char [1 - 2 * 0]) - 1UL)); return (0); } } void l1_cleanup(void) { { mISDN_FsmFree(& l1fsm_s); return; } } extern struct sk_buff *skb_clone(struct sk_buff *skb , gfp_t priority ) ; __inline static __u32 skb_queue_len(struct sk_buff_head const *list_ ) { { return (list_->qlen); } } static struct lock_class_key __key___8 ; __inline static void skb_queue_head_init___1(struct sk_buff_head *list ) { { while (1) { __spin_lock_init(& list->lock, "&list->lock", & __key___8); break; } __skb_queue_head_init(list); return; } } __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return (skb->data - skb->head); } } extern void skb_trim(struct sk_buff *skb , unsigned int len ) ; struct layer2 *create_l2(struct mISDNchannel *ch , u_int protocol , u_long options , u_long arg ) ; int tei_l2(struct layer2 *l2 , u_int cmd , u_long arg ) ; int l2_tei(struct layer2 *l2 , u_int cmd , u_long arg ) ; void TEIrelease(struct layer2 *l2 ) ; int TEIInit(u_int *deb ) ; void TEIFree(void) ; static int *debug___3 ; static struct Fsm l2fsm = {(void *)0, 0, 0, (void *)0, (void *)0}; static char *strL2State[8] = { "ST_L2_1", "ST_L2_2", "ST_L2_3", "ST_L2_4", "ST_L2_5", "ST_L2_6", "ST_L2_7", "ST_L2_8"}; static char *strL2Event[22] = { "EV_L2_UI", "EV_L2_SABME", "EV_L2_DISC", "EV_L2_DM", "EV_L2_UA", "EV_L2_FRMR", "EV_L2_SUPER", "EV_L2_I", "EV_L2_DL_DATA", "EV_L2_ACK_PULL", "EV_L2_DL_UNITDATA", "EV_L2_DL_ESTABLISH_REQ", "EV_L2_DL_RELEASE_REQ", "EV_L2_MDL_ASSIGN", "EV_L2_MDL_REMOVE", "EV_L2_MDL_ERROR", "EV_L1_DEACTIVATE", "EV_L2_T200", "EV_L2_T203", "EV_L2_SET_OWN_BUSY", "EV_L2_CLEAR_OWN_BUSY", "EV_L2_FRAME_ERROR"}; static void l2m_debug(struct FsmInst *fi , char *fmt , ...) { struct layer2 *l2 ; va_list va ; { l2 = fi->userdata; if (! (*debug___3 & 131072)) { return; } else { } ldv__builtin_va_start(va); printk("<7>l2 (tei %d): ", l2->tei); vprintk(fmt, va); printk("\n"); ldv__builtin_va_end(va); return; } } __inline u_int l2headersize(struct layer2 *l2 , int ui ) { int tmp ; int tmp___1 ; { tmp = constant_test_bit(3, & l2->flag); tmp___1 = constant_test_bit(1, & l2->flag); return ((tmp && ! ui ? 2 : 1) + (tmp___1 ? 2 : 1)); } } __inline u_int l2addrsize(struct layer2 *l2 ) { int tmp ; { tmp = constant_test_bit(1, & l2->flag); return (tmp ? 2 : 1); } } static u_int l2_newid(struct layer2 *l2 ) { u_int id ; u_int tmp ; { tmp = l2->next_id; l2->next_id = l2->next_id + (u_int )1; id = tmp; if (id == (u_int )32767) { l2->next_id = 1; } else { } id = id << 16; id = id | (unsigned int )((int )l2->tei << 8); id = id | (unsigned int )l2->sapi; return (id); } } static void l2up(struct layer2 *l2 , u_int prim , struct sk_buff *skb ) { int err ; { if (! l2->up) { return; } else { } ((struct mISDNhead *)(& skb->cb[0]))->prim = prim; ((struct mISDNhead *)(& skb->cb[0]))->id = (l2->ch.nr << 16) | l2->ch.addr; err = (*((l2->up)->send))(l2->up, skb); if (err) { printk("<4>%s: err=%d\n", "l2up", err); kfree_skb(skb); } else { } return; } } static void l2up_create(struct layer2 *l2 , u_int prim , int len , void *arg ) { struct sk_buff *skb ; struct mISDNhead *hh ; int err ; size_t __len ; void *__ret ; unsigned char *tmp___0 ; { if (! l2->up) { return; } else { } skb = mI_alloc_skb(len, 32U); if (! skb) { return; } else { } hh = (struct mISDNhead *)(& skb->cb[0]); hh->prim = prim; hh->id = (l2->ch.nr << 16) | l2->ch.addr; if (len) { __len = len; tmp___0 = skb_put(skb, len); __ret = memcpy(tmp___0, arg, __len); } else { } err = (*((l2->up)->send))(l2->up, skb); if (err) { printk("<4>%s: err=%d\n", "l2up_create", err); kfree_skb(skb); } else { } return; } } static int l2down_skb(struct layer2 *l2 , struct sk_buff *skb ) { int ret ; { ret = (*(l2->ch.recv))(l2->ch.peer, skb); if (ret && *debug___3 & 524288) { printk("<7>l2down_skb: ret(%d)\n", ret); } else { } return (ret); } } static int l2down_raw(struct layer2 *l2 , struct sk_buff *skb ) { struct mISDNhead *hh ; int tmp ; int tmp___0 ; { hh = (struct mISDNhead *)(& skb->cb[0]); if (hh->prim == 8193U) { tmp = test_and_set_bit(17, & l2->flag); if (tmp) { skb_queue_tail(& l2->down_queue, skb); return (0); } else { } l2->down_id = ((struct mISDNhead *)(& skb->cb[0]))->id; } else { } tmp___0 = l2down_skb(l2, skb); return (tmp___0); } } static int l2down(struct layer2 *l2 , u_int prim , u_int id , struct sk_buff *skb ) { struct mISDNhead *hh ; int tmp ; { hh = (struct mISDNhead *)(& skb->cb[0]); hh->prim = prim; hh->id = id; tmp = l2down_raw(l2, skb); return (tmp); } } static int l2down_create(struct layer2 *l2 , u_int prim , u_int id , int len , void *arg ) { struct sk_buff *skb ; int err ; struct mISDNhead *hh ; size_t __len ; void *__ret ; unsigned char *tmp___0 ; { skb = mI_alloc_skb(len, 32U); if (! skb) { return (-12); } else { } hh = (struct mISDNhead *)(& skb->cb[0]); hh->prim = prim; hh->id = id; if (len) { __len = len; tmp___0 = skb_put(skb, len); __ret = memcpy(tmp___0, arg, __len); } else { } err = l2down_raw(l2, skb); if (err) { kfree_skb(skb); } else { } return (err); } } static int ph_data_confirm(struct layer2 *l2 , struct mISDNhead *hh , struct sk_buff *skb ) { struct sk_buff *nskb ; int ret ; int tmp ; int tmp___0 ; int tmp___2 ; int tmp___3 ; { nskb = skb; ret = -11; tmp___0 = constant_test_bit(17, & l2->flag); if (tmp___0) { if (hh->id == l2->down_id) { nskb = skb_dequeue(& l2->down_queue); if (nskb) { l2->down_id = ((struct mISDNhead *)(& nskb->cb[0]))->id; tmp = l2down_skb(l2, nskb); if (tmp) { kfree_skb(nskb); l2->down_id = 65534; } else { } } else { l2->down_id = 65534; } if (ret) { kfree_skb(skb); ret = 0; } else { } if (l2->down_id == (u_int )65534) { test_and_clear_bit(17, & l2->flag); mISDN_FsmEvent(& l2->l2m, EV_L2_ACK_PULL, (void *)0); } else { } } else { } } else { } tmp___3 = test_and_set_bit(17, & l2->flag); if (tmp___3) { } else { nskb = skb_dequeue(& l2->down_queue); if (nskb) { l2->down_id = ((struct mISDNhead *)(& nskb->cb[0]))->id; tmp___2 = l2down_skb(l2, nskb); if (tmp___2) { kfree_skb(nskb); l2->down_id = 65534; test_and_clear_bit(17, & l2->flag); } else { } } else { test_and_clear_bit(17, & l2->flag); } } return (ret); } } static int l2mgr(struct layer2 *l2 , u_int prim , void *arg ) { long c ; int tmp ; int tmp___1 ; { c = (long )arg; printk("<4>l2mgr: addr:%x prim %x %c\n", l2->id, prim, (char )c); tmp = constant_test_bit(1, & l2->flag); if (tmp) { tmp___1 = constant_test_bit(15, & l2->flag); if (tmp___1) { } else { switch (c) { case (long )'H': case (long )'G': case (long )'D': case (long )'C': l2_tei(l2, prim, (u_long )arg); break; } } } else { } return (0); } } static void set_peer_busy(struct layer2 *l2 ) { __u32 tmp ; __u32 tmp___0 ; { test_and_set_bit(10, & l2->flag); tmp = skb_queue_len(& l2->i_queue); if (tmp) { test_and_set_bit(16, & l2->flag); } else { tmp___0 = skb_queue_len(& l2->ui_queue); if (tmp___0) { test_and_set_bit(16, & l2->flag); } else { } } return; } } static void clear_peer_busy(struct layer2 *l2 ) { int tmp ; { tmp = test_and_clear_bit(10, & l2->flag); if (tmp) { test_and_clear_bit(16, & l2->flag); } else { } return; } } static void InitWin(struct layer2 *l2 ) { int i ; { i = 0; while (1) { if (i < 8) { } else { break; } l2->windowar[i] = (void *)0; i = i + 1; } return; } } static int freewin(struct layer2 *l2 ) { int i ; int cnt ; { cnt = 0; i = 0; while (1) { if (i < 8) { } else { break; } if (l2->windowar[i]) { cnt = cnt + 1; kfree_skb(l2->windowar[i]); l2->windowar[i] = (void *)0; } else { } i = i + 1; } return (cnt); } } static void ReleaseWin(struct layer2 *l2 ) { int cnt ; int tmp ; { tmp = freewin(l2); cnt = tmp; if (cnt) { printk("<4>isdnl2 freed %d skbuffs in release\n", cnt); } else { } return; } } __inline unsigned int cansend(struct layer2 *l2 ) { unsigned int p1 ; int tmp ; int tmp___1 ; int tmp___3 ; { tmp = constant_test_bit(3, & l2->flag); if (tmp) { p1 = (l2->vs - l2->va) % 128U; } else { p1 = (l2->vs - l2->va) % 8U; } if (p1 < l2->window) { tmp___1 = constant_test_bit(10, & l2->flag); if (tmp___1) { tmp___3 = 0; } else { tmp___3 = 1; } } else { tmp___3 = 0; } return (tmp___3); } } __inline void clear_exception(struct layer2 *l2 ) { { test_and_clear_bit(7, & l2->flag); test_and_clear_bit(8, & l2->flag); test_and_clear_bit(9, & l2->flag); clear_peer_busy(l2); return; } } static int sethdraddr(struct layer2 *l2 , u_char *header , int rsp ) { u_char *ptr ; int crbit ; int tmp ; u_char *tmp___1 ; u_char *tmp___2 ; int tmp___3 ; u_char *tmp___5 ; u_char *tmp___6 ; int tmp___7 ; { ptr = header; crbit = rsp; tmp___7 = constant_test_bit(1, & l2->flag); if (tmp___7) { tmp = constant_test_bit(18, & l2->flag); if (tmp) { crbit = ! crbit; } else { } tmp___1 = ptr; ptr = ptr + 1; *tmp___1 = ((int )l2->sapi << 2) | (crbit ? 2 : 0); tmp___2 = ptr; ptr = ptr + 1; *tmp___2 = ((int )l2->tei << 1) | 1; return (2); } else { tmp___3 = constant_test_bit(2, & l2->flag); if (tmp___3) { crbit = ! crbit; } else { } if (crbit) { tmp___5 = ptr; ptr = ptr + 1; *tmp___5 = l2->addr.B; } else { tmp___6 = ptr; ptr = ptr + 1; *tmp___6 = l2->addr.A; } return (1); } } } __inline static void enqueue_super(struct layer2 *l2 , struct sk_buff *skb ) { u_int tmp ; int tmp___0 ; { tmp = l2_newid(l2); tmp___0 = l2down(l2, 8193, tmp, skb); if (tmp___0) { kfree_skb(skb); } else { } return; } } __inline static void enqueue_ui(struct layer2 *l2 , struct sk_buff *skb ) { u_int tmp ; int tmp___0 ; { if (l2->tm) { l2_tei(l2, 7684, 0); } else { } tmp = l2_newid(l2); tmp___0 = l2down(l2, 8193, tmp, skb); if (tmp___0) { kfree_skb(skb); } else { } return; } } __inline int IsUI(u_char *data ) { { return (((int )*(data + 0) & 239) == 3); } } __inline int IsUA(u_char *data ) { { return (((int )*(data + 0) & 239) == 99); } } __inline int IsDM(u_char *data ) { { return (((int )*(data + 0) & 239) == 15); } } __inline int IsDISC(u_char *data ) { { return (((int )*(data + 0) & 239) == 67); } } __inline int IsSFrame(u_char *data , struct layer2 *l2 ) { register u_char d ; int tmp ; { d = *data; tmp = constant_test_bit(3, & l2->flag); if (tmp) { } else { d = (int )d & 15; } return (((int )d & 243) == 1 && ((int )d & 12) != 12); } } __inline int IsSABME(u_char *data , struct layer2 *l2 ) { u_char d ; int tmp ; { d = (int )*(data + 0) & ~ 16; tmp = constant_test_bit(3, & l2->flag); return (tmp ? (int )d == 111 : (int )d == 47); } } __inline int IsREJ(u_char *data , struct layer2 *l2 ) { int tmp ; { tmp = constant_test_bit(3, & l2->flag); return (tmp ? (int )*(data + 0) == 9 : ((int )*(data + 0) & 15) == 9); } } __inline int IsFRMR(u_char *data ) { { return (((int )*(data + 0) & 239) == 135); } } __inline int IsRNR(u_char *data , struct layer2 *l2 ) { int tmp ; { tmp = constant_test_bit(3, & l2->flag); return (tmp ? (int )*(data + 0) == 5 : ((int )*(data + 0) & 15) == 5); } } int iframe_error(struct layer2 *l2 , struct sk_buff *skb ) { u_int i ; int rsp ; u_int tmp ; int tmp___0 ; int tmp___2 ; { rsp = (int )*(skb->data) & 2; tmp = l2addrsize(l2); tmp___0 = constant_test_bit(3, & l2->flag); i = tmp + (u_int )(tmp___0 ? 2 : 1); tmp___2 = constant_test_bit(2, & l2->flag); if (tmp___2) { rsp = ! rsp; } else { } if (rsp) { return ('L'); } else { } if (skb->len < i) { return ('N'); } else { } if (skb->len - i > l2->maxlen) { return ('O'); } else { } return (0); } } int super_error(struct layer2 *l2 , struct sk_buff *skb ) { u_int tmp ; int tmp___0 ; { tmp = l2addrsize(l2); tmp___0 = constant_test_bit(3, & l2->flag); if (skb->len != tmp + (u_int )(tmp___0 ? 2 : 1)) { return ('N'); } else { } return (0); } } int unnum_error(struct layer2 *l2 , struct sk_buff *skb , int wantrsp ) { int rsp ; int tmp ; u_int tmp___1 ; { rsp = ((int )*(skb->data) & 2) >> 1; tmp = constant_test_bit(2, & l2->flag); if (tmp) { rsp = ! rsp; } else { } if (rsp != wantrsp) { return ('L'); } else { } tmp___1 = l2addrsize(l2); if (skb->len != tmp___1 + (u_int )1) { return ('N'); } else { } return (0); } } int UI_error(struct layer2 *l2 , struct sk_buff *skb ) { int rsp ; int tmp ; u_int tmp___1 ; { rsp = (int )*(skb->data) & 2; tmp = constant_test_bit(2, & l2->flag); if (tmp) { rsp = ! rsp; } else { } if (rsp) { return ('L'); } else { } tmp___1 = l2addrsize(l2); if (skb->len > (l2->maxlen + tmp___1) + (u_int )1) { return ('O'); } else { } return (0); } } int FRMR_error(struct layer2 *l2 , struct sk_buff *skb ) { u_int headers ; u_int tmp ; u_char *datap ; int rsp ; int tmp___0 ; int tmp___2 ; { tmp = l2addrsize(l2); headers = tmp + (u_int )1; datap = skb->data + headers; rsp = (int )*(skb->data) & 2; tmp___0 = constant_test_bit(2, & l2->flag); if (tmp___0) { rsp = ! rsp; } else { } if (! rsp) { return ('L'); } else { } tmp___2 = constant_test_bit(3, & l2->flag); if (tmp___2) { if (skb->len < headers + (u_int )5) { return ('N'); } else if (*debug___3 & 16711680) { l2m_debug(& l2->l2m, "FRMR information %2x %2x %2x %2x %2x", *(datap + 0), *(datap + 1), *(datap + 2), *(datap + 3), *(datap + 4)); } else { } } else if (skb->len < headers + (u_int )3) { return ('N'); } else if (*debug___3 & 16711680) { l2m_debug(& l2->l2m, "FRMR information %2x %2x %2x", *(datap + 0), *(datap + 1), *(datap + 2)); } else { } return (0); } } static unsigned int legalnr(struct layer2 *l2 , unsigned int nr ) { int tmp ; { tmp = constant_test_bit(3, & l2->flag); if (tmp) { return ((nr - l2->va) % 128U <= (l2->vs - l2->va) % 128U); } else { return ((nr - l2->va) % 8U <= (l2->vs - l2->va) % 8U); } } } static void setva(struct layer2 *l2 , unsigned int nr ) { struct sk_buff *skb ; int tmp ; { while (1) { if (l2->va != nr) { } else { break; } l2->va = l2->va + (u_int )1; tmp = constant_test_bit(3, & l2->flag); if (tmp) { l2->va = l2->va % 128U; } else { l2->va = l2->va % 8U; } if (l2->windowar[l2->sow]) { skb_trim(l2->windowar[l2->sow], 0); skb_queue_tail(& l2->tmp_queue, l2->windowar[l2->sow]); l2->windowar[l2->sow] = (void *)0; } else { } l2->sow = (l2->sow + (u_int )1) % l2->window; } skb = skb_dequeue(& l2->tmp_queue); while (1) { if (skb) { } else { break; } kfree_skb(skb); skb = skb_dequeue(& l2->tmp_queue); } return; } } static void send_uframe(struct layer2 *l2 , struct sk_buff *skb , u_char cmd , u_char cr ) { u_char tmp[4] ; int i ; int tmp___0 ; size_t __len ; void *__ret ; unsigned char *tmp___2 ; { i = sethdraddr(l2, tmp, cr); tmp___0 = i; i = i + 1; tmp[tmp___0] = cmd; if (skb) { skb_trim(skb, 0); } else { skb = mI_alloc_skb(i, 32U); if (! skb) { printk("<4>%s: can\'t alloc skbuff\n", "send_uframe"); return; } else { } } __len = i; tmp___2 = skb_put(skb, i); __ret = memcpy(tmp___2, tmp, __len); enqueue_super(l2, skb); return; } } __inline u_char get_PollFlag(struct layer2 *l2 , struct sk_buff *skb ) { u_int tmp ; { tmp = l2addrsize(l2); return ((int )*(skb->data + tmp) & 16); } } __inline u_char get_PollFlagFree(struct layer2 *l2 , struct sk_buff *skb ) { u_char PF ; { PF = get_PollFlag(l2, skb); kfree_skb(skb); return (PF); } } __inline void start_t200(struct layer2 *l2 , int i ) { { mISDN_FsmAddTimer(& l2->t200, l2->T200, EV_L2_T200, (void *)0, i); test_and_set_bit(6, & l2->flag); return; } } __inline void restart_t200(struct layer2 *l2 , int i ) { { mISDN_FsmRestartTimer(& l2->t200, l2->T200, EV_L2_T200, (void *)0, i); test_and_set_bit(6, & l2->flag); return; } } __inline void stop_t200(struct layer2 *l2 , int i ) { int tmp ; { tmp = test_and_clear_bit(6, & l2->flag); if (tmp) { mISDN_FsmDelTimer(& l2->t200, i); } else { } return; } } __inline void st5_dl_release_l2l3(struct layer2 *l2 ) { int pr ; int tmp ; { tmp = test_and_clear_bit(4, & l2->flag); if (tmp) { pr = 20744; } else { pr = 4360; } l2up_create(l2, pr, 0, (void *)0); return; } } __inline void lapb_dl_release_l2l3(struct layer2 *l2 , int f ) { u_int tmp ; int tmp___0 ; { tmp___0 = constant_test_bit(0, & l2->flag); if (tmp___0) { tmp = l2_newid(l2); l2down_create(l2, 513, tmp, 0, (void *)0); } else { } l2up_create(l2, f, 0, (void *)0); return; } } static void establishlink(struct FsmInst *fi ) { struct layer2 *l2 ; u_char cmd ; int tmp ; { l2 = fi->userdata; clear_exception(l2); l2->rc = 0; tmp = constant_test_bit(3, & l2->flag); cmd = (tmp ? 111 : 47) | 16; send_uframe(l2, (void *)0, cmd, 0); mISDN_FsmDelTimer(& l2->t203, 1); restart_t200(l2, 1); test_and_clear_bit(4, & l2->flag); freewin(l2); mISDN_FsmChangeState(fi, ST_L2_5); return; } } static void l2_mdl_error_ua(struct FsmInst *fi , int event , void *arg ) { struct sk_buff *skb ; struct layer2 *l2 ; u_char tmp ; { skb = arg; l2 = fi->userdata; tmp = get_PollFlagFree(l2, skb); if (tmp) { l2mgr(l2, 7940, (void *)'C'); } else { l2mgr(l2, 7940, (void *)'D'); } return; } } static void l2_mdl_error_dm(struct FsmInst *fi , int event , void *arg ) { struct sk_buff *skb ; struct layer2 *l2 ; u_char tmp ; { skb = arg; l2 = fi->userdata; tmp = get_PollFlagFree(l2, skb); if (tmp) { l2mgr(l2, 7940, (void *)'B'); } else { l2mgr(l2, 7940, (void *)'E'); establishlink(fi); test_and_clear_bit(5, & l2->flag); } return; } } static void l2_st8_mdl_error_dm(struct FsmInst *fi , int event , void *arg ) { struct sk_buff *skb ; struct layer2 *l2 ; u_char tmp ; { skb = arg; l2 = fi->userdata; tmp = get_PollFlagFree(l2, skb); if (tmp) { l2mgr(l2, 7940, (void *)'B'); } else { l2mgr(l2, 7940, (void *)'E'); } establishlink(fi); test_and_clear_bit(5, & l2->flag); return; } } static void l2_go_st3(struct FsmInst *fi , int event , void *arg ) { { kfree_skb((struct sk_buff *)arg); mISDN_FsmChangeState(fi, ST_L2_3); return; } } static void l2_mdl_assign(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; { l2 = fi->userdata; mISDN_FsmChangeState(fi, ST_L2_3); kfree_skb((struct sk_buff *)arg); l2_tei(l2, 6404, 0); return; } } static void l2_queue_ui_assign(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = fi->userdata; skb = arg; skb_queue_tail(& l2->ui_queue, skb); mISDN_FsmChangeState(fi, ST_L2_2); l2_tei(l2, 6404, 0); return; } } static void l2_queue_ui(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = fi->userdata; skb = arg; skb_queue_tail(& l2->ui_queue, skb); return; } } static void tx_ui(struct layer2 *l2 ) { struct sk_buff *skb ; u_char header[4] ; int i ; int tmp ; int tmp___1 ; size_t __len ; void *__ret ; unsigned char *tmp___3 ; { i = sethdraddr(l2, header, 0); tmp = constant_test_bit(18, & l2->flag); if (tmp) { header[1] = 255; } else { } tmp___1 = i; i = i + 1; header[tmp___1] = 3; while (1) { skb = skb_dequeue(& l2->ui_queue); if (skb) { } else { break; } __len = i; tmp___3 = skb_push(skb, i); __ret = memcpy(tmp___3, header, __len); enqueue_ui(l2, skb); } return; } } static void l2_send_ui(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = fi->userdata; skb = arg; skb_queue_tail(& l2->ui_queue, skb); tx_ui(l2); return; } } static void l2_got_ui(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; u_int tmp ; { l2 = fi->userdata; skb = arg; tmp = l2headersize(l2, 1); skb_pull(skb, tmp); if (l2->tm) { l2_tei(l2, 7684, 0); } else { } l2up(l2, 12552, skb); return; } } static void l2_establish(struct FsmInst *fi , int event , void *arg ) { struct sk_buff *skb ; struct layer2 *l2 ; { skb = arg; l2 = fi->userdata; establishlink(fi); test_and_set_bit(5, & l2->flag); kfree_skb(skb); return; } } static void l2_discard_i_setl3(struct FsmInst *fi , int event , void *arg ) { struct sk_buff *skb ; struct layer2 *l2 ; { skb = arg; l2 = fi->userdata; skb_queue_purge(& l2->i_queue); test_and_set_bit(5, & l2->flag); test_and_clear_bit(4, & l2->flag); kfree_skb(skb); return; } } static void l2_l3_reestablish(struct FsmInst *fi , int event , void *arg ) { struct sk_buff *skb ; struct layer2 *l2 ; { skb = arg; l2 = fi->userdata; skb_queue_purge(& l2->i_queue); establishlink(fi); test_and_set_bit(5, & l2->flag); kfree_skb(skb); return; } } static void l2_release(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = fi->userdata; skb = arg; skb_trim(skb, 0); l2up(l2, 20744, skb); return; } } static void l2_pend_rel(struct FsmInst *fi , int event , void *arg ) { struct sk_buff *skb ; struct layer2 *l2 ; { skb = arg; l2 = fi->userdata; test_and_set_bit(4, & l2->flag); kfree_skb(skb); return; } } static void l2_disconnect(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = fi->userdata; skb = arg; skb_queue_purge(& l2->i_queue); freewin(l2); mISDN_FsmChangeState(fi, ST_L2_6); l2->rc = 0; send_uframe(l2, (void *)0, 67 | 16, 0); mISDN_FsmDelTimer(& l2->t203, 1); restart_t200(l2, 2); if (skb) { kfree_skb(skb); } else { } return; } } static void l2_start_multi(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; u_char tmp ; { l2 = fi->userdata; skb = arg; l2->vs = 0; l2->va = 0; l2->vr = 0; l2->sow = 0; clear_exception(l2); tmp = get_PollFlag(l2, skb); send_uframe(l2, (void *)0, 99 | (int )tmp, 1); mISDN_FsmChangeState(fi, ST_L2_7); mISDN_FsmAddTimer(& l2->t203, l2->T203, EV_L2_T203, (void *)0, 3); skb_trim(skb, 0); l2up(l2, 4104, skb); if (l2->tm) { l2_tei(l2, 7172, 0); } else { } return; } } static void l2_send_UA(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; u_char tmp ; { l2 = fi->userdata; skb = arg; tmp = get_PollFlag(l2, skb); send_uframe(l2, skb, 99 | (int )tmp, 1); return; } } static void l2_send_DM(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; u_char tmp ; { l2 = fi->userdata; skb = arg; tmp = get_PollFlag(l2, skb); send_uframe(l2, skb, 15 | (int )tmp, 1); return; } } static void l2_restart_multi(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int est ; u_char tmp ; __u32 tmp___0 ; unsigned int tmp___1 ; { l2 = fi->userdata; skb = arg; est = 0; tmp = get_PollFlag(l2, skb); send_uframe(l2, skb, 99 | (int )tmp, 1); l2mgr(l2, 7940, (void *)'F'); if (l2->vs != l2->va) { skb_queue_purge(& l2->i_queue); est = 1; } else { } clear_exception(l2); l2->vs = 0; l2->va = 0; l2->vr = 0; l2->sow = 0; mISDN_FsmChangeState(fi, ST_L2_7); stop_t200(l2, 3); mISDN_FsmRestartTimer(& l2->t203, l2->T203, EV_L2_T203, (void *)0, 3); if (est) { l2up_create(l2, 4104, 0, (void *)0); } else { } tmp___0 = skb_queue_len(& l2->i_queue); if (tmp___0) { tmp___1 = cansend(l2); if (tmp___1) { mISDN_FsmEvent(fi, EV_L2_ACK_PULL, (void *)0); } else { } } else { } return; } } static void l2_stop_multi(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; u_char tmp ; { l2 = fi->userdata; skb = arg; mISDN_FsmChangeState(fi, ST_L2_4); mISDN_FsmDelTimer(& l2->t203, 3); stop_t200(l2, 4); tmp = get_PollFlag(l2, skb); send_uframe(l2, skb, 99 | (int )tmp, 1); skb_queue_purge(& l2->i_queue); freewin(l2); lapb_dl_release_l2l3(l2, 4360); if (l2->tm) { l2_tei(l2, 7428, 0); } else { } return; } } static void l2_connected(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int pr ; u_char tmp ; int tmp___0 ; int tmp___1 ; __u32 tmp___2 ; unsigned int tmp___3 ; { l2 = fi->userdata; skb = arg; pr = -1; tmp = get_PollFlag(l2, skb); if (tmp) { } else { l2_mdl_error_ua(fi, event, arg); return; } kfree_skb(skb); tmp___0 = test_and_clear_bit(4, & l2->flag); if (tmp___0) { l2_disconnect(fi, event, (void *)0); } else { } tmp___1 = test_and_clear_bit(5, & l2->flag); if (tmp___1) { pr = 20488; } else if (l2->vs != l2->va) { skb_queue_purge(& l2->i_queue); pr = 4104; } else { } stop_t200(l2, 5); l2->vr = 0; l2->vs = 0; l2->va = 0; l2->sow = 0; mISDN_FsmChangeState(fi, ST_L2_7); mISDN_FsmAddTimer(& l2->t203, l2->T203, EV_L2_T203, (void *)0, 4); if (pr != -1) { l2up_create(l2, pr, 0, (void *)0); } else { } tmp___2 = skb_queue_len(& l2->i_queue); if (tmp___2) { tmp___3 = cansend(l2); if (tmp___3) { mISDN_FsmEvent(fi, EV_L2_ACK_PULL, (void *)0); } else { } } else { } if (l2->tm) { l2_tei(l2, 7172, 0); } else { } return; } } static void l2_released(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; u_char tmp ; { l2 = fi->userdata; skb = arg; tmp = get_PollFlag(l2, skb); if (tmp) { } else { l2_mdl_error_ua(fi, event, arg); return; } kfree_skb(skb); stop_t200(l2, 6); lapb_dl_release_l2l3(l2, 20744); mISDN_FsmChangeState(fi, ST_L2_4); if (l2->tm) { l2_tei(l2, 7428, 0); } else { } return; } } static void l2_reestablish(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; u_char tmp ; { l2 = fi->userdata; skb = arg; tmp = get_PollFlagFree(l2, skb); if (tmp) { } else { establishlink(fi); test_and_set_bit(5, & l2->flag); } return; } } static void l2_st5_dm_release(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int tmp ; u_int tmp___1 ; int tmp___2 ; u_char tmp___4 ; { l2 = fi->userdata; skb = arg; tmp___4 = get_PollFlagFree(l2, skb); if (tmp___4) { stop_t200(l2, 7); tmp = constant_test_bit(5, & l2->flag); if (tmp) { } else { skb_queue_purge(& l2->i_queue); } tmp___2 = constant_test_bit(0, & l2->flag); if (tmp___2) { tmp___1 = l2_newid(l2); l2down_create(l2, 513, tmp___1, 0, (void *)0); } else { } st5_dl_release_l2l3(l2); mISDN_FsmChangeState(fi, ST_L2_4); if (l2->tm) { l2_tei(l2, 7428, 0); } else { } } else { } return; } } static void l2_st6_dm_release(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; u_char tmp ; { l2 = fi->userdata; skb = arg; tmp = get_PollFlagFree(l2, skb); if (tmp) { stop_t200(l2, 8); lapb_dl_release_l2l3(l2, 20744); mISDN_FsmChangeState(fi, ST_L2_4); if (l2->tm) { l2_tei(l2, 7428, 0); } else { } } else { } return; } } void enquiry_cr(struct layer2 *l2 , u_char typ , u_char cr , u_char pf ) { struct sk_buff *skb ; u_char tmp[4] ; int i ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; size_t __len ; void *__ret ; unsigned char *tmp___6 ; { i = sethdraddr(l2, tmp, cr); tmp___3 = constant_test_bit(3, & l2->flag); if (tmp___3) { tmp___0 = i; i = i + 1; tmp[tmp___0] = typ; tmp___1 = i; i = i + 1; tmp[tmp___1] = (l2->vr << 1) | (unsigned int )(pf ? 1 : 0); } else { tmp___2 = i; i = i + 1; tmp[tmp___2] = ((l2->vr << 5) | (unsigned int )typ) | (unsigned int )(pf ? 16 : 0); } skb = mI_alloc_skb(i, 32U); if (! skb) { printk("<4>isdnl2 can\'t alloc sbbuff for enquiry_cr\n"); return; } else { } __len = i; tmp___6 = skb_put(skb, i); __ret = memcpy(tmp___6, tmp, __len); enqueue_super(l2, skb); return; } } __inline void enquiry_response(struct layer2 *l2 ) { int tmp ; { tmp = constant_test_bit(9, & l2->flag); if (tmp) { enquiry_cr(l2, 5, 1, 1); } else { enquiry_cr(l2, 1, 1, 1); } test_and_clear_bit(7, & l2->flag); return; } } __inline void transmit_enquiry(struct layer2 *l2 ) { int tmp ; { tmp = constant_test_bit(9, & l2->flag); if (tmp) { enquiry_cr(l2, 5, 0, 1); } else { enquiry_cr(l2, 1, 0, 1); } test_and_clear_bit(7, & l2->flag); start_t200(l2, 9); return; } } static void nrerrorrecovery(struct FsmInst *fi ) { struct layer2 *l2 ; { l2 = fi->userdata; l2mgr(l2, 7940, (void *)'J'); establishlink(fi); test_and_clear_bit(5, & l2->flag); return; } } static void invoke_retransmission(struct layer2 *l2 , unsigned int nr ) { u_int p1 ; int tmp ; { if (l2->vs != nr) { while (1) { if (l2->vs != nr) { } else { break; } l2->vs = l2->vs - (u_int )1; tmp = constant_test_bit(3, & l2->flag); if (tmp) { l2->vs = l2->vs % 128U; p1 = (l2->vs - l2->va) % 128U; } else { l2->vs = l2->vs % 8U; p1 = (l2->vs - l2->va) % 8U; } p1 = (p1 + l2->sow) % l2->window; if (l2->windowar[p1]) { skb_queue_head(& l2->i_queue, l2->windowar[p1]); } else { printk("<4>%s: windowar[%d] is NULL\n", "invoke_retransmission", p1); } l2->windowar[p1] = (void *)0; } mISDN_FsmEvent(& l2->l2m, EV_L2_ACK_PULL, (void *)0); } else { } return; } } static void l2_st7_got_super(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int PollFlag ; int rsp ; int typ ; unsigned int nr ; int tmp ; u_int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___6 ; __u32 tmp___7 ; unsigned int tmp___8 ; { l2 = fi->userdata; skb = arg; typ = 1; rsp = (int )*(skb->data) & 2; tmp = constant_test_bit(2, & l2->flag); if (tmp) { rsp = ! rsp; } else { } tmp___1 = l2addrsize(l2); skb_pull(skb, tmp___1); tmp___2 = IsRNR(skb->data, l2); if (tmp___2) { set_peer_busy(l2); typ = 5; } else { clear_peer_busy(l2); } tmp___3 = IsREJ(skb->data, l2); if (tmp___3) { typ = 9; } else { } tmp___4 = constant_test_bit(3, & l2->flag); if (tmp___4) { PollFlag = ((int )*(skb->data + 1) & 1) == 1; nr = (int )*(skb->data + 1) >> 1; } else { PollFlag = (int )*(skb->data + 0) & 16; nr = ((int )*(skb->data + 0) >> 5) & 7; } kfree_skb(skb); if (PollFlag) { if (rsp) { l2mgr(l2, 7940, (void *)'A'); } else { enquiry_response(l2); } } else { } tmp___8 = legalnr(l2, nr); if (tmp___8) { if (typ == 9) { setva(l2, nr); invoke_retransmission(l2, nr); stop_t200(l2, 10); tmp___6 = mISDN_FsmAddTimer(& l2->t203, l2->T203, EV_L2_T203, (void *)0, 6); if (tmp___6) { l2m_debug(& l2->l2m, "Restart T203 ST7 REJ"); } else { } } else if (nr == l2->vs && typ == 1) { setva(l2, nr); stop_t200(l2, 11); mISDN_FsmRestartTimer(& l2->t203, l2->T203, EV_L2_T203, (void *)0, 7); } else if (l2->va != nr || typ == 5) { setva(l2, nr); if (typ != 1) { mISDN_FsmDelTimer(& l2->t203, 9); } else { } restart_t200(l2, 12); } else { } tmp___7 = skb_queue_len(& l2->i_queue); if (tmp___7 && typ == 1) { mISDN_FsmEvent(fi, EV_L2_ACK_PULL, (void *)0); } else { } } else { nrerrorrecovery(fi); } return; } } static void l2_feed_i_if_reest(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int tmp ; { l2 = fi->userdata; skb = arg; tmp = constant_test_bit(5, & l2->flag); if (tmp) { kfree_skb(skb); } else { skb_queue_tail(& l2->i_queue, skb); } return; } } static void l2_feed_i_pull(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = fi->userdata; skb = arg; skb_queue_tail(& l2->i_queue, skb); mISDN_FsmEvent(fi, EV_L2_ACK_PULL, (void *)0); return; } } static void l2_feed_iqueue(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = fi->userdata; skb = arg; skb_queue_tail(& l2->i_queue, skb); return; } } static void l2_got_iframe(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int PollFlag ; int i ; u_int ns ; u_int nr ; u_int tmp ; int tmp___0 ; int tmp___2 ; u_int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___8 ; unsigned int tmp___10 ; __u32 tmp___11 ; int tmp___12 ; { l2 = fi->userdata; skb = arg; tmp = l2addrsize(l2); i = tmp; tmp___0 = constant_test_bit(3, & l2->flag); if (tmp___0) { PollFlag = ((int )*(skb->data + (i + 1)) & 1) == 1; ns = (int )*(skb->data + i) >> 1; nr = ((int )*(skb->data + (i + 1)) >> 1) & 127; } else { PollFlag = (int )*(skb->data + i) & 16; ns = ((int )*(skb->data + i) >> 1) & 7; nr = ((int )*(skb->data + i) >> 5) & 7; } tmp___6 = constant_test_bit(9, & l2->flag); if (tmp___6) { kfree_skb(skb); if (PollFlag) { enquiry_response(l2); } else { } } else if (l2->vr == ns) { l2->vr = l2->vr + (u_int )1; tmp___2 = constant_test_bit(3, & l2->flag); if (tmp___2) { l2->vr = l2->vr % 128U; } else { l2->vr = l2->vr % 8U; } test_and_clear_bit(8, & l2->flag); if (PollFlag) { enquiry_response(l2); } else { test_and_set_bit(7, & l2->flag); } tmp___4 = l2headersize(l2, 0); skb_pull(skb, tmp___4); l2up(l2, 12296, skb); } else { kfree_skb(skb); tmp___5 = test_and_set_bit(8, & l2->flag); if (tmp___5) { if (PollFlag) { enquiry_response(l2); } else { } } else { enquiry_cr(l2, 9, 1, PollFlag); test_and_clear_bit(7, & l2->flag); } } tmp___10 = legalnr(l2, nr); if (tmp___10) { tmp___8 = constant_test_bit(10, & l2->flag); if (tmp___8) { } else if (fi->state == ST_L2_7) { if (nr == l2->vs) { stop_t200(l2, 13); mISDN_FsmRestartTimer(& l2->t203, l2->T203, EV_L2_T203, (void *)0, 7); } else if (nr != l2->va) { restart_t200(l2, 14); } else { } } else { } setva(l2, nr); } else { nrerrorrecovery(fi); return; } tmp___11 = skb_queue_len(& l2->i_queue); if (tmp___11 && fi->state == ST_L2_7) { mISDN_FsmEvent(fi, EV_L2_ACK_PULL, (void *)0); } else { } tmp___12 = test_and_clear_bit(7, & l2->flag); if (tmp___12) { enquiry_cr(l2, 1, 1, 0); } else { } return; } } static void l2_got_tei(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; u_int info ; __u32 tmp ; { l2 = fi->userdata; l2->tei = (signed char )((long )arg); set_channel_address(& l2->ch, l2->sapi, l2->tei); info = 1; l2up_create(l2, 8, sizeof(info), & info); if (fi->state == ST_L2_3) { establishlink(fi); test_and_set_bit(5, & l2->flag); } else { mISDN_FsmChangeState(fi, ST_L2_4); } tmp = skb_queue_len(& l2->ui_queue); if (tmp) { tx_ui(l2); } else { } return; } } static void l2_st5_tout_200(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; u_int tmp ; int tmp___0 ; int tmp___2 ; int tmp___4 ; int tmp___6 ; { l2 = fi->userdata; tmp___4 = constant_test_bit(1, & l2->flag); if (tmp___4) { tmp___6 = constant_test_bit(11, & l2->flag); if (tmp___6) { mISDN_FsmAddTimer(& l2->t200, l2->T200, EV_L2_T200, (void *)0, 9); } else { goto _L; } } else _L: /* CIL Label */ if (l2->rc == l2->N200) { mISDN_FsmChangeState(fi, ST_L2_4); test_and_clear_bit(6, & l2->flag); skb_queue_purge(& l2->i_queue); l2mgr(l2, 7940, (void *)'G'); tmp___0 = constant_test_bit(0, & l2->flag); if (tmp___0) { tmp = l2_newid(l2); l2down_create(l2, 513, tmp, 0, (void *)0); } else { } st5_dl_release_l2l3(l2); if (l2->tm) { l2_tei(l2, 7428, 0); } else { } } else { l2->rc = l2->rc + 1; mISDN_FsmAddTimer(& l2->t200, l2->T200, EV_L2_T200, (void *)0, 9); tmp___2 = constant_test_bit(3, & l2->flag); send_uframe(l2, (void *)0, (tmp___2 ? 111 : 47) | 16, 0); } return; } } static void l2_st6_tout_200(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; int tmp ; int tmp___1 ; { l2 = fi->userdata; tmp = constant_test_bit(1, & l2->flag); if (tmp) { tmp___1 = constant_test_bit(11, & l2->flag); if (tmp___1) { mISDN_FsmAddTimer(& l2->t200, l2->T200, EV_L2_T200, (void *)0, 9); } else { goto _L; } } else _L: /* CIL Label */ if (l2->rc == l2->N200) { mISDN_FsmChangeState(fi, ST_L2_4); test_and_clear_bit(6, & l2->flag); l2mgr(l2, 7940, (void *)'H'); lapb_dl_release_l2l3(l2, 20744); if (l2->tm) { l2_tei(l2, 7428, 0); } else { } } else { l2->rc = l2->rc + 1; mISDN_FsmAddTimer(& l2->t200, l2->T200, EV_L2_T200, (void *)0, 9); send_uframe(l2, (void *)0, 67 | 16, 0); } return; } } static void l2_st7_tout_200(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; int tmp ; int tmp___1 ; { l2 = fi->userdata; tmp = constant_test_bit(1, & l2->flag); if (tmp) { tmp___1 = constant_test_bit(11, & l2->flag); if (tmp___1) { mISDN_FsmAddTimer(& l2->t200, l2->T200, EV_L2_T200, (void *)0, 9); return; } else { } } else { } test_and_clear_bit(6, & l2->flag); l2->rc = 0; mISDN_FsmChangeState(fi, ST_L2_8); transmit_enquiry(l2); l2->rc = l2->rc + 1; return; } } static void l2_st8_tout_200(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; int tmp ; int tmp___1 ; { l2 = fi->userdata; tmp = constant_test_bit(1, & l2->flag); if (tmp) { tmp___1 = constant_test_bit(11, & l2->flag); if (tmp___1) { mISDN_FsmAddTimer(& l2->t200, l2->T200, EV_L2_T200, (void *)0, 9); return; } else { } } else { } test_and_clear_bit(6, & l2->flag); if (l2->rc == l2->N200) { l2mgr(l2, 7940, (void *)'I'); establishlink(fi); test_and_clear_bit(5, & l2->flag); } else { transmit_enquiry(l2); l2->rc = l2->rc + 1; } return; } } static void l2_st7_tout_203(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; int tmp ; int tmp___1 ; { l2 = fi->userdata; tmp = constant_test_bit(1, & l2->flag); if (tmp) { tmp___1 = constant_test_bit(11, & l2->flag); if (tmp___1) { mISDN_FsmAddTimer(& l2->t203, l2->T203, EV_L2_T203, (void *)0, 9); return; } else { } } else { } mISDN_FsmChangeState(fi, ST_L2_8); transmit_enquiry(l2); l2->rc = 0; return; } } static void l2_pull_iqueue(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; struct sk_buff *nskb ; struct sk_buff *oskb ; u_char header[4] ; u_int i ; u_int p1 ; unsigned int tmp ; int tmp___0 ; int tmp___2 ; u_int tmp___3 ; u_int tmp___4 ; u_int tmp___5 ; int tmp___6 ; size_t __len ; void *__ret ; unsigned char *tmp___9 ; size_t __len___0 ; void *__ret___0 ; unsigned char *tmp___11 ; size_t __len___1 ; void *__ret___1 ; unsigned char *tmp___13 ; u_int tmp___14 ; int tmp___15 ; { l2 = fi->userdata; tmp = cansend(l2); if (tmp) { } else { return; } skb = skb_dequeue(& l2->i_queue); if (! skb) { return; } else { } tmp___0 = constant_test_bit(3, & l2->flag); if (tmp___0) { p1 = (l2->vs - l2->va) % 128U; } else { p1 = (l2->vs - l2->va) % 8U; } p1 = (p1 + l2->sow) % l2->window; if (l2->windowar[p1]) { printk("<4>isdnl2 try overwrite ack queue entry %d\n", p1); kfree_skb(l2->windowar[p1]); } else { } l2->windowar[p1] = skb; tmp___2 = sethdraddr(l2, header, 0); i = tmp___2; tmp___6 = constant_test_bit(3, & l2->flag); if (tmp___6) { tmp___3 = i; i = i + (u_int )1; header[tmp___3] = l2->vs << 1; tmp___4 = i; i = i + (u_int )1; header[tmp___4] = l2->vr << 1; l2->vs = (l2->vs + (u_int )1) % 128U; } else { tmp___5 = i; i = i + (u_int )1; header[tmp___5] = (l2->vr << 5) | (l2->vs << 1); l2->vs = (l2->vs + (u_int )1) % 8U; } nskb = skb_clone(skb, 32U); p1 = skb_headroom(nskb); if (p1 >= i) { __len = i; tmp___9 = skb_push(nskb, i); __ret = memcpy(tmp___9, header, __len); } else { printk("<4>isdnl2 pull_iqueue skb header(%d/%d) too short\n", i, p1); oskb = nskb; nskb = mI_alloc_skb(oskb->len + i, 32U); if (! nskb) { kfree_skb(oskb); printk("<4>%s: no skb mem\n", "l2_pull_iqueue"); return; } else { } __len___0 = i; tmp___11 = skb_put(nskb, i); __ret___0 = memcpy(tmp___11, header, __len___0); __len___1 = oskb->len; tmp___13 = skb_put(nskb, oskb->len); __ret___1 = memcpy(tmp___13, oskb->data, __len___1); kfree_skb(oskb); } tmp___14 = l2_newid(l2); l2down(l2, 8193, tmp___14, nskb); test_and_clear_bit(7, & l2->flag); tmp___15 = test_and_set_bit(6, & l2->flag); if (tmp___15) { } else { mISDN_FsmDelTimer(& l2->t203, 13); mISDN_FsmAddTimer(& l2->t200, l2->T200, EV_L2_T200, (void *)0, 11); } return; } } static void l2_st8_got_super(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int PollFlag ; int rsp ; int rnr ; unsigned int nr ; int tmp ; u_int tmp___1 ; int tmp___2 ; int tmp___3 ; __u32 tmp___5 ; unsigned int tmp___6 ; unsigned int tmp___7 ; unsigned int tmp___8 ; { l2 = fi->userdata; skb = arg; rnr = 0; rsp = (int )*(skb->data) & 2; tmp = constant_test_bit(2, & l2->flag); if (tmp) { rsp = ! rsp; } else { } tmp___1 = l2addrsize(l2); skb_pull(skb, tmp___1); tmp___2 = IsRNR(skb->data, l2); if (tmp___2) { set_peer_busy(l2); rnr = 1; } else { clear_peer_busy(l2); } tmp___3 = constant_test_bit(3, & l2->flag); if (tmp___3) { PollFlag = ((int )*(skb->data + 1) & 1) == 1; nr = (int )*(skb->data + 1) >> 1; } else { PollFlag = (int )*(skb->data + 0) & 16; nr = ((int )*(skb->data + 0) >> 5) & 7; } kfree_skb(skb); if (rsp && PollFlag) { tmp___7 = legalnr(l2, nr); if (tmp___7) { if (rnr) { restart_t200(l2, 15); } else { stop_t200(l2, 16); mISDN_FsmAddTimer(& l2->t203, l2->T203, EV_L2_T203, (void *)0, 5); setva(l2, nr); } invoke_retransmission(l2, nr); mISDN_FsmChangeState(fi, ST_L2_7); tmp___5 = skb_queue_len(& l2->i_queue); if (tmp___5) { tmp___6 = cansend(l2); if (tmp___6) { mISDN_FsmEvent(fi, EV_L2_ACK_PULL, (void *)0); } else { } } else { } } else { nrerrorrecovery(fi); } } else { if (! rsp && PollFlag) { enquiry_response(l2); } else { } tmp___8 = legalnr(l2, nr); if (tmp___8) { setva(l2, nr); } else { nrerrorrecovery(fi); } } return; } } static void l2_got_FRMR(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; u_int tmp ; int tmp___0 ; { l2 = fi->userdata; skb = arg; tmp = l2addrsize(l2); skb_pull(skb, tmp + (u_int )1); if (! ((int )*(skb->data + 0) & 1) || ((int )*(skb->data + 0) & 3) == 1) { l2mgr(l2, 7940, (void *)'K'); establishlink(fi); test_and_clear_bit(5, & l2->flag); } else { tmp___0 = IsUA(skb->data); if (tmp___0 && fi->state == ST_L2_7) { l2mgr(l2, 7940, (void *)'K'); establishlink(fi); test_and_clear_bit(5, & l2->flag); } else { } } kfree_skb(skb); return; } } static void l2_st24_tei_remove(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; { l2 = fi->userdata; skb_queue_purge(& l2->ui_queue); l2->tei = 127; mISDN_FsmChangeState(fi, ST_L2_1); return; } } static void l2_st3_tei_remove(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; { l2 = fi->userdata; skb_queue_purge(& l2->ui_queue); l2->tei = 127; l2up_create(l2, 4360, 0, (void *)0); mISDN_FsmChangeState(fi, ST_L2_1); return; } } static void l2_st5_tei_remove(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; { l2 = fi->userdata; skb_queue_purge(& l2->i_queue); skb_queue_purge(& l2->ui_queue); freewin(l2); l2->tei = 127; stop_t200(l2, 17); st5_dl_release_l2l3(l2); mISDN_FsmChangeState(fi, ST_L2_1); return; } } static void l2_st6_tei_remove(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; { l2 = fi->userdata; skb_queue_purge(& l2->ui_queue); l2->tei = 127; stop_t200(l2, 18); l2up_create(l2, 4360, 0, (void *)0); mISDN_FsmChangeState(fi, ST_L2_1); return; } } static void l2_tei_remove(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; { l2 = fi->userdata; skb_queue_purge(& l2->i_queue); skb_queue_purge(& l2->ui_queue); freewin(l2); l2->tei = 127; stop_t200(l2, 17); mISDN_FsmDelTimer(& l2->t203, 19); l2up_create(l2, 4360, 0, (void *)0); mISDN_FsmChangeState(fi, ST_L2_1); return; } } static void l2_st14_persistant_da(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int tmp ; { l2 = fi->userdata; skb = arg; skb_queue_purge(& l2->i_queue); skb_queue_purge(& l2->ui_queue); tmp = test_and_clear_bit(13, & l2->flag); if (tmp) { l2up(l2, 4360, skb); } else { kfree_skb(skb); } return; } } static void l2_st5_persistant_da(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = fi->userdata; skb = arg; skb_queue_purge(& l2->i_queue); skb_queue_purge(& l2->ui_queue); freewin(l2); stop_t200(l2, 19); st5_dl_release_l2l3(l2); mISDN_FsmChangeState(fi, ST_L2_4); if (l2->tm) { l2_tei(l2, 7428, 0); } else { } kfree_skb(skb); return; } } static void l2_st6_persistant_da(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = fi->userdata; skb = arg; skb_queue_purge(& l2->ui_queue); stop_t200(l2, 20); l2up(l2, 20744, skb); mISDN_FsmChangeState(fi, ST_L2_4); if (l2->tm) { l2_tei(l2, 7428, 0); } else { } return; } } static void l2_persistant_da(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = fi->userdata; skb = arg; skb_queue_purge(& l2->i_queue); skb_queue_purge(& l2->ui_queue); freewin(l2); stop_t200(l2, 19); mISDN_FsmDelTimer(& l2->t203, 19); l2up(l2, 4360, skb); mISDN_FsmChangeState(fi, ST_L2_4); if (l2->tm) { l2_tei(l2, 7428, 0); } else { } return; } } static void l2_set_own_busy(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int tmp ; { l2 = fi->userdata; skb = arg; tmp = test_and_set_bit(9, & l2->flag); if (tmp) { } else { enquiry_cr(l2, 5, 1, 0); test_and_clear_bit(7, & l2->flag); } if (skb) { kfree_skb(skb); } else { } return; } } static void l2_clear_own_busy(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int tmp ; { l2 = fi->userdata; skb = arg; tmp = test_and_clear_bit(9, & l2->flag); if (tmp) { } else { enquiry_cr(l2, 1, 1, 0); test_and_clear_bit(7, & l2->flag); } if (skb) { kfree_skb(skb); } else { } return; } } static void l2_frame_error(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; { l2 = fi->userdata; l2mgr(l2, 7940, arg); return; } } static void l2_frame_error_reest(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; { l2 = fi->userdata; l2mgr(l2, 7940, arg); establishlink(fi); test_and_clear_bit(5, & l2->flag); return; } } static struct FsmNode L2FnList[88] = { {ST_L2_1, EV_L2_DL_ESTABLISH_REQ, & l2_mdl_assign}, {ST_L2_2, EV_L2_DL_ESTABLISH_REQ, & l2_go_st3}, {ST_L2_4, EV_L2_DL_ESTABLISH_REQ, & l2_establish}, {ST_L2_5, EV_L2_DL_ESTABLISH_REQ, & l2_discard_i_setl3}, {ST_L2_7, EV_L2_DL_ESTABLISH_REQ, & l2_l3_reestablish}, {ST_L2_8, EV_L2_DL_ESTABLISH_REQ, & l2_l3_reestablish}, {ST_L2_4, EV_L2_DL_RELEASE_REQ, & l2_release}, {ST_L2_5, EV_L2_DL_RELEASE_REQ, & l2_pend_rel}, {ST_L2_7, EV_L2_DL_RELEASE_REQ, & l2_disconnect}, {ST_L2_8, EV_L2_DL_RELEASE_REQ, & l2_disconnect}, {ST_L2_5, EV_L2_DL_DATA, & l2_feed_i_if_reest}, {ST_L2_7, EV_L2_DL_DATA, & l2_feed_i_pull}, {ST_L2_8, EV_L2_DL_DATA, & l2_feed_iqueue}, {ST_L2_1, EV_L2_DL_UNITDATA, & l2_queue_ui_assign}, {ST_L2_2, EV_L2_DL_UNITDATA, & l2_queue_ui}, {ST_L2_3, EV_L2_DL_UNITDATA, & l2_queue_ui}, {ST_L2_4, EV_L2_DL_UNITDATA, & l2_send_ui}, {ST_L2_5, EV_L2_DL_UNITDATA, & l2_send_ui}, {ST_L2_6, EV_L2_DL_UNITDATA, & l2_send_ui}, {ST_L2_7, EV_L2_DL_UNITDATA, & l2_send_ui}, {ST_L2_8, EV_L2_DL_UNITDATA, & l2_send_ui}, {ST_L2_1, EV_L2_MDL_ASSIGN, & l2_got_tei}, {ST_L2_2, EV_L2_MDL_ASSIGN, & l2_got_tei}, {ST_L2_3, EV_L2_MDL_ASSIGN, & l2_got_tei}, {ST_L2_2, EV_L2_MDL_ERROR, & l2_st24_tei_remove}, {ST_L2_3, EV_L2_MDL_ERROR, & l2_st3_tei_remove}, {ST_L2_4, EV_L2_MDL_REMOVE, & l2_st24_tei_remove}, {ST_L2_5, EV_L2_MDL_REMOVE, & l2_st5_tei_remove}, {ST_L2_6, EV_L2_MDL_REMOVE, & l2_st6_tei_remove}, {ST_L2_7, EV_L2_MDL_REMOVE, & l2_tei_remove}, {ST_L2_8, EV_L2_MDL_REMOVE, & l2_tei_remove}, {ST_L2_4, EV_L2_SABME, & l2_start_multi}, {ST_L2_5, EV_L2_SABME, & l2_send_UA}, {ST_L2_6, EV_L2_SABME, & l2_send_DM}, {ST_L2_7, EV_L2_SABME, & l2_restart_multi}, {ST_L2_8, EV_L2_SABME, & l2_restart_multi}, {ST_L2_4, EV_L2_DISC, & l2_send_DM}, {ST_L2_5, EV_L2_DISC, & l2_send_DM}, {ST_L2_6, EV_L2_DISC, & l2_send_UA}, {ST_L2_7, EV_L2_DISC, & l2_stop_multi}, {ST_L2_8, EV_L2_DISC, & l2_stop_multi}, {ST_L2_4, EV_L2_UA, & l2_mdl_error_ua}, {ST_L2_5, EV_L2_UA, & l2_connected}, {ST_L2_6, EV_L2_UA, & l2_released}, {ST_L2_7, EV_L2_UA, & l2_mdl_error_ua}, {ST_L2_8, EV_L2_UA, & l2_mdl_error_ua}, {ST_L2_4, EV_L2_DM, & l2_reestablish}, {ST_L2_5, EV_L2_DM, & l2_st5_dm_release}, {ST_L2_6, EV_L2_DM, & l2_st6_dm_release}, {ST_L2_7, EV_L2_DM, & l2_mdl_error_dm}, {ST_L2_8, EV_L2_DM, & l2_st8_mdl_error_dm}, {ST_L2_1, EV_L2_UI, & l2_got_ui}, {ST_L2_2, EV_L2_UI, & l2_got_ui}, {ST_L2_3, EV_L2_UI, & l2_got_ui}, {ST_L2_4, EV_L2_UI, & l2_got_ui}, {ST_L2_5, EV_L2_UI, & l2_got_ui}, {ST_L2_6, EV_L2_UI, & l2_got_ui}, {ST_L2_7, EV_L2_UI, & l2_got_ui}, {ST_L2_8, EV_L2_UI, & l2_got_ui}, {ST_L2_7, EV_L2_FRMR, & l2_got_FRMR}, {ST_L2_8, EV_L2_FRMR, & l2_got_FRMR}, {ST_L2_7, EV_L2_SUPER, & l2_st7_got_super}, {ST_L2_8, EV_L2_SUPER, & l2_st8_got_super}, {ST_L2_7, EV_L2_I, & l2_got_iframe}, {ST_L2_8, EV_L2_I, & l2_got_iframe}, {ST_L2_5, EV_L2_T200, & l2_st5_tout_200}, {ST_L2_6, EV_L2_T200, & l2_st6_tout_200}, {ST_L2_7, EV_L2_T200, & l2_st7_tout_200}, {ST_L2_8, EV_L2_T200, & l2_st8_tout_200}, {ST_L2_7, EV_L2_T203, & l2_st7_tout_203}, {ST_L2_7, EV_L2_ACK_PULL, & l2_pull_iqueue}, {ST_L2_7, EV_L2_SET_OWN_BUSY, & l2_set_own_busy}, {ST_L2_8, EV_L2_SET_OWN_BUSY, & l2_set_own_busy}, {ST_L2_7, EV_L2_CLEAR_OWN_BUSY, & l2_clear_own_busy}, {ST_L2_8, EV_L2_CLEAR_OWN_BUSY, & l2_clear_own_busy}, {ST_L2_4, EV_L2_FRAME_ERROR, & l2_frame_error}, {ST_L2_5, EV_L2_FRAME_ERROR, & l2_frame_error}, {ST_L2_6, EV_L2_FRAME_ERROR, & l2_frame_error}, {ST_L2_7, EV_L2_FRAME_ERROR, & l2_frame_error_reest}, {ST_L2_8, EV_L2_FRAME_ERROR, & l2_frame_error_reest}, {ST_L2_1, EV_L1_DEACTIVATE, & l2_st14_persistant_da}, {ST_L2_2, EV_L1_DEACTIVATE, & l2_st24_tei_remove}, {ST_L2_3, EV_L1_DEACTIVATE, & l2_st3_tei_remove}, {ST_L2_4, EV_L1_DEACTIVATE, & l2_st14_persistant_da}, {ST_L2_5, EV_L1_DEACTIVATE, & l2_st5_persistant_da}, {ST_L2_6, EV_L1_DEACTIVATE, & l2_st6_persistant_da}, {ST_L2_7, EV_L1_DEACTIVATE, & l2_persistant_da}, {ST_L2_8, EV_L1_DEACTIVATE, & l2_persistant_da}}; static int ph_data_indication(struct layer2 *l2 , struct mISDNhead *hh , struct sk_buff *skb ) { u_char *datap ; int ret ; int psapi ; int ptei ; u_int l ; int c ; u_char *tmp ; u_char *tmp___0 ; int tmp___1 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; { datap = skb->data; ret = -22; c = 0; l = l2addrsize(l2); if (skb->len <= l) { mISDN_FsmEvent(& l2->l2m, EV_L2_FRAME_ERROR, (void *)'N'); return (ret); } else { } tmp___1 = constant_test_bit(1, & l2->flag); if (tmp___1) { tmp = datap; datap = datap + 1; psapi = *tmp; tmp___0 = datap; datap = datap + 1; ptei = *tmp___0; if (psapi & 1 || ! (ptei & 1)) { printk("<4>l2 D-channel frame wrong EA0/EA1\n"); return (ret); } else { } psapi = psapi >> 2; ptei = ptei >> 1; if (psapi != (int )l2->sapi) { kfree_skb(skb); return (0); } else { } if (ptei != (int )l2->tei && ptei != 127) { kfree_skb(skb); return (0); } else { } } else { datap = datap + l; } if (! ((int )*datap & 1)) { c = iframe_error(l2, skb); if (! c) { ret = mISDN_FsmEvent(& l2->l2m, EV_L2_I, skb); } else { } } else { tmp___9 = IsSFrame(datap, l2); if (tmp___9) { c = super_error(l2, skb); if (! c) { ret = mISDN_FsmEvent(& l2->l2m, EV_L2_SUPER, skb); } else { } } else { tmp___8 = IsUI(datap); if (tmp___8) { c = UI_error(l2, skb); if (! c) { ret = mISDN_FsmEvent(& l2->l2m, EV_L2_UI, skb); } else { } } else { tmp___7 = IsSABME(datap, l2); if (tmp___7) { c = unnum_error(l2, skb, 0); if (! c) { ret = mISDN_FsmEvent(& l2->l2m, EV_L2_SABME, skb); } else { } } else { tmp___6 = IsUA(datap); if (tmp___6) { c = unnum_error(l2, skb, 1); if (! c) { ret = mISDN_FsmEvent(& l2->l2m, EV_L2_UA, skb); } else { } } else { tmp___5 = IsDISC(datap); if (tmp___5) { c = unnum_error(l2, skb, 0); if (! c) { ret = mISDN_FsmEvent(& l2->l2m, EV_L2_DISC, skb); } else { } } else { tmp___4 = IsDM(datap); if (tmp___4) { c = unnum_error(l2, skb, 1); if (! c) { ret = mISDN_FsmEvent(& l2->l2m, EV_L2_DM, skb); } else { } } else { tmp___3 = IsFRMR(datap); if (tmp___3) { c = FRMR_error(l2, skb); if (! c) { ret = mISDN_FsmEvent(& l2->l2m, EV_L2_FRMR, skb); } else { } } else { c = 'L'; } } } } } } } } if (c) { printk("<4>l2 D-channel frame error %c\n", c); mISDN_FsmEvent(& l2->l2m, EV_L2_FRAME_ERROR, (void *)((long )c)); } else { } return (ret); } } static int l2_send(struct mISDNchannel *ch , struct sk_buff *skb ) { struct layer2 *l2 ; struct mISDNchannel const *__mptr ; struct mISDNhead *hh ; int ret ; int tmp ; int tmp___0 ; int tmp___2 ; int tmp___4 ; int tmp___6 ; int tmp___8 ; u_int tmp___10 ; int tmp___11 ; u_int tmp___13 ; int tmp___14 ; { __mptr = ch; l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->ch)); hh = (struct mISDNhead *)(& skb->cb[0]); ret = -22; if (*debug___3 & 524288) { printk("<7>%s: prim(%x) id(%x) tei(%d)\n", "l2_send", hh->prim, hh->id, l2->tei); } else { } switch (hh->prim) { case 8194U: ret = ph_data_indication(l2, hh, skb); break; case 24578U: ret = ph_data_confirm(l2, hh, skb); break; case 258U: test_and_set_bit(12, & l2->flag); l2up_create(l2, 1282, 0, (void *)0); tmp = test_and_clear_bit(13, & l2->flag); if (tmp) { ret = mISDN_FsmEvent(& l2->l2m, EV_L2_DL_ESTABLISH_REQ, skb); } else { } break; case 514U: test_and_clear_bit(12, & l2->flag); l2up_create(l2, 1538, 0, (void *)0); ret = mISDN_FsmEvent(& l2->l2m, EV_L1_DEACTIVATE, skb); break; case 1794U: if (! l2->up) { break; } else { } ret = (*((l2->up)->send))(l2->up, skb); break; case 12292U: ret = mISDN_FsmEvent(& l2->l2m, EV_L2_DL_DATA, skb); break; case 12548U: ret = mISDN_FsmEvent(& l2->l2m, EV_L2_DL_UNITDATA, skb); break; case 4100U: tmp___0 = constant_test_bit(0, & l2->flag); if (tmp___0) { test_and_set_bit(2, & l2->flag); } else { } tmp___11 = constant_test_bit(12, & l2->flag); if (tmp___11) { tmp___2 = constant_test_bit(1, & l2->flag); if (tmp___2) { ret = mISDN_FsmEvent(& l2->l2m, EV_L2_DL_ESTABLISH_REQ, skb); } else { tmp___4 = constant_test_bit(2, & l2->flag); if (tmp___4) { ret = mISDN_FsmEvent(& l2->l2m, EV_L2_DL_ESTABLISH_REQ, skb); } else { } } } else { tmp___6 = constant_test_bit(1, & l2->flag); if (tmp___6) { test_and_set_bit(13, & l2->flag); } else { tmp___8 = constant_test_bit(2, & l2->flag); if (tmp___8) { test_and_set_bit(13, & l2->flag); } else { } } tmp___10 = l2_newid(l2); ret = l2down(l2, 257, tmp___10, skb); } break; case 4356U: tmp___14 = constant_test_bit(0, & l2->flag); if (tmp___14) { tmp___13 = l2_newid(l2); l2down_create(l2, 513, tmp___13, 0, (void *)0); } else { } ret = mISDN_FsmEvent(& l2->l2m, EV_L2_DL_RELEASE_REQ, skb); break; default: if (*debug___3 & 16711680) { l2m_debug(& l2->l2m, "l2 unknown pr %04x", hh->prim); } else { } } if (ret) { kfree_skb(skb); ret = 0; } else { } return (ret); } } int tei_l2(struct layer2 *l2 , u_int cmd , u_long arg ) { int ret ; { ret = -22; if (*debug___3 & 1048576) { printk("<7>%s: cmd(%x)\n", "tei_l2", cmd); } else { } switch (cmd) { case (u_int )6148: ret = mISDN_FsmEvent(& l2->l2m, EV_L2_MDL_ASSIGN, (void *)arg); break; case (u_int )6660: ret = mISDN_FsmEvent(& l2->l2m, EV_L2_MDL_REMOVE, (void *)0); break; case (u_int )7940: ret = mISDN_FsmEvent(& l2->l2m, EV_L2_MDL_ERROR, (void *)0); break; case (u_int )24324: printk("<5>MDL_ERROR|REQ (tei_l2)\n"); ret = mISDN_FsmEvent(& l2->l2m, EV_L2_MDL_ERROR, (void *)0); break; } return (ret); } } static void release_l2(struct layer2 *l2 ) { int tmp ; { mISDN_FsmDelTimer(& l2->t200, 21); mISDN_FsmDelTimer(& l2->t203, 16); skb_queue_purge(& l2->i_queue); skb_queue_purge(& l2->ui_queue); skb_queue_purge(& l2->down_queue); ReleaseWin(l2); tmp = constant_test_bit(1, & l2->flag); if (tmp) { TEIrelease(l2); if (l2->ch.st) { (*(((l2->ch.st)->dev)->D.ctrl))(& ((l2->ch.st)->dev)->D, 512, (void *)0); } else { } } else { } kfree(l2); return; } } static int l2_ctrl(struct mISDNchannel *ch , u_int cmd , void *arg ) { struct layer2 *l2 ; struct mISDNchannel const *__mptr ; u_int info ; int tmp ; { __mptr = ch; l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->ch)); if (*debug___3 & 262144) { printk("<7>%s:(%x)\n", "l2_ctrl", cmd); } else { } switch (cmd) { case (u_int )256: tmp = constant_test_bit(1, & l2->flag); if (tmp) { set_channel_address(& l2->ch, l2->sapi, l2->tei); info = 1; l2up_create(l2, 8, sizeof(info), & info); } else { } break; case (u_int )512: if (l2->ch.peer) { (*((l2->ch.peer)->ctrl))(l2->ch.peer, 512, (void *)0); } else { } release_l2(l2); break; } return (0); } } struct layer2 *create_l2(struct mISDNchannel *ch , u_int protocol , u_long options , u_long arg ) { struct layer2 *l2 ; struct channel_req rq ; void *tmp ; int tmp___0 ; int tmp___2 ; int tmp___4 ; int tmp___6 ; int tmp___8 ; int tmp___10 ; int tmp___12 ; int tmp___14 ; int tmp___16 ; int tmp___18 ; int tmp___20 ; { tmp = kzalloc(sizeof(struct layer2 ), (16U | 64U) | 128U); l2 = tmp; if (! l2) { printk("<3>kzalloc layer2 failed\n"); return ((void *)0); } else { } l2->next_id = 1; l2->down_id = 65534; l2->up = ch; l2->ch.st = ch->st; l2->ch.send = & l2_send; l2->ch.ctrl = & l2_ctrl; switch (protocol) { case (u_int )17: test_and_set_bit(1, & l2->flag); test_and_set_bit(18, & l2->flag); test_and_set_bit(3, & l2->flag); l2->sapi = 0; l2->maxlen = 260; tmp___0 = constant_test_bit(1, & options); if (tmp___0) { l2->window = 7; } else { l2->window = 1; } tmp___2 = constant_test_bit(2, & options); if (tmp___2) { test_and_set_bit(14, & l2->flag); } else { } tmp___4 = constant_test_bit(3, & options); if (tmp___4) { test_and_set_bit(15, & l2->flag); } else { } l2->tei = (u_int )arg; l2->T200 = 1000; l2->N200 = 3; l2->T203 = 10000; tmp___6 = constant_test_bit(1, & options); if (tmp___6) { rq.protocol = 4; } else { rq.protocol = 2; } rq.adr.channel = 0; (*(((l2->ch.st)->dev)->D.ctrl))(& ((l2->ch.st)->dev)->D, 256, & rq); break; case (u_int )16: test_and_set_bit(1, & l2->flag); test_and_set_bit(3, & l2->flag); test_and_set_bit(2, & l2->flag); l2->sapi = 0; l2->maxlen = 260; tmp___8 = constant_test_bit(1, & options); if (tmp___8) { l2->window = 7; } else { l2->window = 1; } tmp___10 = constant_test_bit(2, & options); if (tmp___10) { test_and_set_bit(14, & l2->flag); } else { } tmp___12 = constant_test_bit(3, & options); if (tmp___12) { test_and_set_bit(15, & l2->flag); } else { } l2->tei = (u_int )arg; l2->T200 = 1000; l2->N200 = 3; l2->T203 = 10000; tmp___14 = constant_test_bit(1, & options); if (tmp___14) { rq.protocol = 3; } else { rq.protocol = 1; } rq.adr.channel = 0; (*(((l2->ch.st)->dev)->D.ctrl))(& ((l2->ch.st)->dev)->D, 256, & rq); break; case (u_int )35: test_and_set_bit(0, & l2->flag); l2->window = 7; l2->maxlen = 2048; l2->T200 = 1000; l2->N200 = 4; l2->T203 = 5000; l2->addr.A = 3; l2->addr.B = 1; break; default: printk("<3>layer2 create failed prt %x\n", protocol); kfree(l2); return ((void *)0); } skb_queue_head_init___1(& l2->i_queue); skb_queue_head_init___1(& l2->ui_queue); skb_queue_head_init___1(& l2->down_queue); skb_queue_head_init___1(& l2->tmp_queue); InitWin(l2); l2->l2m.fsm = & l2fsm; tmp___16 = constant_test_bit(0, & l2->flag); if (tmp___16) { l2->l2m.state = ST_L2_4; } else { tmp___18 = constant_test_bit(14, & l2->flag); if (tmp___18) { l2->l2m.state = ST_L2_4; } else { tmp___20 = constant_test_bit(18, & l2->flag); if (tmp___20) { l2->l2m.state = ST_L2_4; } else { l2->l2m.state = ST_L2_1; } } } l2->l2m.debug = *debug___3; l2->l2m.userdata = l2; l2->l2m.userint = 0; l2->l2m.printdebug = & l2m_debug; mISDN_FsmInitTimer(& l2->l2m, & l2->t200); mISDN_FsmInitTimer(& l2->l2m, & l2->t203); return (l2); } } static int x75create(struct channel_req *crq ) { struct layer2 *l2 ; { if (crq->protocol != (u_int )35) { return (-93); } else { } l2 = create_l2(crq->ch, crq->protocol, 0, 0); if (! l2) { return (-12); } else { } crq->ch = & l2->ch; crq->protocol = 34; return (0); } } static struct Bprotocol X75SLP = {{0, 0}, "X75SLP", 1 << (35 & 31), & x75create}; int Isdnl2_Init(u_int *deb ) { { debug___3 = deb; mISDN_register_Bprotocol(& X75SLP); l2fsm.state_count = ST_L2_8 + 1; l2fsm.event_count = EV_L2_FRAME_ERROR + 1; l2fsm.strEvent = strL2Event; l2fsm.strState = strL2State; mISDN_FsmNew(& l2fsm, L2FnList, sizeof(L2FnList) / sizeof(L2FnList[0]) + (sizeof(char [1 - 2 * 0]) - 1UL)); TEIInit(deb); return (0); } } void Isdnl2_cleanup(void) { { mISDN_unregister_Bprotocol(& X75SLP); TEIFree(); mISDN_FsmFree(& l2fsm); return; } } void ldv_main6_sequence_infinite_withcheck_stateful(void) { struct channel_req *var_group1 ; int tmp ; int tmp___0 ; { LDV_IN_INTERRUPT = 1; ldv_initialize(); while (1) { tmp___0 = nondet_int(); if (tmp___0) { } else { break; } tmp = nondet_int(); switch (tmp) { case 0: ldv_handler_precall(); x75create(var_group1); break; default: break; } } ldv_check_final_state(); return; } } extern unsigned long _read_lock_irqsave(rwlock_t *lock ) __attribute__((__section__(".spinlock.text"))) ; extern void _read_unlock_irqrestore(rwlock_t *lock , unsigned long flags ) __attribute__((__section__(".spinlock.text"))) ; extern void get_random_bytes(void *buf , int nbytes ) ; static struct lock_class_key __key___9 ; __inline static void skb_queue_head_init___2(struct sk_buff_head *list ) { { while (1) { __spin_lock_init(& list->lock, "&list->lock", & __key___9); break; } __skb_queue_head_init(list); return; } } static u_int *debug___4 ; static struct Fsm deactfsm = {(void *)0, 0, 0, (void *)0, (void *)0}; static struct Fsm teifsmu = {(void *)0, 0, 0, (void *)0, (void *)0}; static struct Fsm teifsmn = {(void *)0, 0, 0, (void *)0, (void *)0}; static char *strDeactState[3] = { "ST_L1_DEACT", "ST_L1_DEACT_PENDING", "ST_L1_ACTIV"}; static char *strDeactEvent[6] = { "EV_ACTIVATE", "EV_ACTIVATE_IND", "EV_DEACTIVATE", "EV_DEACTIVATE_IND", "EV_UI", "EV_DATIMER"}; static void da_debug(struct FsmInst *fi , char *fmt , ...) { struct manager *mgr ; va_list va ; { mgr = fi->userdata; if (! (*debug___4 & 2097152U)) { return; } else { } ldv__builtin_va_start(va); printk("<7>mgr(%d): ", ((mgr->ch.st)->dev)->id); vprintk(fmt, va); printk("\n"); ldv__builtin_va_end(va); return; } } static void da_activate(struct FsmInst *fi , int event , void *arg ) { struct manager *mgr ; { mgr = fi->userdata; if (fi->state == ST_L1_DEACT_PENDING) { mISDN_FsmDelTimer(& mgr->datimer, 1); } else { } mISDN_FsmChangeState(fi, ST_L1_ACTIV); return; } } static void da_deactivate_ind(struct FsmInst *fi , int event , void *arg ) { { mISDN_FsmChangeState(fi, ST_L1_DEACT); return; } } static void da_deactivate(struct FsmInst *fi , int event , void *arg ) { struct manager *mgr ; struct layer2 *l2 ; u_long flags ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { mgr = fi->userdata; while (1) { flags = _read_lock_irqsave(& mgr->lock); break; } __mptr = mgr->layer2.next; l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->list)); while (1) { __builtin_prefetch(l2->list.next); if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { } else { break; } if (l2->l2m.state > ST_L2_4) { while (1) { _read_unlock_irqrestore(& mgr->lock, flags); break; } return; } else { } __mptr___0 = l2->list.next; l2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list)); } while (1) { _read_unlock_irqrestore(& mgr->lock, flags); break; } mISDN_FsmAddTimer(& mgr->datimer, 10000, EV_DATIMER, (void *)0, 1); mISDN_FsmChangeState(fi, ST_L1_DEACT_PENDING); return; } } static void da_ui(struct FsmInst *fi , int event , void *arg ) { struct manager *mgr ; { mgr = fi->userdata; mISDN_FsmDelTimer(& mgr->datimer, 2); mISDN_FsmAddTimer(& mgr->datimer, 10000, EV_DATIMER, (void *)0, 2); return; } } static void da_timer(struct FsmInst *fi , int event , void *arg ) { struct manager *mgr ; struct layer2 *l2 ; u_long flags ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { mgr = fi->userdata; while (1) { flags = _read_lock_irqsave(& mgr->lock); break; } __mptr = mgr->layer2.next; l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->list)); while (1) { __builtin_prefetch(l2->list.next); if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { } else { break; } if (l2->l2m.state > ST_L2_4) { while (1) { _read_unlock_irqrestore(& mgr->lock, flags); break; } mISDN_FsmChangeState(fi, ST_L1_ACTIV); return; } else { } __mptr___0 = l2->list.next; l2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list)); } while (1) { _read_unlock_irqrestore(& mgr->lock, flags); break; } mISDN_FsmChangeState(fi, ST_L1_DEACT); _queue_data(& mgr->ch, 513, 65535, 0, (void *)0, 32U); return; } } static struct FsmNode DeactFnList[6] = { {ST_L1_DEACT, EV_ACTIVATE_IND, & da_activate}, {ST_L1_ACTIV, EV_DEACTIVATE_IND, & da_deactivate_ind}, {ST_L1_ACTIV, EV_DEACTIVATE, & da_deactivate}, {ST_L1_DEACT_PENDING, EV_ACTIVATE, & da_activate}, {ST_L1_DEACT_PENDING, EV_UI, & da_ui}, {ST_L1_DEACT_PENDING, EV_DATIMER, & da_timer}}; static char *strTeiState[3] = { "ST_TEI_NOP", "ST_TEI_IDREQ", "ST_TEI_IDVERIFY"}; static char *strTeiEvent[9] = { "EV_IDREQ", "EV_ASSIGN", "EV_ASSIGN_REQ", "EV_DENIED", "EV_CHKREQ", "EV_CHKRESP", "EV_REMOVE", "EV_VERIFY", "EV_TIMER"}; static void tei_debug(struct FsmInst *fi , char *fmt , ...) { struct teimgr *tm ; va_list va ; { tm = fi->userdata; if (! (*debug___4 & 2097152U)) { return; } else { } ldv__builtin_va_start(va); printk("<7>tei(%d): ", (tm->l2)->tei); vprintk(fmt, va); printk("\n"); ldv__builtin_va_end(va); return; } } static int get_free_id(struct manager *mgr ) { u64 ids ; int i ; struct layer2 *l2 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; int tmp___0 ; { ids = 0; __mptr = mgr->layer2.next; l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->list)); while (1) { __builtin_prefetch(l2->list.next); if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { } else { break; } if (l2->ch.nr > (u_int )63) { printk("<4>%s: more as 63 layer2 for one device\n", "get_free_id"); return (-16); } else { } test_and_set_bit(l2->ch.nr, (u_long *)(& ids)); __mptr___0 = l2->list.next; l2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list)); } i = 1; while (1) { if (i < 64) { } else { break; } tmp___0 = variable_test_bit(i, (u_long *)(& ids)); if (tmp___0) { } else { return (i); } i = i + 1; } printk("<4>%s: more as 63 layer2 for one device\n", "get_free_id"); return (-16); } } static int get_free_tei(struct manager *mgr ) { u64 ids ; int i ; struct layer2 *l2 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; int tmp___0 ; { ids = 0; __mptr = mgr->layer2.next; l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->list)); while (1) { __builtin_prefetch(l2->list.next); if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { } else { break; } if (l2->ch.nr == (u_int )0) { goto __Cont; } else { } if ((l2->ch.addr & 255U) != 0U) { goto __Cont; } else { } i = l2->ch.addr >> 8; if (i < 64) { goto __Cont; } else { } i = i - 64; test_and_set_bit(i, (u_long *)(& ids)); __Cont: /* CIL Label */ __mptr___0 = l2->list.next; l2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list)); } i = 0; while (1) { if (i < 64) { } else { break; } tmp___0 = variable_test_bit(i, (u_long *)(& ids)); if (tmp___0) { } else { return (i + 64); } i = i + 1; } printk("<4>%s: more as 63 dynamic tei for one device\n", "get_free_tei"); return (-1); } } static void teiup_create(struct manager *mgr , u_int prim , int len , void *arg ) { struct sk_buff *skb ; struct mISDNhead *hh ; int err ; size_t __len ; void *__ret ; unsigned char *tmp___0 ; { skb = mI_alloc_skb(len, 32U); if (! skb) { return; } else { } hh = (struct mISDNhead *)(& skb->cb[0]); hh->prim = prim; hh->id = (mgr->ch.nr << 16) | mgr->ch.addr; if (len) { __len = len; tmp___0 = skb_put(skb, len); __ret = memcpy(tmp___0, arg, __len); } else { } err = (*((mgr->up)->send))(mgr->up, skb); if (err) { printk("<4>%s: err=%d\n", "teiup_create", err); kfree_skb(skb); } else { } return; } } static u_int new_id(struct manager *mgr ) { u_int id ; u_int tmp ; { tmp = mgr->nextid; mgr->nextid = mgr->nextid + (u_int )1; id = tmp; if (id == (u_int )32767) { mgr->nextid = 1; } else { } id = id << 16; id = id | (unsigned int )(127 << 8); id = id | 63U; return (id); } } static void do_send(struct manager *mgr ) { int tmp ; struct sk_buff *skb ; struct sk_buff *tmp___1 ; int tmp___2 ; int tmp___3 ; { tmp = constant_test_bit(16, & mgr->options); if (tmp) { } else { return; } tmp___3 = test_and_set_bit(17, & mgr->options); if (tmp___3) { } else { tmp___1 = skb_dequeue(& mgr->sendq); skb = tmp___1; if (! skb) { test_and_clear_bit(17, & mgr->options); return; } else { } mgr->lastid = ((struct mISDNhead *)(& skb->cb[0]))->id; mISDN_FsmEvent(& mgr->deact, EV_UI, (void *)0); tmp___2 = (*(mgr->ch.recv))(mgr->ch.peer, skb); if (tmp___2) { kfree_skb(skb); test_and_clear_bit(17, & mgr->options); mgr->lastid = 65534; } else { } } return; } } static void do_ack(struct manager *mgr , u_int id ) { struct sk_buff *skb ; int tmp ; int tmp___0 ; int tmp___2 ; { tmp___2 = constant_test_bit(17, & mgr->options); if (tmp___2) { if (id == mgr->lastid) { tmp___0 = constant_test_bit(16, & mgr->options); if (tmp___0) { skb = skb_dequeue(& mgr->sendq); if (skb) { mgr->lastid = ((struct mISDNhead *)(& skb->cb[0]))->id; tmp = (*(mgr->ch.recv))(mgr->ch.peer, skb); if (tmp) { } else { return; } kfree_skb(skb); } else { } } else { } mgr->lastid = 65534; test_and_clear_bit(17, & mgr->options); } else { } } else { } return; } } static void mgr_send_down(struct manager *mgr , struct sk_buff *skb ) { int tmp ; { skb_queue_tail(& mgr->sendq, skb); tmp = constant_test_bit(16, & mgr->options); if (tmp) { do_send(mgr); } else { _queue_data(& mgr->ch, 257, 65535, 0, (void *)0, (16U | 64U) | 128U); } return; } } static int dl_unit_data(struct manager *mgr , struct sk_buff *skb ) { int tmp ; int tmp___1 ; { tmp = constant_test_bit(25, & mgr->options); if (tmp) { } else { return (-22); } tmp___1 = constant_test_bit(16, & mgr->options); if (tmp___1) { } else { _queue_data(& mgr->ch, 257, 65535, 0, (void *)0, (16U | 64U) | 128U); } skb_push(skb, 3); *(skb->data + 0) = 2; *(skb->data + 1) = 255; *(skb->data + 2) = 3; ((struct mISDNhead *)(& skb->cb[0]))->prim = 8193; ((struct mISDNhead *)(& skb->cb[0]))->id = new_id(mgr); skb_queue_tail(& mgr->sendq, skb); do_send(mgr); return (0); } } unsigned int random_ri(void) { u16 x ; { get_random_bytes(& x, sizeof(x)); return (x); } } static struct layer2 *findtei(struct manager *mgr , int tei ) { struct layer2 *l2 ; u_long flags ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { while (1) { flags = _read_lock_irqsave(& mgr->lock); break; } __mptr = mgr->layer2.next; l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->list)); while (1) { __builtin_prefetch(l2->list.next); if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { } else { break; } if ((((int )l2->sapi == 0 && (int )l2->tei > 0) && (int )l2->tei != 127) && (int )l2->tei == tei) { goto done; } else { } __mptr___0 = l2->list.next; l2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list)); } l2 = (void *)0; done: while (1) { _read_unlock_irqrestore(& mgr->lock, flags); break; } return (l2); } } static void put_tei_msg(struct manager *mgr , u_char m_id , unsigned int ri , u_char tei ) { struct sk_buff *skb ; u_char bp[8] ; int tmp ; u_int tmp___1 ; { bp[0] = 63 << 2; tmp = constant_test_bit(25, & mgr->options); if (tmp) { bp[0] = (int )bp[0] | 2; } else { } bp[1] = (127 << 1) | 1; bp[2] = 3; bp[3] = 15; bp[4] = ri >> 8; bp[5] = ri & 255U; bp[6] = m_id; bp[7] = ((int )tei << 1) | 1; tmp___1 = new_id(mgr); skb = _alloc_mISDN_skb(8193, tmp___1, 8, bp, 32U); if (! skb) { printk("<4>%s: no skb for tei msg\n", "put_tei_msg"); return; } else { } mgr_send_down(mgr, skb); return; } } static void tei_id_request(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; unsigned int tmp ; { tm = fi->userdata; if ((int )(tm->l2)->tei != 127) { (*(tm->tei_m.printdebug))(& tm->tei_m, "assign request for allready assigned tei %d", (tm->l2)->tei); return; } else { } tmp = random_ri(); tm->ri = tmp; if (*debug___4 & 1048576U) { (*(tm->tei_m.printdebug))(& tm->tei_m, "assign request ri %d", tm->ri); } else { } put_tei_msg(tm->mgr, 1, tm->ri, 127); mISDN_FsmChangeState(fi, ST_TEI_IDREQ); mISDN_FsmAddTimer(& tm->timer, tm->tval, EV_TIMER, (void *)0, 1); tm->nval = 3; return; } } static void tei_id_assign(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; struct layer2 *l2 ; u_char *dp ; int ri ; int tei ; u_char *tmp ; u_char *tmp___0 ; { tm = fi->userdata; dp = arg; tmp = dp; dp = dp + 1; ri = (unsigned int )*tmp << 8; tmp___0 = dp; dp = dp + 1; ri = ri + (int )*tmp___0; dp = dp + 1; tei = (int )*dp >> 1; if (*debug___4 & 1048576U) { (*(tm->tei_m.printdebug))(fi, "identity assign ri %d tei %d", ri, tei); } else { } l2 = findtei(tm->mgr, tei); if (l2) { if (ri != (l2->tm)->ri) { (*(tm->tei_m.printdebug))(fi, "possible duplicate assignment tei %d", tei); tei_l2(l2, 24324, 0); } else { } } else if (ri == tm->ri) { mISDN_FsmDelTimer(& tm->timer, 1); mISDN_FsmChangeState(fi, ST_TEI_NOP); tei_l2(tm->l2, 6148, tei); } else { } return; } } static void tei_id_test_dup(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; struct layer2 *l2 ; u_char *dp ; int tei ; int ri ; u_char *tmp ; u_char *tmp___0 ; { tm = fi->userdata; dp = arg; tmp = dp; dp = dp + 1; ri = (unsigned int )*tmp << 8; tmp___0 = dp; dp = dp + 1; ri = ri + (int )*tmp___0; dp = dp + 1; tei = (int )*dp >> 1; if (*debug___4 & 1048576U) { (*(tm->tei_m.printdebug))(fi, "foreign identity assign ri %d tei %d", ri, tei); } else { } l2 = findtei(tm->mgr, tei); if (l2) { if (ri != (l2->tm)->ri) { (*(tm->tei_m.printdebug))(fi, "possible duplicate assignment tei %d", tei); mISDN_FsmEvent(& (l2->tm)->tei_m, EV_VERIFY, (void *)0); } else { } } else { } return; } } static void tei_id_denied(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; u_char *dp ; int ri ; int tei ; u_char *tmp ; u_char *tmp___0 ; { tm = fi->userdata; dp = arg; tmp = dp; dp = dp + 1; ri = (unsigned int )*tmp << 8; tmp___0 = dp; dp = dp + 1; ri = ri + (int )*tmp___0; dp = dp + 1; tei = (int )*dp >> 1; if (*debug___4 & 1048576U) { (*(tm->tei_m.printdebug))(fi, "identity denied ri %d tei %d", ri, tei); } else { } return; } } static void tei_id_chk_req(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; u_char *dp ; int tei ; unsigned int tmp ; { tm = fi->userdata; dp = arg; tei = (int )*(dp + 3) >> 1; if (*debug___4 & 1048576U) { (*(tm->tei_m.printdebug))(fi, "identity check req tei %d", tei); } else { } if ((int )(tm->l2)->tei != 127 && (tei == 127 || tei == (int )(tm->l2)->tei)) { mISDN_FsmDelTimer(& tm->timer, 4); mISDN_FsmChangeState(& tm->tei_m, ST_TEI_NOP); tmp = random_ri(); put_tei_msg(tm->mgr, 5, tmp, (tm->l2)->tei); } else { } return; } } static void tei_id_remove(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; u_char *dp ; int tei ; { tm = fi->userdata; dp = arg; tei = (int )*(dp + 3) >> 1; if (*debug___4 & 1048576U) { (*(tm->tei_m.printdebug))(fi, "identity remove tei %d", tei); } else { } if ((int )(tm->l2)->tei != 127 && (tei == 127 || tei == (int )(tm->l2)->tei)) { mISDN_FsmDelTimer(& tm->timer, 5); mISDN_FsmChangeState(& tm->tei_m, ST_TEI_NOP); tei_l2(tm->l2, 6660, 0); } else { } return; } } static void tei_id_verify(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; { tm = fi->userdata; if (*debug___4 & 1048576U) { (*(tm->tei_m.printdebug))(fi, "id verify request for tei %d", (tm->l2)->tei); } else { } put_tei_msg(tm->mgr, 7, 0, (tm->l2)->tei); mISDN_FsmChangeState(& tm->tei_m, ST_TEI_IDVERIFY); mISDN_FsmAddTimer(& tm->timer, tm->tval, EV_TIMER, (void *)0, 2); tm->nval = 2; return; } } static void tei_id_req_tout(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; unsigned int tmp ; { tm = fi->userdata; tm->nval = tm->nval - 1; if (tm->nval) { tmp = random_ri(); tm->ri = tmp; if (*debug___4 & 1048576U) { (*(tm->tei_m.printdebug))(fi, "assign req(%d) ri %d", 4 - tm->nval, tm->ri); } else { } put_tei_msg(tm->mgr, 1, tm->ri, 127); mISDN_FsmAddTimer(& tm->timer, tm->tval, EV_TIMER, (void *)0, 3); } else { (*(tm->tei_m.printdebug))(fi, "assign req failed"); tei_l2(tm->l2, 24324, 0); mISDN_FsmChangeState(fi, ST_TEI_NOP); } return; } } static void tei_id_ver_tout(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; { tm = fi->userdata; tm->nval = tm->nval - 1; if (tm->nval) { if (*debug___4 & 1048576U) { (*(tm->tei_m.printdebug))(fi, "id verify req(%d) for tei %d", 3 - tm->nval, (tm->l2)->tei); } else { } put_tei_msg(tm->mgr, 7, 0, (tm->l2)->tei); mISDN_FsmAddTimer(& tm->timer, tm->tval, EV_TIMER, (void *)0, 4); } else { (*(tm->tei_m.printdebug))(fi, "verify req for tei %d failed", (tm->l2)->tei); tei_l2(tm->l2, 6660, 0); mISDN_FsmChangeState(fi, ST_TEI_NOP); } return; } } static struct FsmNode TeiFnListUser[11] = { {ST_TEI_NOP, EV_IDREQ, & tei_id_request}, {ST_TEI_NOP, EV_ASSIGN, & tei_id_test_dup}, {ST_TEI_NOP, EV_VERIFY, & tei_id_verify}, {ST_TEI_NOP, EV_REMOVE, & tei_id_remove}, {ST_TEI_NOP, EV_CHKREQ, & tei_id_chk_req}, {ST_TEI_IDREQ, EV_TIMER, & tei_id_req_tout}, {ST_TEI_IDREQ, EV_ASSIGN, & tei_id_assign}, {ST_TEI_IDREQ, EV_DENIED, & tei_id_denied}, {ST_TEI_IDVERIFY, EV_TIMER, & tei_id_ver_tout}, {ST_TEI_IDVERIFY, EV_REMOVE, & tei_id_remove}, {ST_TEI_IDVERIFY, EV_CHKREQ, & tei_id_chk_req}}; static void tei_l2remove(struct layer2 *l2 ) { { put_tei_msg((l2->tm)->mgr, 6, 0, l2->tei); tei_l2(l2, 6660, 0); list_del(& l2->ch.list); (*(l2->ch.ctrl))(& l2->ch, 512, (void *)0); return; } } static void tei_assign_req(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; u_char *dp ; u_char *tmp ; u_char *tmp___0 ; { tm = fi->userdata; dp = arg; if ((int )(tm->l2)->tei == 127) { (*(tm->tei_m.printdebug))(& tm->tei_m, "net tei assign request without tei"); return; } else { } tmp = dp; dp = dp + 1; tm->ri = (unsigned int )*tmp << 8; tmp___0 = dp; dp = dp + 1; tm->ri = tm->ri + (int )*tmp___0; if (*debug___4 & 1048576U) { (*(tm->tei_m.printdebug))(& tm->tei_m, "net assign request ri %d teim %d", tm->ri, *dp); } else { } put_tei_msg(tm->mgr, 2, tm->ri, (tm->l2)->tei); mISDN_FsmChangeState(fi, ST_TEI_NOP); return; } } static void tei_id_chk_req_net(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; { tm = fi->userdata; if (*debug___4 & 1048576U) { (*(tm->tei_m.printdebug))(fi, "id check request for tei %d", (tm->l2)->tei); } else { } tm->rcnt = 0; put_tei_msg(tm->mgr, 4, 0, (tm->l2)->tei); mISDN_FsmChangeState(& tm->tei_m, ST_TEI_IDVERIFY); mISDN_FsmAddTimer(& tm->timer, tm->tval, EV_TIMER, (void *)0, 2); tm->nval = 2; return; } } static void tei_id_chk_resp(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; u_char *dp ; int tei ; { tm = fi->userdata; dp = arg; tei = (int )*(dp + 3) >> 1; if (*debug___4 & 1048576U) { (*(tm->tei_m.printdebug))(fi, "identity check resp tei %d", tei); } else { } if (tei == (int )(tm->l2)->tei) { tm->rcnt = tm->rcnt + 1; } else { } return; } } static void tei_id_verify_net(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; u_char *dp ; int tei ; { tm = fi->userdata; dp = arg; tei = (int )*(dp + 3) >> 1; if (*debug___4 & 1048576U) { (*(tm->tei_m.printdebug))(fi, "identity verify req tei %d/%d", tei, (tm->l2)->tei); } else { } if (tei == (int )(tm->l2)->tei) { tei_id_chk_req_net(fi, event, arg); } else { } return; } } static void tei_id_ver_tout_net(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; { tm = fi->userdata; if (tm->rcnt == 1) { if (*debug___4 & 1048576U) { (*(tm->tei_m.printdebug))(fi, "check req for tei %d sucessful\n", (tm->l2)->tei); } else { } mISDN_FsmChangeState(fi, ST_TEI_NOP); } else if (tm->rcnt > 1) { tei_l2remove(tm->l2); } else { tm->nval = tm->nval - 1; if (tm->nval) { if (*debug___4 & 1048576U) { (*(tm->tei_m.printdebug))(fi, "id check req(%d) for tei %d", 3 - tm->nval, (tm->l2)->tei); } else { } put_tei_msg(tm->mgr, 4, 0, (tm->l2)->tei); mISDN_FsmAddTimer(& tm->timer, tm->tval, EV_TIMER, (void *)0, 4); } else { (*(tm->tei_m.printdebug))(fi, "check req for tei %d failed", (tm->l2)->tei); mISDN_FsmChangeState(fi, ST_TEI_NOP); tei_l2remove(tm->l2); } } return; } } static struct FsmNode TeiFnListNet[5] = { {ST_TEI_NOP, EV_ASSIGN_REQ, & tei_assign_req}, {ST_TEI_NOP, EV_VERIFY, & tei_id_verify_net}, {ST_TEI_NOP, EV_CHKREQ, & tei_id_chk_req_net}, {ST_TEI_IDVERIFY, EV_TIMER, & tei_id_ver_tout_net}, {ST_TEI_IDVERIFY, EV_CHKRESP, & tei_id_chk_resp}}; static void tei_ph_data_ind(struct teimgr *tm , u_int mt , u_char *dp , int len ) { int tmp ; { tmp = constant_test_bit(15, & (tm->l2)->flag); if (tmp) { return; } else { } if (*debug___4 & 1048576U) { (*(tm->tei_m.printdebug))(& tm->tei_m, "tei handler mt %x", mt); } else { } if (mt == (u_int )2) { mISDN_FsmEvent(& tm->tei_m, EV_ASSIGN, dp); } else if (mt == (u_int )3) { mISDN_FsmEvent(& tm->tei_m, EV_DENIED, dp); } else if (mt == (u_int )4) { mISDN_FsmEvent(& tm->tei_m, EV_CHKREQ, dp); } else if (mt == (u_int )6) { mISDN_FsmEvent(& tm->tei_m, EV_REMOVE, dp); } else if (mt == (u_int )7) { mISDN_FsmEvent(& tm->tei_m, EV_VERIFY, dp); } else if (mt == (u_int )5) { mISDN_FsmEvent(& tm->tei_m, EV_CHKRESP, dp); } else { } return; } } static struct layer2 *create_new_tei(struct manager *mgr , int tei ) { u_long opt ; u_long flags ; int id ; struct layer2 *l2 ; void *tmp ; { opt = 0; if (! mgr->up) { return ((void *)0); } else { } if (tei < 64) { test_and_set_bit(3, & opt); } else { } if (((mgr->ch.st)->dev)->Dprotocols & (unsigned int )((1 << 3) | (1 << 4))) { test_and_set_bit(1, & opt); } else { } l2 = create_l2(mgr->up, 17, (u_int )opt, (u_long )tei); if (! l2) { printk("<4>%s:no memory for layer2\n", "create_new_tei"); return ((void *)0); } else { } tmp = kzalloc(sizeof(struct teimgr ), (16U | 64U) | 128U); l2->tm = tmp; if (! l2->tm) { kfree(l2); printk("<4>%s:no memory for teimgr\n", "create_new_tei"); return ((void *)0); } else { } (l2->tm)->mgr = mgr; (l2->tm)->l2 = l2; (l2->tm)->tei_m.debug = *debug___4 & 2097152U; (l2->tm)->tei_m.userdata = l2->tm; (l2->tm)->tei_m.printdebug = & tei_debug; (l2->tm)->tei_m.fsm = & teifsmn; (l2->tm)->tei_m.state = ST_TEI_NOP; (l2->tm)->tval = 2000; mISDN_FsmInitTimer(& (l2->tm)->tei_m, & (l2->tm)->timer); while (1) { flags = _write_lock_irqsave(& mgr->lock); break; } id = get_free_id(mgr); list_add_tail(& l2->list, & mgr->layer2); while (1) { _write_unlock_irqrestore(& mgr->lock, flags); break; } if (id < 0) { (*(l2->ch.ctrl))(& l2->ch, 512, (void *)0); printk("<4>%s:no free id\n", "create_new_tei"); return ((void *)0); } else { l2->ch.nr = id; __add_layer2(& l2->ch, mgr->ch.st); l2->ch.recv = mgr->ch.recv; l2->ch.peer = mgr->ch.peer; (*(l2->ch.ctrl))(& l2->ch, 256, (void *)0); } return (l2); } } static void new_tei_req(struct manager *mgr , u_char *dp ) { int tei ; int ri ; struct layer2 *l2 ; { ri = (int )*(dp + 0) << 8; ri = ri + (int )*(dp + 1); if (! mgr->up) { goto denied; } else { } tei = get_free_tei(mgr); if (tei < 0) { printk("<4>%s:No free tei\n", "new_tei_req"); goto denied; } else { } l2 = create_new_tei(mgr, tei); if (! l2) { goto denied; } else { mISDN_FsmEvent(& (l2->tm)->tei_m, EV_ASSIGN_REQ, dp); } return; denied: put_tei_msg(mgr, 3, ri, 127); return; } } static int ph_data_ind(struct manager *mgr , struct sk_buff *skb ) { int ret ; struct layer2 *l2 ; u_long flags ; u_char mt ; int tmp ; int tmp___1 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { ret = -22; if (skb->len < 8U) { if (*debug___4 & 1048576U) { printk("<7>%s: short mgr frame %d/8\n", "ph_data_ind", skb->len); } else { } goto done; } else { } if (*debug___4 & 1048576U) { if ((int )*(skb->data + 0) >> 2 != 63) { goto done; } else { } } else { } if ((int )*(skb->data + 0) & 1) { goto done; } else { } if (! ((int )*(skb->data + 1) & 1)) { goto done; } else { } if ((int )*(skb->data + 1) >> 1 != 127) { goto done; } else { } if (((int )*(skb->data + 2) & 239) != 3) { goto done; } else { } if ((int )*(skb->data + 3) != 15) { goto done; } else { } mt = *(skb->data + 6); switch ((int )mt) { case 7: case 5: case 1: tmp = constant_test_bit(25, & mgr->options); if (tmp) { } else { goto done; } break; case 6: case 4: case 3: case 2: tmp___1 = constant_test_bit(25, & mgr->options); if (tmp___1) { goto done; } else { } break; default: goto done; } ret = 0; if ((int )mt == 1) { new_tei_req(mgr, skb->data + 4); goto done; } else { } while (1) { flags = _read_lock_irqsave(& mgr->lock); break; } __mptr = mgr->layer2.next; l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->list)); while (1) { __builtin_prefetch(l2->list.next); if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { } else { break; } tei_ph_data_ind(l2->tm, mt, skb->data + 4, skb->len - 4U); __mptr___0 = l2->list.next; l2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list)); } while (1) { _read_unlock_irqrestore(& mgr->lock, flags); break; } done: return (ret); } } int l2_tei(struct layer2 *l2 , u_int cmd , u_long arg ) { struct teimgr *tm ; int tmp ; int tmp___1 ; int tmp___3 ; int tmp___5 ; int tmp___7 ; int tmp___9 ; { tm = l2->tm; tmp = constant_test_bit(15, & l2->flag); if (tmp) { return (0); } else { } if (*debug___4 & 1048576U) { printk("<7>%s: cmd(%x)\n", "l2_tei", cmd); } else { } switch (cmd) { case (u_int )6404: mISDN_FsmEvent(& tm->tei_m, EV_IDREQ, (void *)0); break; case (u_int )7940: tmp___1 = constant_test_bit(25, & (tm->mgr)->options); if (tmp___1) { mISDN_FsmEvent(& tm->tei_m, EV_CHKREQ, & l2->tei); } else { } tmp___3 = constant_test_bit(24, & (tm->mgr)->options); if (tmp___3) { mISDN_FsmEvent(& tm->tei_m, EV_VERIFY, (void *)0); } else { } break; case (u_int )7172: tmp___5 = constant_test_bit(25, & (tm->mgr)->options); if (tmp___5) { mISDN_FsmEvent(& (tm->mgr)->deact, EV_ACTIVATE, (void *)0); } else { } break; case (u_int )7428: tmp___7 = constant_test_bit(25, & (tm->mgr)->options); if (tmp___7) { mISDN_FsmEvent(& (tm->mgr)->deact, EV_DEACTIVATE, (void *)0); } else { } break; case (u_int )7684: tmp___9 = constant_test_bit(25, & (tm->mgr)->options); if (tmp___9) { mISDN_FsmEvent(& (tm->mgr)->deact, EV_UI, (void *)0); } else { } break; } return (0); } } void TEIrelease(struct layer2 *l2 ) { struct teimgr *tm ; u_long flags ; { tm = l2->tm; mISDN_FsmDelTimer(& tm->timer, 1); while (1) { flags = _write_lock_irqsave(& (tm->mgr)->lock); break; } list_del(& l2->list); while (1) { _write_unlock_irqrestore(& (tm->mgr)->lock, flags); break; } l2->tm = (void *)0; kfree(tm); return; } } static int create_teimgr(struct manager *mgr , struct channel_req *crq ) { struct layer2 *l2 ; u_long opt ; u_long flags ; int id ; int tmp ; int tmp___1 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; int tmp___3 ; void *tmp___4 ; { opt = 0; if (*debug___4 & 1048576U) { printk("<7>%s: %s proto(%x) adr(%d %d %d %d)\n", "create_teimgr", ((mgr->ch.st)->dev)->name, crq->protocol, crq->adr.dev, crq->adr.channel, crq->adr.sapi, crq->adr.tei); } else { } if ((int )crq->adr.sapi != 0) { return (-22); } else { } if ((int )crq->adr.tei > 127) { return (-22); } else { } if ((int )crq->adr.tei < 64) { test_and_set_bit(3, & opt); } else { } if ((int )crq->adr.tei == 0) { test_and_set_bit(2, & opt); } else { } tmp___1 = constant_test_bit(25, & mgr->options); if (tmp___1) { if (crq->protocol == (u_int )16) { return (-93); } else { } if ((int )crq->adr.tei != 0 && (int )crq->adr.tei != 127) { return (-22); } else { } if (mgr->up) { printk("<4>%s: only one network manager is allowed\n", "create_teimgr"); return (-16); } else { } } else { tmp = constant_test_bit(24, & mgr->options); if (tmp) { if (crq->protocol == (u_int )17) { return (-93); } else { } if ((int )crq->adr.tei >= 64 && (int )crq->adr.tei < 127) { return (-22); } else { } } else { if (crq->protocol == (u_int )17) { test_and_set_bit(25, & mgr->options); } else { } if (crq->protocol == (u_int )16) { test_and_set_bit(24, & mgr->options); } else { } } } if (((mgr->ch.st)->dev)->Dprotocols & (unsigned int )((1 << 3) | (1 << 4))) { test_and_set_bit(1, & opt); } else { } if (crq->protocol == (u_int )17 && (int )crq->adr.tei == 127) { mgr->up = crq->ch; id = 1; teiup_create(mgr, 8, sizeof(id), & id); crq->ch = (void *)0; tmp___3 = list_empty(& mgr->layer2); if (tmp___3) { } else { while (1) { flags = _read_lock_irqsave(& mgr->lock); break; } __mptr = mgr->layer2.next; l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->list)); while (1) { __builtin_prefetch(l2->list.next); if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { } else { break; } l2->up = mgr->up; (*(l2->ch.ctrl))(& l2->ch, 256, (void *)0); __mptr___0 = l2->list.next; l2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list)); } while (1) { _read_unlock_irqrestore(& mgr->lock, flags); break; } } return (0); } else { } l2 = create_l2(crq->ch, crq->protocol, (u_int )opt, (u_long )crq->adr.tei); if (! l2) { return (-12); } else { } tmp___4 = kzalloc(sizeof(struct teimgr ), (16U | 64U) | 128U); l2->tm = tmp___4; if (! l2->tm) { kfree(l2); printk("<3>kmalloc teimgr failed\n"); return (-12); } else { } (l2->tm)->mgr = mgr; (l2->tm)->l2 = l2; (l2->tm)->tei_m.debug = *debug___4 & 2097152U; (l2->tm)->tei_m.userdata = l2->tm; (l2->tm)->tei_m.printdebug = & tei_debug; if (crq->protocol == (u_int )16) { (l2->tm)->tei_m.fsm = & teifsmu; (l2->tm)->tei_m.state = ST_TEI_NOP; (l2->tm)->tval = 1000; } else { (l2->tm)->tei_m.fsm = & teifsmn; (l2->tm)->tei_m.state = ST_TEI_NOP; (l2->tm)->tval = 2000; } mISDN_FsmInitTimer(& (l2->tm)->tei_m, & (l2->tm)->timer); while (1) { flags = _write_lock_irqsave(& mgr->lock); break; } id = get_free_id(mgr); list_add_tail(& l2->list, & mgr->layer2); while (1) { _write_unlock_irqrestore(& mgr->lock, flags); break; } if (id < 0) { (*(l2->ch.ctrl))(& l2->ch, 512, (void *)0); } else { l2->ch.nr = id; (l2->up)->nr = id; crq->ch = & l2->ch; id = 0; } return (id); } } static int mgr_send(struct mISDNchannel *ch , struct sk_buff *skb ) { struct manager *mgr ; struct mISDNhead *hh ; int ret ; struct mISDNchannel const *__mptr ; int tmp ; { hh = (struct mISDNhead *)(& skb->cb[0]); ret = -22; __mptr = ch; mgr = (struct manager *)((char *)__mptr - (unsigned int )(& ((struct manager *)0)->ch)); if (*debug___4 & 524288U) { printk("<7>%s: prim(%x) id(%x)\n", "mgr_send", hh->prim, hh->id); } else { } switch (hh->prim) { case 8194U: mISDN_FsmEvent(& mgr->deact, EV_UI, (void *)0); ret = ph_data_ind(mgr, skb); break; case 24578U: do_ack(mgr, hh->id); ret = 0; break; case 258U: test_and_set_bit(16, & mgr->options); mISDN_FsmEvent(& mgr->deact, EV_ACTIVATE_IND, (void *)0); do_send(mgr); ret = 0; break; case 514U: test_and_clear_bit(16, & mgr->options); mISDN_FsmEvent(& mgr->deact, EV_DEACTIVATE_IND, (void *)0); ret = 0; break; case 12548U: tmp = dl_unit_data(mgr, skb); return (tmp); } if (! ret) { kfree_skb(skb); } else { } return (ret); } } static int free_teimanager(struct manager *mgr ) { struct layer2 *l2 ; struct layer2 *nl2 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; struct list_head const *__mptr___3 ; struct list_head const *__mptr___4 ; int tmp ; int tmp___1 ; int tmp___3 ; int tmp___4 ; { tmp___1 = constant_test_bit(25, & mgr->options); if (tmp___1) { mgr->up = (void *)0; tmp = constant_test_bit(4, & mgr->options); if (tmp) { __mptr = mgr->layer2.next; l2 = (struct layer2 *)((char *)__mptr - (unsigned int )(& ((struct layer2 *)0)->list)); __mptr___0 = l2->list.next; nl2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list)); while (1) { if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { } else { break; } put_tei_msg(mgr, 6, 0, l2->tei); mutex_lock_nested(& (mgr->ch.st)->lmutex, 0); list_del(& l2->ch.list); mutex_unlock(& (mgr->ch.st)->lmutex); (*(l2->ch.ctrl))(& l2->ch, 512, (void *)0); l2 = nl2; __mptr___1 = nl2->list.next; nl2 = (struct layer2 *)((char *)__mptr___1 - (unsigned int )(& ((struct layer2 *)0)->list)); } test_and_clear_bit(25, & mgr->options); } else { __mptr___2 = mgr->layer2.next; l2 = (struct layer2 *)((char *)__mptr___2 - (unsigned int )(& ((struct layer2 *)0)->list)); __mptr___3 = l2->list.next; nl2 = (struct layer2 *)((char *)__mptr___3 - (unsigned int )(& ((struct layer2 *)0)->list)); while (1) { if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { } else { break; } l2->up = (void *)0; l2 = nl2; __mptr___4 = nl2->list.next; nl2 = (struct layer2 *)((char *)__mptr___4 - (unsigned int )(& ((struct layer2 *)0)->list)); } } } else { } tmp___4 = constant_test_bit(24, & mgr->options); if (tmp___4) { tmp___3 = list_empty(& mgr->layer2); if (tmp___3) { test_and_clear_bit(24, & mgr->options); } else { } } else { } (*(((mgr->ch.st)->dev)->D.ctrl))(& ((mgr->ch.st)->dev)->D, 512, (void *)0); return (0); } } static int ctrl_teimanager(struct manager *mgr , void *arg ) { int clean ; { clean = *((int *)arg); if (clean) { test_and_set_bit(4, & mgr->options); } else { test_and_clear_bit(4, & mgr->options); } return (0); } } static int check_data(struct manager *mgr , struct sk_buff *skb ) { struct mISDNhead *hh ; int ret ; int tei ; struct layer2 *l2 ; int tmp ; { hh = (struct mISDNhead *)(& skb->cb[0]); if (*debug___4 & 262144U) { printk("<7>%s: prim(%x) id(%x)\n", "check_data", hh->prim, hh->id); } else { } tmp = constant_test_bit(24, & mgr->options); if (tmp) { return (-107); } else { } if (hh->prim != 8194U) { return (-107); } else { } if (skb->len != 3U) { return (-107); } else { } if ((int )*(skb->data + 0) != 0) { return (-107); } else { } if (! ((int )*(skb->data + 1) & 1)) { return (-22); } else { } tei = (int )*(skb->data + 1) >> 0; if (tei > 63) { return (-107); } else { } if (((int )*(skb->data + 2) & ~ 16) != 111) { return (-107); } else { } l2 = create_new_tei(mgr, tei); if (! l2) { return (-12); } else { } ret = (*(l2->ch.send))(& l2->ch, skb); return (ret); } } void delete_teimanager(struct mISDNchannel *ch ) { struct manager *mgr ; struct layer2 *l2 ; struct layer2 *nl2 ; struct mISDNchannel const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; { __mptr = ch; mgr = (struct manager *)((char *)__mptr - (unsigned int )(& ((struct manager *)0)->ch)); __mptr___0 = mgr->layer2.next; l2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list)); __mptr___1 = l2->list.next; nl2 = (struct layer2 *)((char *)__mptr___1 - (unsigned int )(& ((struct layer2 *)0)->list)); while (1) { if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { } else { break; } mutex_lock_nested(& (mgr->ch.st)->lmutex, 0); list_del(& l2->ch.list); mutex_unlock(& (mgr->ch.st)->lmutex); (*(l2->ch.ctrl))(& l2->ch, 512, (void *)0); l2 = nl2; __mptr___2 = nl2->list.next; nl2 = (struct layer2 *)((char *)__mptr___2 - (unsigned int )(& ((struct layer2 *)0)->list)); } list_del(& mgr->ch.list); list_del(& mgr->bcast.list); skb_queue_purge(& mgr->sendq); kfree(mgr); return; } } static int mgr_ctrl(struct mISDNchannel *ch , u_int cmd , void *arg ) { struct manager *mgr ; int ret ; struct mISDNchannel const *__mptr ; { ret = -22; __mptr = ch; mgr = (struct manager *)((char *)__mptr - (unsigned int )(& ((struct manager *)0)->ch)); if (*debug___4 & 262144U) { printk("<7>%s(%x, %p)\n", "mgr_ctrl", cmd, arg); } else { } switch (cmd) { case (u_int )256: ret = create_teimgr(mgr, arg); break; case (u_int )512: ret = free_teimanager(mgr); break; case (u_int )768: ret = ctrl_teimanager(mgr, arg); break; case (u_int )1024: ret = check_data(mgr, arg); break; } return (ret); } } static int mgr_bcast(struct mISDNchannel *ch , struct sk_buff *skb ) { struct manager *mgr ; struct mISDNchannel const *__mptr ; struct mISDNhead *hh ; struct sk_buff *cskb ; struct layer2 *l2 ; u_long flags ; int ret ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; int tmp ; { __mptr = ch; mgr = (struct manager *)((char *)__mptr - (unsigned int )(& ((struct manager *)0)->bcast)); hh = (struct mISDNhead *)(& skb->cb[0]); cskb = (void *)0; while (1) { flags = _read_lock_irqsave(& mgr->lock); break; } __mptr___0 = mgr->layer2.next; l2 = (struct layer2 *)((char *)__mptr___0 - (unsigned int )(& ((struct layer2 *)0)->list)); while (1) { __builtin_prefetch(l2->list.next); if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { } else { break; } if ((hh->id & 255U) == (l2->ch.addr & 255U)) { tmp = list_is_last(& l2->list, & mgr->layer2); if (tmp) { cskb = skb; skb = (void *)0; } else if (! cskb) { cskb = skb_copy(skb, (16U | 64U) | 128U); } else { } if (cskb) { ret = (*(l2->ch.send))(& l2->ch, cskb); if (ret) { if (*debug___4 & 16U) { printk("<7>%s ch%d prim(%x) addr(%x) err %d\n", "mgr_bcast", l2->ch.nr, hh->prim, l2->ch.addr, ret); } else { } } else { cskb = (void *)0; } } else { printk("<4>%s ch%d addr %x no mem\n", "mgr_bcast", ch->nr, ch->addr); goto out; } } else { } __mptr___1 = l2->list.next; l2 = (struct layer2 *)((char *)__mptr___1 - (unsigned int )(& ((struct layer2 *)0)->list)); } out: while (1) { _read_unlock_irqrestore(& mgr->lock, flags); break; } if (cskb) { kfree_skb(cskb); } else { } if (skb) { kfree_skb(skb); } else { } return (0); } } static int mgr_bcast_ctrl(struct mISDNchannel *ch , u_int cmd , void *arg ) { { return (-22); } } int create_teimanager(struct mISDNdevice *dev ) { struct manager *mgr ; void *tmp ; rwlock_t __constr_expr_0 ; { tmp = kzalloc(sizeof(struct manager ), (16U | 64U) | 128U); mgr = tmp; if (! mgr) { return (-12); } else { } INIT_LIST_HEAD(& mgr->layer2); __constr_expr_0.raw_lock.lock = 16777216; __constr_expr_0.magic = 3736018669U; __constr_expr_0.owner_cpu = -1; __constr_expr_0.owner = (void *)-1L; __constr_expr_0.dep_map.key = 0; __constr_expr_0.dep_map.class_cache = 0; __constr_expr_0.dep_map.name = "mgr->lock"; __constr_expr_0.dep_map.cpu = 0; mgr->lock = __constr_expr_0; skb_queue_head_init___2(& mgr->sendq); mgr->nextid = 1; mgr->lastid = 65534; mgr->ch.send = & mgr_send; mgr->ch.ctrl = & mgr_ctrl; mgr->ch.st = dev->D.st; set_channel_address(& mgr->ch, 63, 127); add_layer2(& mgr->ch, dev->D.st); mgr->bcast.send = & mgr_bcast; mgr->bcast.ctrl = & mgr_bcast_ctrl; mgr->bcast.st = dev->D.st; set_channel_address(& mgr->bcast, 0, 127); add_layer2(& mgr->bcast, dev->D.st); mgr->deact.debug = *debug___4 & 8U; mgr->deact.userdata = mgr; mgr->deact.printdebug = & da_debug; mgr->deact.fsm = & deactfsm; mgr->deact.state = ST_L1_DEACT; mISDN_FsmInitTimer(& mgr->deact, & mgr->datimer); dev->teimgr = & mgr->ch; return (0); } } int TEIInit(u_int *deb ) { { debug___4 = deb; teifsmu.state_count = ST_TEI_IDVERIFY + 1; teifsmu.event_count = EV_TIMER + 1; teifsmu.strEvent = strTeiEvent; teifsmu.strState = strTeiState; mISDN_FsmNew(& teifsmu, TeiFnListUser, sizeof(TeiFnListUser) / sizeof(TeiFnListUser[0]) + (sizeof(char [1 - 2 * 0]) - 1UL)); teifsmn.state_count = ST_TEI_IDVERIFY + 1; teifsmn.event_count = EV_TIMER + 1; teifsmn.strEvent = strTeiEvent; teifsmn.strState = strTeiState; mISDN_FsmNew(& teifsmn, TeiFnListNet, sizeof(TeiFnListNet) / sizeof(TeiFnListNet[0]) + (sizeof(char [1 - 2 * 0]) - 1UL)); deactfsm.state_count = ST_L1_ACTIV + 1; deactfsm.event_count = EV_DATIMER + 1; deactfsm.strEvent = strDeactEvent; deactfsm.strState = strDeactState; mISDN_FsmNew(& deactfsm, DeactFnList, sizeof(DeactFnList) / sizeof(DeactFnList[0]) + (sizeof(char [1 - 2 * 0]) - 1UL)); return (0); } } void TEIFree(void) { { mISDN_FsmFree(& teifsmu); mISDN_FsmFree(& teifsmn); mISDN_FsmFree(& deactfsm); return; } } __inline static void __list_del(struct list_head *prev , struct list_head *next ) { { next->prev = prev; prev->next = next; return; } } __inline static void list_del_init(struct list_head *entry ) { { __list_del(entry->prev, entry->next); INIT_LIST_HEAD(entry); return; } } extern unsigned long _spin_lock_irqsave(spinlock_t *lock ) __attribute__((__section__(".spinlock.text"))) ; extern void _spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) __attribute__((__section__(".spinlock.text"))) ; __inline static void poll_wait(struct file *filp , wait_queue_head_t *wait_address , poll_table *p ) { { if (p && wait_address) { (*(p->qproc))(filp, wait_address, p); } else { } return; } } extern int misc_register(struct miscdevice *misc ) ; extern int misc_deregister(struct miscdevice *misc ) ; static int *debug___5 ; static struct lock_class_key __key___10 ; static int mISDN_open(struct inode *ino , struct file *filep ) { struct mISDNtimerdev *dev ; void *tmp ; { if (*debug___5 & 16777216) { printk("<7>%s(%p,%p)\n", "mISDN_open", ino, filep); } else { } tmp = kmalloc(sizeof(struct mISDNtimerdev ), (16U | 64U) | 128U); dev = tmp; if (! dev) { return (-12); } else { } dev->next_id = 1; INIT_LIST_HEAD(& dev->pending); INIT_LIST_HEAD(& dev->expired); while (1) { __spin_lock_init(& dev->lock, "&dev->lock", & __key___10); break; } dev->work = 0; init_waitqueue_head(& dev->wait); filep->private_data = dev; __module_get(& __this_module); return (0); } } static int mISDN_close(struct inode *ino , struct file *filep ) { struct mISDNtimerdev *dev ; struct mISDNtimer *timer ; struct mISDNtimer *next ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; struct list_head const *__mptr___3 ; struct list_head const *__mptr___4 ; { dev = filep->private_data; if (*debug___5 & 16777216) { printk("<7>%s(%p,%p)\n", "mISDN_close", ino, filep); } else { } __mptr = dev->pending.next; timer = (struct mISDNtimer *)((char *)__mptr - (unsigned int )(& ((struct mISDNtimer *)0)->list)); __mptr___0 = timer->list.next; next = (struct mISDNtimer *)((char *)__mptr___0 - (unsigned int )(& ((struct mISDNtimer *)0)->list)); while (1) { if ((unsigned long )(& timer->list) != (unsigned long )(& dev->pending)) { } else { break; } del_timer(& timer->tl); kfree(timer); timer = next; __mptr___1 = next->list.next; next = (struct mISDNtimer *)((char *)__mptr___1 - (unsigned int )(& ((struct mISDNtimer *)0)->list)); } __mptr___2 = dev->expired.next; timer = (struct mISDNtimer *)((char *)__mptr___2 - (unsigned int )(& ((struct mISDNtimer *)0)->list)); __mptr___3 = timer->list.next; next = (struct mISDNtimer *)((char *)__mptr___3 - (unsigned int )(& ((struct mISDNtimer *)0)->list)); while (1) { if ((unsigned long )(& timer->list) != (unsigned long )(& dev->expired)) { } else { break; } kfree(timer); timer = next; __mptr___4 = next->list.next; next = (struct mISDNtimer *)((char *)__mptr___4 - (unsigned int )(& ((struct mISDNtimer *)0)->list)); } kfree(dev); module_put(& __this_module); return (0); } } static ssize_t mISDN_read(struct file *filep , char *buf , size_t count , loff_t *off ) { struct mISDNtimerdev *dev ; struct mISDNtimer *timer ; u_long flags ; int ret ; int __ret ; wait_queue_t __wait ; struct task_struct *tmp ; int tmp___0 ; struct task_struct *tmp___1 ; int tmp___2 ; int tmp___3 ; struct task_struct *tmp___4 ; int tmp___5 ; int tmp___6 ; int __ret_pu ; int __pu_val ; int tmp___7 ; { dev = filep->private_data; ret = 0; if (*debug___5 & 16777216) { printk("<7>%s(%p, %p, %d, %p)\n", "mISDN_read", filep, buf, (int )count, off); } else { } if (*off != filep->f_pos) { return (-29); } else { } tmp___6 = list_empty(& dev->expired); if (tmp___6 && dev->work == (u_int )0) { if (filep->f_flags & 2048U) { return (-11); } else { } __ret = 0; if (dev->work) { } else { tmp___3 = list_empty(& dev->expired); if (tmp___3) { while (1) { tmp = get_current(); __wait.flags = 0U; __wait.private = tmp; __wait.func = & autoremove_wake_function; __wait.task_list.next = & __wait.task_list; __wait.task_list.prev = & __wait.task_list; while (1) { prepare_to_wait(& dev->wait, & __wait, 1); if (dev->work) { break; } else { tmp___0 = list_empty(& dev->expired); if (tmp___0) { } else { break; } } tmp___1 = get_current(); tmp___2 = signal_pending(tmp___1); if (tmp___2) { } else { schedule(); goto __Cont; } __ret = -512; break; __Cont: /* CIL Label */ ; } finish_wait(& dev->wait, & __wait); break; } } else { } } tmp___4 = get_current(); tmp___5 = signal_pending(tmp___4); if (tmp___5) { return (-512); } else { } } else { } if (count < sizeof(int )) { return (-28); } else { } if (dev->work) { dev->work = 0; } else { } tmp___7 = list_empty(& dev->expired); if (tmp___7) { } else { while (1) { flags = _spin_lock_irqsave(& dev->lock); break; } timer = (struct mISDNtimer *)dev->expired.next; list_del(& timer->list); while (1) { _spin_unlock_irqrestore(& dev->lock, flags); break; } __pu_val = timer->id; switch (sizeof(*((int *)buf))) { case 1UL: __asm__ volatile ("call __put_user_" "1": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)buf): "ebx"); break; case 2UL: __asm__ volatile ("call __put_user_" "2": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)buf): "ebx"); break; case 4UL: __asm__ volatile ("call __put_user_" "4": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)buf): "ebx"); break; case 8UL: __asm__ volatile ("call __put_user_" "8": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)buf): "ebx"); break; default: __asm__ volatile ("call __put_user_" "X": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)buf): "ebx"); break; } if (__ret_pu) { ret = -14; } else { ret = sizeof(int ); } kfree(timer); } return (ret); } } static unsigned int mISDN_poll(struct file *filep , poll_table *wait ) { struct mISDNtimerdev *dev ; unsigned int mask ; int tmp ; int tmp___0 ; { dev = filep->private_data; mask = 8; if (*debug___5 & 16777216) { printk("<7>%s(%p, %p)\n", "mISDN_poll", filep, wait); } else { } if (dev) { poll_wait(filep, & dev->wait, wait); mask = 0; if (dev->work) { mask = mask | (unsigned int )(1 | 64); } else { tmp = list_empty(& dev->expired); if (tmp) { } else { mask = mask | (unsigned int )(1 | 64); } } if (*debug___5 & 16777216) { tmp___0 = list_empty(& dev->expired); printk("<7>%s work(%d) empty(%d)\n", "mISDN_poll", dev->work, tmp___0); } else { } } else { } return (mask); } } static void dev_expire_timer(unsigned long data ) { struct mISDNtimer *timer ; u_long flags ; { timer = (void *)data; while (1) { flags = _spin_lock_irqsave(& (timer->dev)->lock); break; } list_del(& timer->list); list_add_tail(& timer->list, & (timer->dev)->expired); while (1) { _spin_unlock_irqrestore(& (timer->dev)->lock, flags); break; } __wake_up(& (timer->dev)->wait, 1, 1, (void *)0); return; } } static int misdn_add_timer(struct mISDNtimerdev *dev , int timeout ) { int id ; u_long flags ; struct mISDNtimer *timer ; void *tmp ; int tmp___0 ; { if (! timeout) { dev->work = 1; __wake_up(& dev->wait, 1, 1, (void *)0); id = 0; } else { tmp = kzalloc(sizeof(struct mISDNtimer ), (16U | 64U) | 128U); timer = tmp; if (! timer) { return (-12); } else { } while (1) { flags = _spin_lock_irqsave(& dev->lock); break; } tmp___0 = dev->next_id; dev->next_id = dev->next_id + 1; timer->id = tmp___0; if (dev->next_id < 0) { dev->next_id = 1; } else { } list_add_tail(& timer->list, & dev->pending); while (1) { _spin_unlock_irqrestore(& dev->lock, flags); break; } timer->dev = dev; timer->tl.data = (long )timer; timer->tl.function = & dev_expire_timer; init_timer(& timer->tl); timer->tl.expires = jiffies + (unsigned long volatile )(((u_long )250 * (u_long )timeout) / (u_long )1000); add_timer(& timer->tl); id = timer->id; } return (id); } } static int misdn_del_timer(struct mISDNtimerdev *dev , int id ) { u_long flags ; struct mISDNtimer *timer ; int ret ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { ret = 0; while (1) { flags = _spin_lock_irqsave(& dev->lock); break; } __mptr = dev->pending.next; timer = (struct mISDNtimer *)((char *)__mptr - (unsigned int )(& ((struct mISDNtimer *)0)->list)); while (1) { __builtin_prefetch(timer->list.next); if ((unsigned long )(& timer->list) != (unsigned long )(& dev->pending)) { } else { break; } if (timer->id == id) { list_del_init(& timer->list); del_timer(& timer->tl); ret = timer->id; kfree(timer); goto unlock; } else { } __mptr___0 = timer->list.next; timer = (struct mISDNtimer *)((char *)__mptr___0 - (unsigned int )(& ((struct mISDNtimer *)0)->list)); } unlock: while (1) { _spin_unlock_irqrestore(& dev->lock, flags); break; } return (ret); } } static int mISDN_ioctl(struct inode *inode , struct file *filep , unsigned int cmd , unsigned long arg ) { struct mISDNtimerdev *dev ; int id ; int tout ; int ret ; int __ret_gu ; unsigned long __val_gu ; int __ret_pu ; int __pu_val ; int __ret_gu___0 ; unsigned long __val_gu___0 ; int __ret_pu___0 ; int __pu_val___0 ; { dev = filep->private_data; ret = 0; if (*debug___5 & 16777216) { printk("<7>%s(%p, %x, %lx)\n", "mISDN_ioctl", filep, cmd, arg); } else { } switch (cmd) { case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(64 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): switch (sizeof(*((int *)arg))) { case 1UL: __asm__ volatile ("call __get_user_" "1": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); break; case 2UL: __asm__ volatile ("call __get_user_" "2": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); break; case 4UL: __asm__ volatile ("call __get_user_" "4": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); break; case 8UL: __asm__ volatile ("call __get_user_" "8": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); break; default: __asm__ volatile ("call __get_user_" "X": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); break; } tout = (int )__val_gu; if (__ret_gu) { ret = -14; break; } else { } id = misdn_add_timer(dev, tout); if (*debug___5 & 16777216) { printk("<7>%s add %d id %d\n", "mISDN_ioctl", tout, id); } else { } if (id < 0) { ret = id; break; } else { } __pu_val = id; switch (sizeof(*((int *)arg))) { case 1UL: __asm__ volatile ("call __put_user_" "1": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); break; case 2UL: __asm__ volatile ("call __put_user_" "2": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); break; case 4UL: __asm__ volatile ("call __put_user_" "4": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); break; case 8UL: __asm__ volatile ("call __put_user_" "8": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); break; default: __asm__ volatile ("call __put_user_" "X": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); break; } if (__ret_pu) { ret = -14; } else { } break; case (unsigned int )((unsigned long )(((2U << (((0 + 8) + 8) + 14)) | (unsigned int )('I' << (0 + 8))) | (unsigned int )(65 << 0)) | ((sizeof(int ) == sizeof(int [1]) && sizeof(int ) < (unsigned long )(1 << 14) ? sizeof(int ) : __invalid_size_argument_for_IOC) << ((0 + 8) + 8))): switch (sizeof(*((int *)arg))) { case 1UL: __asm__ volatile ("call __get_user_" "1": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)arg)); break; case 2UL: __asm__ volatile ("call __get_user_" "2": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)arg)); break; case 4UL: __asm__ volatile ("call __get_user_" "4": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)arg)); break; case 8UL: __asm__ volatile ("call __get_user_" "8": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)arg)); break; default: __asm__ volatile ("call __get_user_" "X": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)arg)); break; } id = (int )__val_gu___0; if (__ret_gu___0) { ret = -14; break; } else { } if (*debug___5 & 16777216) { printk("<7>%s del id %d\n", "mISDN_ioctl", id); } else { } id = misdn_del_timer(dev, id); __pu_val___0 = id; switch (sizeof(*((int *)arg))) { case 1UL: __asm__ volatile ("call __put_user_" "1": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); break; case 2UL: __asm__ volatile ("call __put_user_" "2": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); break; case 4UL: __asm__ volatile ("call __put_user_" "4": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); break; case 8UL: __asm__ volatile ("call __put_user_" "8": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); break; default: __asm__ volatile ("call __put_user_" "X": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); break; } if (__ret_pu___0) { ret = -14; } else { } break; default: ret = -22; } return (ret); } } static struct file_operations mISDN_fops = {0, 0, & mISDN_read, 0, 0, 0, 0, & mISDN_poll, & mISDN_ioctl, 0, 0, 0, & mISDN_open, 0, & mISDN_close, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct miscdevice mISDNtimer = {255, "mISDNtimer", & mISDN_fops, {0, 0}, 0, 0}; int mISDN_inittimer(int *deb ) { int err ; { debug___5 = deb; err = misc_register(& mISDNtimer); if (err) { printk("<4>mISDN: Could not register timer device\n"); } else { } return (err); } } void mISDN_timer_cleanup(void) { { misc_deregister(& mISDNtimer); return; } } extern void ldv_check_return_value(int res ) ; static ssize_t res_mISDN_read_2 ; static int res_mISDN_open_0 ; void ldv_main8_sequence_infinite_withcheck_stateful(void) { struct file *var_group1 ; char *var_mISDN_read_2_p1 ; size_t var_mISDN_read_2_p2 ; loff_t *var_mISDN_read_2_p3 ; poll_table *var_mISDN_poll_3_p1 ; struct inode *var_group2 ; unsigned int var_mISDN_ioctl_7_p2 ; unsigned long var_mISDN_ioctl_7_p3 ; unsigned long var_dev_expire_timer_4_p0 ; int ldv_s_mISDN_fops_file_operations ; int tmp ; int tmp___0 ; { LDV_IN_INTERRUPT = 1; ldv_initialize(); ldv_s_mISDN_fops_file_operations = 0; while (1) { tmp___0 = nondet_int(); if (tmp___0 || ! (ldv_s_mISDN_fops_file_operations == 0)) { } else { break; } tmp = nondet_int(); switch (tmp) { case 0: if (ldv_s_mISDN_fops_file_operations == 0) { ldv_handler_precall(); res_mISDN_open_0 = mISDN_open(var_group2, var_group1); ldv_check_return_value(res_mISDN_open_0); if (res_mISDN_open_0) { goto ldv_module_exit; } else { } ldv_s_mISDN_fops_file_operations = ldv_s_mISDN_fops_file_operations + 1; } else { } break; case 1: if (ldv_s_mISDN_fops_file_operations == 1) { ldv_handler_precall(); res_mISDN_read_2 = mISDN_read(var_group1, var_mISDN_read_2_p1, var_mISDN_read_2_p2, var_mISDN_read_2_p3); ldv_check_return_value(res_mISDN_read_2); if (res_mISDN_read_2 < (ssize_t )0) { goto ldv_module_exit; } else { } ldv_s_mISDN_fops_file_operations = ldv_s_mISDN_fops_file_operations + 1; } else { } break; case 2: if (ldv_s_mISDN_fops_file_operations == 2) { ldv_handler_precall(); mISDN_close(var_group2, var_group1); ldv_s_mISDN_fops_file_operations = 0; } else { } break; case 3: ldv_handler_precall(); mISDN_poll(var_group1, var_mISDN_poll_3_p1); break; case 4: ldv_handler_precall(); mISDN_ioctl(var_group2, var_group1, var_mISDN_ioctl_7_p2, var_mISDN_ioctl_7_p3); break; case 5: ldv_handler_precall(); dev_expire_timer(var_dev_expire_timer_4_p0); break; default: break; } } ldv_module_exit: ldv_check_final_state(); return; } } struct urb *usb_alloc_urb(int iso_packets , gfp_t mem_flags ) ; void usb_free_urb(struct urb *urb ) ; __inline static void ldv_error(void) { { LDV_ERROR: {reach_error();abort();} } } __inline static void ldv_stop(void) { { LDV_STOP: goto LDV_STOP; } } extern void *ldv_undef_ptr(void) ; long ldv__builtin_expect(long exp , long c ) { { return (exp); } } int ldv_urb_state = 0; int ldv_coherent_state = 0; void *usb_alloc_coherent(struct usb_device *dev , size_t size , gfp_t mem_flags , dma_addr_t *dma ) { void *arbitrary_memory ; void *tmp ; { while (1) { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; if (! arbitrary_memory) { return ((void *)0); } else { } ldv_coherent_state = ldv_coherent_state + 1; return (arbitrary_memory); break; } return ((void *)0); } } void usb_free_coherent(struct usb_device *dev , size_t size , void *addr , dma_addr_t dma ) { { while (1) { if ((unsigned long )addr != (unsigned long )((void *)0)) { } else { ldv_stop(); } if (addr) { if (ldv_coherent_state >= 1) { } else { ldv_error(); } ldv_coherent_state = ldv_coherent_state - 1; } else { } break; } return; } } struct urb *usb_alloc_urb(int iso_packets , gfp_t mem_flags ) { void *arbitrary_memory ; void *tmp ; { while (1) { tmp = ldv_undef_ptr(); arbitrary_memory = tmp; if (! arbitrary_memory) { return ((void *)0); } else { } ldv_urb_state = ldv_urb_state + 1; return (arbitrary_memory); break; } return ((struct urb *)0); } } void usb_free_urb(struct urb *urb ) { { while (1) { if ((unsigned long )urb != (unsigned long )((struct urb *)0)) { } else { ldv_stop(); } if (urb) { if (ldv_urb_state >= 1) { } else { ldv_error(); } ldv_urb_state = ldv_urb_state - 1; } else { } break; } return; } } void ldv_check_final_state(void) { { if (ldv_urb_state == 0) { } else { ldv_error(); } if (ldv_coherent_state == 0) { } else { ldv_error(); } return; } }