extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); void reach_error() { __assert_fail("0", "drivers--isdn--mISDN--mISDN_core.ko_006.5b83435.39_7a.cil_true-unreach-call.i", 3, "reach_error"); } /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef __builtin_va_list __gnuc_va_list[1U]; typedef __gnuc_va_list va_list[1U]; typedef unsigned int __kernel_mode_t; typedef unsigned long __kernel_nlink_t; typedef long __kernel_off_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid_t; typedef unsigned int __kernel_gid_t; typedef unsigned long __kernel_size_t; typedef long __kernel_ssize_t; typedef long __kernel_time_t; typedef long __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef long long __kernel_loff_t; typedef __kernel_uid_t __kernel_uid32_t; typedef __kernel_gid_t __kernel_gid32_t; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef long long __s64; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef unsigned short umode_t; typedef u64 dma_addr_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef __kernel_mode_t mode_t; typedef __kernel_nlink_t nlink_t; typedef __kernel_off_t off_t; typedef __kernel_pid_t pid_t; typedef __kernel_timer_t timer_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __kernel_clock_t clock_t; typedef unsigned char u_char; typedef unsigned int u_int; typedef unsigned long u_long; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef __u16 __be16; typedef __u32 __wsum; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef u64 phys_addr_t; struct module; struct bug_entry { unsigned long bug_addr ; char const *file ; unsigned short line ; unsigned short flags ; }; struct completion; struct pt_regs; struct pid; struct timespec; struct compat_timespec; struct __anonstruct_ldv_1569_4 { unsigned long arg0 ; unsigned long arg1 ; unsigned long arg2 ; unsigned long arg3 ; }; struct __anonstruct_futex_5 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; }; struct __anonstruct_nanosleep_6 { clockid_t index ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_7 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion_ldv_1591_3 { struct __anonstruct_ldv_1569_4 ldv_1569 ; struct __anonstruct_futex_5 futex ; struct __anonstruct_nanosleep_6 nanosleep ; struct __anonstruct_poll_7 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion_ldv_1591_3 ldv_1591 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct page; struct __anonstruct_pgd_t_9 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_9 pgd_t; struct __anonstruct_pgprot_t_10 { pgprotval_t pgprot ; }; typedef struct __anonstruct_pgprot_t_10 pgprot_t; struct __anonstruct_ldv_1703_14 { unsigned int a ; unsigned int b ; }; struct __anonstruct_ldv_1718_15 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion_ldv_1719_13 { struct __anonstruct_ldv_1703_14 ldv_1703 ; struct __anonstruct_ldv_1718_15 ldv_1718 ; }; struct desc_struct { union __anonunion_ldv_1719_13 ldv_1719 ; }; struct cpumask { unsigned long bits[1U] ; }; typedef struct cpumask cpumask_t; struct thread_struct; struct mm_struct; struct raw_spinlock; struct task_struct; struct exec_domain; typedef void (*ds_ovfl_callback_t)(struct task_struct * ); struct ds_context { unsigned char *ds ; struct task_struct *owner[2U] ; ds_ovfl_callback_t callback[2U] ; void *buffer[2U] ; unsigned int pages[2U] ; unsigned long count ; struct ds_context **this ; struct task_struct *task ; }; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct info { long ___orig_eip ; long ___ebx ; long ___ecx ; long ___edx ; long ___esi ; long ___edi ; long ___ebp ; long ___eax ; long ___ds ; long ___es ; long ___fs ; long ___orig_eax ; long ___eip ; long ___cs ; long ___eflags ; long ___esp ; long ___ss ; long ___vm86_es ; long ___vm86_ds ; long ___vm86_fs ; long ___vm86_gs ; }; struct map_segment; struct exec_domain { char const *name ; void (*handler)(int , struct pt_regs * ) ; unsigned char pers_low ; unsigned char pers_high ; unsigned long *signal_map ; unsigned long *signal_invmap ; struct map_segment *err_map ; struct map_segment *socktype_map ; struct map_segment *sockopt_map ; struct map_segment *af_map ; struct module *module ; struct exec_domain *next ; }; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct_ldv_4659_20 { u64 rip ; u64 rdp ; }; struct __anonstruct_ldv_4665_21 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion_ldv_4666_19 { struct __anonstruct_ldv_4659_20 ldv_4659 ; struct __anonstruct_ldv_4665_21 ldv_4665 ; }; union __anonunion_ldv_4675_22 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion_ldv_4666_19 ldv_4666 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion_ldv_4675_22 ldv_4675 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct info *info ; u32 entry_eip ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct kmem_cache; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long ip ; unsigned long fs ; unsigned long gs ; unsigned long debugreg0 ; unsigned long debugreg1 ; unsigned long debugreg2 ; unsigned long debugreg3 ; unsigned long debugreg6 ; unsigned long debugreg7 ; unsigned long cr2 ; unsigned long trap_no ; unsigned long error_code ; union thread_xstate *xstate ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned long debugctlmsr ; struct ds_context *ds_ctx ; unsigned int bts_ovfl_signal ; }; struct __anonstruct_mm_segment_t_23 { unsigned long seg ; }; typedef struct __anonstruct_mm_segment_t_23 mm_segment_t; struct thread_info { struct task_struct *task ; struct exec_domain *exec_domain ; unsigned long flags ; __u32 status ; __u32 cpu ; int preempt_count ; mm_segment_t addr_limit ; struct restart_block restart_block ; void *sysenter_return ; }; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct raw_spinlock { unsigned int slock ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct_raw_rwlock_t_24 { unsigned int lock ; }; typedef struct __anonstruct_raw_rwlock_t_24 raw_rwlock_t; struct lockdep_map; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[9U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache ; char const *name ; int cpu ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 2 ; unsigned char hardirqs_off : 1 ; }; struct __anonstruct_spinlock_t_25 { raw_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_spinlock_t_25 spinlock_t; struct __anonstruct_rwlock_t_26 { raw_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_26 rwlock_t; struct __anonstruct_atomic_t_27 { int counter ; }; typedef struct __anonstruct_atomic_t_27 atomic_t; struct __anonstruct_atomic64_t_28 { long counter ; }; typedef struct __anonstruct_atomic64_t_28 atomic64_t; typedef atomic64_t atomic_long_t; struct __anonstruct_seqlock_t_29 { unsigned int sequence ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_29 seqlock_t; struct timespec { time_t tv_sec ; long tv_nsec ; }; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; uid_t uid ; gid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct __anonstruct_nodemask_t_30 { unsigned long bits[1U] ; }; typedef struct __anonstruct_nodemask_t_30 nodemask_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct thread_info *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; struct mutex *lock ; void *magic ; }; struct rw_semaphore; struct rw_semaphore { __s32 activity ; spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct ctl_table; struct file; struct device; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; }; struct pm_ext_ops { struct pm_ops base ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; }; enum dpm_state { DPM_INVALID = 0, DPM_ON = 1, DPM_PREPARING = 2, DPM_RESUMING = 3, DPM_SUSPENDING = 4, DPM_OFF = 5, DPM_OFF_IRQ = 6 } ; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char should_wakeup : 1 ; enum dpm_state status ; struct list_head entry ; }; struct __anonstruct_mm_context_t_78 { void *ldt ; int size ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_78 mm_context_t; struct vm_area_struct; struct key; struct linux_binprm; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kobject; struct attribute { char const *name ; struct module *owner ; mode_t mode ; }; struct attribute_group { char const *name ; mode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct sysfs_dirent; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct sysfs_dirent *sd ; struct kref kref ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops *sysfs_ops ; struct attribute **default_attrs ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (*filter)(struct kset * , struct kobject * ) ; char const *(*name)(struct kset * , struct kobject * ) ; int (*uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops *uevent_ops ; }; struct marker; typedef void marker_probe_func(void * , void * , char const * , va_list * ); struct marker_probe_closure { marker_probe_func *func ; void *probe_private ; }; struct marker { char const *name ; char const *format ; char state ; char ptype ; void (*call)(struct marker const * , void * , ...) ; struct marker_probe_closure single ; struct marker_probe_closure *multi ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; void (*function)(unsigned long ) ; unsigned long data ; struct tvec_base *base ; void *start_site ; char start_comm[16U] ; int start_pid ; }; struct hrtimer; enum hrtimer_restart; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; }; struct kmem_cache_cpu { void **freelist ; struct page *page ; int node ; unsigned int offset ; unsigned int objsize ; unsigned int stat[18U] ; }; struct kmem_cache_node { spinlock_t list_lock ; unsigned long nr_partial ; unsigned long min_partial ; struct list_head partial ; atomic_long_t nr_slabs ; atomic_long_t total_objects ; struct list_head full ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct kmem_cache { unsigned long flags ; int size ; int objsize ; int offset ; struct kmem_cache_order_objects oo ; struct kmem_cache_node local_node ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; char const *name ; struct list_head list ; struct kobject kobj ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[64U] ; struct kmem_cache_cpu *cpu_slab[8U] ; }; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct rcu_head { struct rcu_head *next ; void (*func)(struct rcu_head * ) ; }; struct tracepoint; struct tracepoint { char const *name ; int state ; void **funcs ; }; struct __anonstruct_local_t_89 { atomic_long_t a ; }; typedef struct __anonstruct_local_t_89 local_t; struct mod_arch_specific { }; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; }; struct exception_table_entry; struct module_ref { local_t count ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2 } ; struct module_sect_attrs; struct module_notes_attrs; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; void *unwind_info ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; unsigned int num_symtab ; char *strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; void *percpu ; char *args ; struct marker *markers ; unsigned int num_markers ; struct tracepoint *tracepoints ; unsigned int num_tracepoints ; struct list_head modules_which_use_me ; struct task_struct *waiter ; void (*exit)(void) ; struct module_ref ref[8U] ; }; struct device_driver; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct seq_file; typedef unsigned short sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct ucred { __u32 pid ; __u32 uid ; __u32 gid ; }; struct sockaddr_mISDN { sa_family_t family ; unsigned char dev ; unsigned char channel ; unsigned char sapi ; unsigned char tei ; }; enum ldv_12007 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_12007 socket_state; struct poll_table_struct; struct pipe_inode_info; struct inode; struct net; struct proto_ops; struct fasync_struct; struct sock; struct socket { socket_state state ; short type ; unsigned long flags ; struct proto_ops const *ops ; struct fasync_struct *fasync_list ; struct file *file ; struct sock *sk ; wait_queue_head_t wait ; }; struct kiocb; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_set { struct list_head list ; struct ctl_table_set *parent ; int (*is_seen)(struct ctl_table_set * ) ; }; struct ctl_table_header; typedef int ctl_handler(struct ctl_table * , void * , size_t * , void * , size_t ); typedef int proc_handler(struct ctl_table * , int , struct file * , void * , size_t * , loff_t * ); struct ctl_table { int ctl_name ; char const *procname ; void *data ; int maxlen ; mode_t mode ; struct ctl_table *child ; struct ctl_table *parent ; proc_handler *proc_handler ; ctl_handler *strategy ; void *extra1 ; void *extra2 ; }; struct ctl_table_root { struct list_head root_list ; struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_root * , struct nsproxy * , struct ctl_table * ) ; }; struct ctl_table_header { struct ctl_table *ctl_table ; struct list_head ctl_entry ; int used ; int count ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_table *attached_by ; struct ctl_table *attached_to ; struct ctl_table_header *parent ; }; struct exception_table_entry { unsigned long insn ; unsigned long fixup ; }; struct sk_buff; struct klist_node; struct klist { spinlock_t k_lock ; struct list_head k_list ; void (*get)(struct klist_node * ) ; void (*put)(struct klist_node * ) ; }; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; struct completion n_removed ; }; struct semaphore { spinlock_t lock ; unsigned int count ; struct list_head wait_list ; }; struct dma_mapping_ops; struct dev_archdata { void *acpi_handle ; struct dma_mapping_ops *dma_ops ; void *iommu ; }; struct driver_private; struct class; struct class_private; struct bus_type; struct bus_type_private; struct bus_attribute { struct attribute attr ; ssize_t (*show)(struct bus_type * , char * ) ; ssize_t (*store)(struct bus_type * , char const * , size_t ) ; }; struct device_attribute; struct driver_attribute; struct bus_type { char const *name ; struct bus_attribute *bus_attrs ; struct device_attribute *dev_attrs ; struct driver_attribute *drv_attrs ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*suspend_late)(struct device * , pm_message_t ) ; int (*resume_early)(struct device * ) ; int (*resume)(struct device * ) ; struct pm_ext_ops *pm ; struct bus_type_private *p ; }; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group **groups ; struct pm_ops *pm ; struct driver_private *p ; }; struct driver_attribute { struct attribute attr ; ssize_t (*show)(struct device_driver * , char * ) ; ssize_t (*store)(struct device_driver * , char const * , size_t ) ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct device_attribute *dev_attrs ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct pm_ops *pm ; struct class_private *p ; }; struct device_type; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , char * ) ; ssize_t (*store)(struct class * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; void (*release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct pm_ops *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct device { struct klist klist_children ; struct klist_node knode_parent ; struct klist_node knode_driver ; struct klist_node knode_bus ; struct device *parent ; struct kobject kobj ; char bus_id[20U] ; char const *init_name ; struct device_type *type ; unsigned char uevent_suppress : 1 ; struct semaphore sem ; struct bus_type *bus ; struct device_driver *driver ; void *driver_data ; void *platform_data ; struct dev_pm_info power ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; dev_t devt ; struct attribute_group **groups ; void (*release)(struct device * ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct rb_node { unsigned long rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct prio_tree_node; struct raw_prio_tree_node { struct prio_tree_node *left ; struct prio_tree_node *right ; struct prio_tree_node *parent ; }; struct prio_tree_node { struct prio_tree_node *left ; struct prio_tree_node *right ; struct prio_tree_node *parent ; unsigned long start ; unsigned long last ; }; struct prio_tree_root { struct prio_tree_node *prio_tree_node ; unsigned short index_bits ; unsigned short raw ; }; struct address_space; typedef atomic_long_t mm_counter_t; struct __anonstruct_ldv_12493_91 { u16 inuse ; u16 objects ; }; union __anonunion_ldv_12494_90 { atomic_t _mapcount ; struct __anonstruct_ldv_12493_91 ldv_12493 ; }; struct __anonstruct_ldv_12499_93 { unsigned long private ; struct address_space *mapping ; }; union __anonunion_ldv_12503_92 { struct __anonstruct_ldv_12499_93 ldv_12499 ; spinlock_t ptl ; struct kmem_cache *slab ; struct page *first_page ; }; union __anonunion_ldv_12507_94 { unsigned long index ; void *freelist ; }; struct page { unsigned long flags ; atomic_t _count ; union __anonunion_ldv_12494_90 ldv_12494 ; union __anonunion_ldv_12503_92 ldv_12503 ; union __anonunion_ldv_12507_94 ldv_12507 ; struct list_head lru ; }; struct __anonstruct_vm_set_96 { struct list_head list ; void *parent ; struct vm_area_struct *head ; }; union __anonunion_shared_95 { struct __anonstruct_vm_set_96 vm_set ; struct raw_prio_tree_node prio_tree_node ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { struct mm_struct *vm_mm ; unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct rb_node vm_rb ; union __anonunion_shared_95 shared ; struct list_head anon_vma_node ; struct anon_vma *anon_vma ; struct vm_operations_struct *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; unsigned long vm_truncate_count ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct kioctx; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; void (*unmap_area)(struct mm_struct * , unsigned long ) ; unsigned long mmap_base ; unsigned long task_size ; unsigned long cached_hole_size ; unsigned long free_area_cache ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; int map_count ; struct rw_semaphore mmap_sem ; spinlock_t page_table_lock ; struct list_head mmlist ; mm_counter_t _file_rss ; mm_counter_t _anon_rss ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long reserved_vm ; unsigned long def_flags ; unsigned long nr_ptes ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[42U] ; cpumask_t cpu_vm_mask ; mm_context_t context ; unsigned int faultstamp ; unsigned int token_priority ; unsigned int last_interval ; unsigned long flags ; struct core_state *core_state ; rwlock_t ioctx_list_lock ; struct kioctx *ioctx_list ; struct task_struct *owner ; struct file *exe_file ; unsigned long num_exe_file_vmas ; struct mmu_notifier_mm *mmu_notifier_mm ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct page * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; }; struct dma_mapping_ops { int (*mapping_error)(struct device * , dma_addr_t ) ; void *(*alloc_coherent)(struct device * , size_t , dma_addr_t * , gfp_t ) ; void (*free_coherent)(struct device * , size_t , void * , dma_addr_t ) ; dma_addr_t (*map_single)(struct device * , phys_addr_t , size_t , int ) ; void (*unmap_single)(struct device * , dma_addr_t , size_t , int ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , int ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , int ) ; void (*sync_single_range_for_cpu)(struct device * , dma_addr_t , unsigned long , size_t , int ) ; void (*sync_single_range_for_device)(struct device * , dma_addr_t , unsigned long , size_t , int ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , int ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , int ) ; int (*map_sg)(struct device * , struct scatterlist * , int , int ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , int ) ; int (*dma_supported)(struct device * , u64 ) ; int is_phys ; }; typedef s32 dma_cookie_t; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; enum hrtimer_cb_mode { HRTIMER_CB_SOFTIRQ = 0, HRTIMER_CB_IRQSAFE_PERCPU = 1, HRTIMER_CB_IRQSAFE_UNLOCKED = 2 } ; struct hrtimer { struct rb_node node ; ktime_t _expires ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; struct list_head cb_entry ; enum hrtimer_cb_mode cb_mode ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; clockid_t index ; struct rb_root active ; struct rb_node *first ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { spinlock_t lock ; struct hrtimer_clock_base clock_base[2U] ; struct list_head cb_pending ; ktime_t expires_next ; int hres_active ; unsigned long nr_events ; }; struct net_device; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned int mask ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct dst_entry; struct rtable; union __anonunion_ldv_15542_98 { struct dst_entry *dst ; struct rtable *rtable ; }; struct sec_path; struct __anonstruct_ldv_15555_100 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion_ldv_15556_99 { __wsum csum ; struct __anonstruct_ldv_15555_100 ldv_15555 ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; struct sock *sk ; ktime_t tstamp ; struct net_device *dev ; union __anonunion_ldv_15542_98 ldv_15542 ; struct sec_path *sp ; char cb[48U] ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion_ldv_15556_99 ldv_15556 ; __u32 priority ; unsigned char local_df : 1 ; unsigned char cloned : 1 ; unsigned char ip_summed : 2 ; unsigned char nohdr : 1 ; unsigned char nfctinfo : 3 ; unsigned char pkt_type : 3 ; unsigned char fclone : 2 ; unsigned char ipvs_property : 1 ; unsigned char peeked : 1 ; unsigned char nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct sk_buff *nfct_reasm ; struct nf_bridge_info *nf_bridge ; int iif ; __u16 queue_mapping ; __u16 tc_index ; __u16 tc_verd ; unsigned char ndisc_nodetype : 2 ; unsigned char do_not_encrypt : 1 ; unsigned char requeue : 1 ; dma_cookie_t dma_cookie ; __u32 secmark ; __u32 mark ; __u16 vlan_tci ; sk_buff_data_t transport_header ; sk_buff_data_t network_header ; sk_buff_data_t mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct hlist_nulls_node; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct __anonstruct_sync_serial_settings_101 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_101 sync_serial_settings; struct __anonstruct_te1_settings_102 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_102 te1_settings; struct __anonstruct_raw_hdlc_proto_103 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_103 raw_hdlc_proto; struct __anonstruct_fr_proto_104 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_104 fr_proto; struct __anonstruct_fr_proto_pvc_105 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_105 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_106 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_106 fr_proto_pvc_info; struct __anonstruct_cisco_proto_107 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_107 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_108 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_108 ifs_ifsu ; }; union __anonunion_ifr_ifrn_109 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_110 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_109 ifr_ifrn ; union __anonunion_ifr_ifru_110 ifr_ifru ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct ipstats_mib { unsigned long mibs[25U] ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { unsigned long mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[4U] ; }; struct icmpv6msg_mib { unsigned long mibs[512U] ; }; struct tcp_mib { unsigned long mibs[15U] ; }; struct udp_mib { unsigned long mibs[7U] ; }; struct linux_mib { unsigned long mibs[75U] ; }; struct linux_xfrm_mib { unsigned long mibs[26U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[2U] ; struct ipstats_mib *ip_statistics[2U] ; struct linux_mib *net_statistics[2U] ; struct udp_mib *udp_statistics[2U] ; struct udp_mib *udplite_statistics[2U] ; struct icmp_mib *icmp_statistics[2U] ; struct icmpmsg_mib *icmpmsg_statistics[2U] ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[2U] ; struct udp_mib *udplite_stats_in6[2U] ; struct ipstats_mib *ipv6_statistics[2U] ; struct icmpv6_mib *icmpv6_statistics[2U] ; struct icmpv6msg_mib *icmpv6msg_statistics[2U] ; struct linux_xfrm_mib *xfrm_statistics[2U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { rwlock_t sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; atomic_t mem ; struct list_head lru_list ; int timeout ; int high_thresh ; int low_thresh ; }; struct ipv4_devconf; struct fib_rules_ops; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct sock *tcp_sock ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; struct hlist_head *nat_bysource ; int nat_vmalloced ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; int sysctl_rt_cache_rebuild_count ; int current_rt_cache_rebuild_count ; struct timer_list rt_secret_timer ; atomic_t rt_genid ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *table ; struct ctl_table_header *frags_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int icmpv6_time ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct dst_ops; struct mfc6_cache; struct mif_device; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops *ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct sock *mroute6_sk ; struct mfc6_cache **mfc6_cache_array ; struct mif_device *vif6_table ; int maxvif ; atomic_t cache_resolve_queue_len ; int mroute_do_assert ; int mroute_do_pim ; int mroute_reg_vif_num ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nameidata; struct path; struct vfsmount; struct qstr { unsigned int hash ; unsigned int len ; unsigned char const *name ; }; struct dcookie_struct; union __anonunion_d_u_122 { struct list_head d_child ; struct rcu_head d_rcu ; }; struct dentry_operations; struct super_block; struct dentry { atomic_t d_count ; unsigned int d_flags ; spinlock_t d_lock ; struct inode *d_inode ; struct hlist_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct list_head d_lru ; union __anonunion_d_u_122 d_u ; struct list_head d_subdirs ; struct list_head d_alias ; unsigned long d_time ; struct dentry_operations *d_op ; struct super_block *d_sb ; void *d_fsdata ; struct dcookie_struct *d_cookie ; int d_mounted ; unsigned char d_iname[36U] ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , struct nameidata * ) ; int (*d_hash)(struct dentry * , struct qstr * ) ; int (*d_compare)(struct dentry * , struct qstr * , struct qstr * ) ; int (*d_delete)(struct dentry * ) ; void (*d_release)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct rcu_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; struct export_operations; struct kstatfs; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; uid_t ia_uid ; gid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct if_dqblk { __u64 dqb_bhardlimit ; __u64 dqb_bsoftlimit ; __u64 dqb_curspace ; __u64 dqb_ihardlimit ; __u64 dqb_isoftlimit ; __u64 dqb_curinodes ; __u64 dqb_btime ; __u64 dqb_itime ; __u32 dqb_valid ; }; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct v1_mem_dqinfo { }; struct v2_mem_dqinfo { unsigned int dqi_blocks ; unsigned int dqi_free_blk ; unsigned int dqi_free_entry ; }; typedef __kernel_uid32_t qid_t; typedef __u64 qsize_t; struct mem_dqblk { __u32 dqb_bhardlimit ; __u32 dqb_bsoftlimit ; qsize_t dqb_curspace ; __u32 dqb_ihardlimit ; __u32 dqb_isoftlimit ; __u32 dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; union __anonunion_u_124 { struct v1_mem_dqinfo v1_i ; struct v2_mem_dqinfo v2_i ; }; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; union __anonunion_u_124 u ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; unsigned int dq_id ; loff_t dq_off ; unsigned long dq_flags ; short dq_type ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*initialize)(struct inode * , int ) ; int (*drop)(struct inode * ) ; int (*alloc_space)(struct inode * , qsize_t , int ) ; int (*alloc_inode)(struct inode const * , unsigned long ) ; int (*free_space)(struct inode * , qsize_t ) ; int (*free_inode)(struct inode const * , unsigned long ) ; int (*transfer)(struct inode * , struct iattr * ) ; int (*write_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , char * , int ) ; int (*quota_off)(struct super_block * , int , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , int , qid_t , struct if_dqblk * ) ; int (*set_dqblk)(struct super_block * , int , qid_t , struct if_dqblk * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xquota)(struct super_block * , int , qid_t , struct fs_disk_quota * ) ; int (*set_xquota)(struct super_block * , int , qid_t , struct fs_disk_quota * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops *ops[2U] ; }; union __anonunion_arg_126 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_125 { size_t written ; size_t count ; union __anonunion_arg_126 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_125 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; void (*sync_page)(struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned long ) ; int (*releasepage)(struct page * , gfp_t ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct prio_tree_root i_mmap ; struct list_head i_mmap_nonlinear ; spinlock_t i_mmap_lock ; unsigned int truncate_count ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; struct address_space *assoc_mapping ; }; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; struct inode *bd_inode ; int bd_openers ; struct mutex bd_mutex ; struct semaphore bd_mount_sem ; struct list_head bd_inodes ; void *bd_holder ; int bd_holders ; struct list_head bd_holder_list ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct list_head bd_list ; struct backing_dev_info *bd_inode_backing_dev_info ; unsigned long bd_private ; }; struct inode_operations; struct file_operations; struct file_lock; struct cdev; union __anonunion_ldv_18421_127 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct dnotify_struct; struct inode { struct hlist_node i_hash ; struct list_head i_list ; struct list_head i_sb_list ; struct list_head i_dentry ; unsigned long i_ino ; atomic_t i_count ; unsigned int i_nlink ; uid_t i_uid ; gid_t i_gid ; dev_t i_rdev ; u64 i_version ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned short i_bytes ; umode_t i_mode ; spinlock_t i_lock ; struct mutex i_mutex ; struct rw_semaphore i_alloc_sem ; struct inode_operations const *i_op ; struct file_operations const *i_fop ; struct super_block *i_sb ; struct file_lock *i_flock ; struct address_space *i_mapping ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion_ldv_18421_127 ldv_18421 ; int i_cindex ; __u32 i_generation ; unsigned long i_dnotify_mask ; struct dnotify_struct *i_dnotify ; struct list_head inotify_watches ; struct mutex inotify_mutex ; unsigned long i_state ; unsigned long dirtied_when ; unsigned int i_flags ; atomic_t i_writecount ; void *i_security ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; uid_t uid ; uid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_128 { struct list_head fu_list ; struct rcu_head fu_rcuhead ; }; struct file { union __anonunion_f_u_128 f_u ; struct path f_path ; struct file_operations const *f_op ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; loff_t f_pos ; struct fown_struct f_owner ; unsigned int f_uid ; unsigned int f_gid ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; spinlock_t f_ep_lock ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*fl_compare_owner)(struct file_lock * , struct file_lock * ) ; void (*fl_notify)(struct file_lock * ) ; int (*fl_grant)(struct file_lock * , struct file_lock * , int ) ; void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; void (*fl_break)(struct file_lock * ) ; int (*fl_mylease)(struct file_lock * , struct file_lock * ) ; int (*fl_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct __anonstruct_afs_130 { struct list_head link ; int state ; }; union __anonunion_fl_u_129 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_130 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned char fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; struct file_lock_operations *fl_ops ; struct lock_manager_operations *fl_lmops ; union __anonunion_fl_u_129 fl_u ; }; struct fasync_struct { int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; }; struct file_system_type; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned long s_blocksize ; unsigned char s_blocksize_bits ; unsigned char s_dirt ; unsigned long long s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations *dq_op ; struct quotactl_ops *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; struct mutex s_lock ; int s_count ; int s_syncing ; int s_need_sync_fs ; atomic_t s_active ; void *s_security ; struct xattr_handler **s_xattr ; struct list_head s_inodes ; struct list_head s_dirty ; struct list_head s_io ; struct list_head s_more_io ; struct hlist_head s_anon ; struct list_head s_files ; struct list_head s_dentry_lru ; int s_nr_dentry_unused ; struct block_device *s_bdev ; struct mtd_info *s_mtd ; struct list_head s_instances ; struct quota_info s_dquot ; int s_frozen ; wait_queue_head_t s_wait_unfrozen ; char s_id[32U] ; void *s_fs_info ; fmode_t s_mode ; struct mutex s_vfs_rename_mutex ; u32 s_time_gran ; char *s_subtype ; char *s_options ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*readdir)(struct file * , void * , int (*)(void * , char const * , int , loff_t , u64 , unsigned int ) ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; int (*ioctl)(struct inode * , struct file * , unsigned int , unsigned long ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , struct dentry * , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*dir_notify)(struct file * , unsigned long ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; }; struct inode_operations { int (*create)(struct inode * , struct dentry * , int , struct nameidata * ) ; struct dentry *(*lookup)(struct inode * , struct dentry * , struct nameidata * ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , int ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , int , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*readlink)(struct dentry * , char * , int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; void (*truncate)(struct inode * ) ; int (*permission)(struct inode * , int ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; void (*truncate_range)(struct inode * , loff_t , loff_t ) ; long (*fallocate)(struct inode * , int , loff_t , loff_t ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * ) ; int (*write_inode)(struct inode * , int ) ; void (*drop_inode)(struct inode * ) ; void (*delete_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; void (*write_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; void (*write_super_lockfs)(struct super_block * ) ; void (*unlockfs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*clear_inode)(struct inode * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct vfsmount * ) ; int (*show_stats)(struct seq_file * , struct vfsmount * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; }; struct file_system_type { char const *name ; int fs_flags ; int (*get_sb)(struct file_system_type * , int , char const * , void * , struct vfsmount * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct list_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; struct lock_class_key i_alloc_sem_key ; }; struct bio; typedef int read_proc_t(char * , char ** , off_t , int , int * , void * ); typedef int write_proc_t(struct file * , char const * , unsigned long , void * ); struct proc_dir_entry { unsigned int low_ino ; unsigned short namelen ; char const *name ; mode_t mode ; nlink_t nlink ; uid_t uid ; gid_t gid ; loff_t size ; struct inode_operations const *proc_iops ; struct file_operations const *proc_fops ; struct module *owner ; struct proc_dir_entry *next ; struct proc_dir_entry *parent ; struct proc_dir_entry *subdir ; void *data ; read_proc_t *read_proc ; write_proc_t *write_proc ; atomic_t count ; int pde_users ; spinlock_t pde_unload_lock ; struct completion *pde_unload_completion ; struct list_head pde_openers ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; }; struct nf_conntrack_ecache; struct ip_conntrack_stat; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct hlist_head *hash ; struct hlist_head *expect_hash ; struct hlist_head unconfirmed ; struct ip_conntrack_stat *stat ; struct nf_conntrack_ecache *ecache ; int sysctl_acct ; int sysctl_checksum ; unsigned int sysctl_log_invalid ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; int hash_vmalloc ; int expect_vmalloc ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; wait_queue_head_t km_waitq ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; }; struct net_generic; struct net { atomic_t count ; struct list_head list ; struct work_struct work ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct net_device *loopback_dev ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; struct list_head rules_ops ; spinlock_t rules_mod_lock ; struct sock *rtnl ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_dccp dccp ; struct netns_xt xt ; struct netns_ct ct ; struct netns_xfrm xfrm ; struct net_generic *gen ; }; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; loff_t index ; u64 version ; struct mutex lock ; struct seq_operations const *op ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct dcbnl_rtnl_ops { u8 (*getstate)(struct net_device * ) ; void (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; u8 (*getnumtcs)(struct net_device * , int , u8 * ) ; u8 (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; }; struct vlan_group; struct ethtool_ops; struct netpoll_info; struct wireless_dev; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neighbour; struct neigh_parms; struct dev_addr_list { struct dev_addr_list *next ; u8 da_addr[32U] ; u8 da_addrlen ; u8 da_synced ; int da_users ; int da_gusers ; }; struct hh_cache { struct hh_cache *hh_next ; atomic_t hh_refcnt ; __be16 hh_type ; u16 hh_len ; int (*hh_output)(struct sk_buff * ) ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; unsigned long state ; spinlock_t _xmit_lock ; int xmit_lock_owner ; struct Qdisc *qdisc_sleeping ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; int (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; void (*ndo_set_multicast_list)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; void (*ndo_vlan_rx_register)(struct net_device * , struct vlan_group * ) ; void (*ndo_vlan_rx_add_vid)(struct net_device * , unsigned short ) ; void (*ndo_vlan_rx_kill_vid)(struct net_device * , unsigned short ) ; void (*ndo_poll_controller)(struct net_device * ) ; }; enum ldv_17634 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4 } ; struct iw_handler_def; struct iw_public_data; struct net_bridge_port; struct macvlan_port; struct garp_port; struct rtnl_link_ops; struct __anonstruct_ldv_21523_132 { int (*init)(struct net_device * ) ; void (*uninit)(struct net_device * ) ; int (*open)(struct net_device * ) ; int (*stop)(struct net_device * ) ; int (*hard_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*select_queue)(struct net_device * , struct sk_buff * ) ; void (*change_rx_flags)(struct net_device * , int ) ; void (*set_rx_mode)(struct net_device * ) ; void (*set_multicast_list)(struct net_device * ) ; int (*set_mac_address)(struct net_device * , void * ) ; int (*validate_addr)(struct net_device * ) ; int (*do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*set_config)(struct net_device * , struct ifmap * ) ; int (*change_mtu)(struct net_device * , int ) ; int (*neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*tx_timeout)(struct net_device * ) ; struct net_device_stats *(*get_stats)(struct net_device * ) ; void (*vlan_rx_register)(struct net_device * , struct vlan_group * ) ; void (*vlan_rx_add_vid)(struct net_device * , unsigned short ) ; void (*vlan_rx_kill_vid)(struct net_device * , unsigned short ) ; void (*poll_controller)(struct net_device * ) ; }; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; unsigned int irq ; unsigned char if_port ; unsigned char dma ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; unsigned long features ; int ifindex ; int iflink ; struct net_device_stats stats ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned short gflags ; unsigned short priv_flags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; struct net_device *master ; unsigned char perm_addr[32U] ; unsigned char addr_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct dev_addr_list *uc_list ; int uc_count ; int uc_promisc ; struct dev_addr_list *mc_list ; int mc_count ; unsigned int promiscuity ; unsigned int allmulti ; void *dsa_ptr ; void *atalk_ptr ; void *ip_ptr ; void *dn_ptr ; void *ip6_ptr ; void *ec_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char dev_addr[32U] ; unsigned char broadcast[32U] ; struct netdev_queue rx_queue ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; atomic_t refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct net_device *link_watch_next ; enum ldv_17634 reg_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; void *ml_priv ; struct net_bridge_port *br_port ; struct macvlan_port *macvlan_port ; struct garp_port *garp_port ; struct device dev ; struct attribute_group *sysfs_groups[3U] ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned long vlan_features ; unsigned int gso_max_size ; struct dcbnl_rtnl_ops *dcbnl_ops ; struct __anonstruct_ldv_21523_132 ldv_21523 ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sem_undo_list { atomic_t refcnt ; spinlock_t lock ; struct list_head list_proc ; }; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct siginfo; struct __anonstruct_sigset_t_133 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_133 sigset_t; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_135 { pid_t _pid ; uid_t _uid ; }; struct __anonstruct__timer_136 { timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_137 { pid_t _pid ; uid_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_138 { pid_t _pid ; uid_t _uid ; int _status ; clock_t _utime ; clock_t _stime ; }; struct __anonstruct__sigfault_139 { void *_addr ; }; struct __anonstruct__sigpoll_140 { long _band ; int _fd ; }; union __anonunion__sifields_134 { int _pad[28U] ; struct __anonstruct__kill_135 _kill ; struct __anonstruct__timer_136 _timer ; struct __anonstruct__rt_137 _rt ; struct __anonstruct__sigchld_138 _sigchld ; struct __anonstruct__sigfault_139 _sigfault ; struct __anonstruct__sigpoll_140 _sigpoll ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_134 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct fs_struct { atomic_t count ; rwlock_t lock ; int umask ; struct path root ; struct path pwd ; }; struct percpu_counter { spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct prop_local_single { unsigned long events ; unsigned long period ; int shift ; spinlock_t lock ; }; struct __anonstruct_seccomp_t_143 { int mode ; }; typedef struct __anonstruct_seccomp_t_143 seccomp_t; struct plist_head { struct list_head prio_list ; struct list_head node_list ; spinlock_t *lock ; }; struct rt_mutex_waiter; struct rlimit { unsigned long rlim_cur ; unsigned long rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct futex_pi_state; struct robust_list_head; struct cfs_rq; struct task_group; struct io_event { __u64 data ; __u64 obj ; __s64 res ; __s64 res2 ; }; union __anonunion_ki_obj_144 { void *user ; struct task_struct *tsk ; }; struct kiocb { struct list_head ki_run_list ; unsigned long ki_flags ; int ki_users ; unsigned int ki_key ; struct file *ki_filp ; struct kioctx *ki_ctx ; int (*ki_cancel)(struct kiocb * , struct io_event * ) ; ssize_t (*ki_retry)(struct kiocb * ) ; void (*ki_dtor)(struct kiocb * ) ; union __anonunion_ki_obj_144 ki_obj ; __u64 ki_user_data ; wait_queue_t ki_wait ; loff_t ki_pos ; void *private ; unsigned short ki_opcode ; size_t ki_nbytes ; char *ki_buf ; size_t ki_left ; struct iovec ki_inline_vec ; struct iovec *ki_iovec ; unsigned long ki_nr_segs ; unsigned long ki_cur_seg ; struct list_head ki_list ; struct file *ki_eventfd ; }; struct aio_ring_info { unsigned long mmap_base ; unsigned long mmap_size ; struct page **ring_pages ; spinlock_t ring_lock ; long nr_pages ; unsigned int nr ; unsigned int tail ; struct page *internal_pages[8U] ; }; struct kioctx { atomic_t users ; int dead ; struct mm_struct *mm ; unsigned long user_id ; struct kioctx *next ; wait_queue_head_t wait ; spinlock_t ctx_lock ; int reqs_active ; struct list_head active_reqs ; struct list_head run_list ; unsigned int max_reqs ; struct aio_ring_info ring_info ; struct delayed_work wq ; }; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputime { struct task_cputime *totals ; }; union __anonunion_ldv_22536_145 { pid_t pgrp ; pid_t __pgrp ; }; union __anonunion_ldv_22541_146 { pid_t session ; pid_t __session ; }; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t count ; atomic_t live ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; cputime_t it_prof_expires ; cputime_t it_virt_expires ; cputime_t it_prof_incr ; cputime_t it_virt_incr ; struct thread_group_cputime cputime ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; union __anonunion_ldv_22536_145 ldv_22536 ; struct pid *tty_old_pgrp ; union __anonunion_ldv_22541_146 ldv_22541 ; int leader ; struct tty_struct *tty ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; struct task_io_accounting ioac ; struct rlimit rlim[16U] ; struct key *session_keyring ; struct key *process_keyring ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; struct tty_audit_buf *tty_audit_buf ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t epoll_devs ; atomic_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; uid_t uid ; struct task_group *tg ; struct kobject kobj ; struct work_struct work ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long cpu_time ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; unsigned int bkl_count ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; enum cpu_idle_type { CPU_IDLE = 0, CPU_NOT_IDLE = 1, CPU_NEWLY_IDLE = 2, CPU_MAX_IDLE_TYPES = 3 } ; struct sched_group { struct sched_group *next ; cpumask_t cpumask ; unsigned int __cpu_power ; u32 reciprocal_cpu_power ; }; enum sched_domain_level { SD_LV_NONE = 0, SD_LV_SIBLING = 1, SD_LV_MC = 2, SD_LV_CPU = 3, SD_LV_NODE = 4, SD_LV_ALLNODES = 5, SD_LV_MAX = 6 } ; struct sched_domain { struct sched_domain *parent ; struct sched_domain *child ; struct sched_group *groups ; cpumask_t span ; unsigned long min_interval ; unsigned long max_interval ; unsigned int busy_factor ; unsigned int imbalance_pct ; unsigned int cache_nice_tries ; unsigned int busy_idx ; unsigned int idle_idx ; unsigned int newidle_idx ; unsigned int wake_idx ; unsigned int forkexec_idx ; int flags ; enum sched_domain_level level ; unsigned long last_balance ; unsigned int balance_interval ; unsigned int nr_balance_failed ; u64 last_update ; unsigned int lb_count[3U] ; unsigned int lb_failed[3U] ; unsigned int lb_balanced[3U] ; unsigned int lb_imbalance[3U] ; unsigned int lb_gained[3U] ; unsigned int lb_hot_gained[3U] ; unsigned int lb_nobusyg[3U] ; unsigned int lb_nobusyq[3U] ; unsigned int alb_count ; unsigned int alb_failed ; unsigned int alb_pushed ; unsigned int sbe_count ; unsigned int sbe_balanced ; unsigned int sbe_pushed ; unsigned int sbf_count ; unsigned int sbf_balanced ; unsigned int sbf_pushed ; unsigned int ttwu_wake_remote ; unsigned int ttwu_move_affine ; unsigned int ttwu_move_balance ; char *name ; }; struct io_context; struct group_info { int ngroups ; atomic_t usage ; gid_t small_block[32U] ; int nblocks ; gid_t *blocks[0U] ; }; struct audit_context; struct rq; struct sched_class { struct sched_class const *next ; void (*enqueue_task)(struct rq * , struct task_struct * , int ) ; void (*dequeue_task)(struct rq * , struct task_struct * , int ) ; void (*yield_task)(struct rq * ) ; void (*check_preempt_curr)(struct rq * , struct task_struct * , int ) ; struct task_struct *(*pick_next_task)(struct rq * ) ; void (*put_prev_task)(struct rq * , struct task_struct * ) ; int (*select_task_rq)(struct task_struct * , int ) ; unsigned long (*load_balance)(struct rq * , int , struct rq * , unsigned long , struct sched_domain * , enum cpu_idle_type , int * , int * ) ; int (*move_one_task)(struct rq * , int , struct rq * , struct sched_domain * , enum cpu_idle_type ) ; void (*pre_schedule)(struct rq * , struct task_struct * ) ; void (*post_schedule)(struct rq * ) ; void (*task_wake_up)(struct rq * , struct task_struct * ) ; void (*set_cpus_allowed)(struct task_struct * , cpumask_t const * ) ; void (*rq_online)(struct rq * ) ; void (*rq_offline)(struct rq * ) ; void (*set_curr_task)(struct rq * ) ; void (*task_tick)(struct rq * , struct task_struct * , int ) ; void (*task_new)(struct rq * , struct task_struct * ) ; void (*switched_from)(struct rq * , struct task_struct * , int ) ; void (*switched_to)(struct rq * , struct task_struct * , int ) ; void (*prio_changed)(struct rq * , struct task_struct * , int , int ) ; void (*moved_group)(struct task_struct * ) ; }; struct load_weight { unsigned long weight ; unsigned long inv_weight ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 last_wakeup ; u64 avg_overlap ; u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_forced2_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned int time_slice ; int nr_cpus_allowed ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct linux_binfmt; struct css_set; struct compat_robust_list_head; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; int lock_depth ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct hlist_head preempt_notifiers ; unsigned char fpu_counter ; s8 oomkilladj ; unsigned int policy ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; struct linux_binfmt *binfmt ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int personality ; unsigned char did_exec : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; cputime_t prev_utime ; cputime_t prev_stime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; uid_t uid ; uid_t euid ; uid_t suid ; uid_t fsuid ; gid_t gid ; gid_t egid ; gid_t sgid ; gid_t fsgid ; struct group_info *group_info ; kernel_cap_t cap_effective ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_bset ; struct user_struct *user ; unsigned int securebits ; unsigned char jit_keyring ; struct key *request_key_auth ; struct key *thread_keyring ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_timestamp ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; void *security ; struct audit_context *audit_context ; uid_t loginuid ; unsigned int sessionid ; seccomp_t seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; spinlock_t pi_lock ; struct plist_head pi_waiters ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; int hardirqs_enabled ; unsigned long hardirq_enable_ip ; unsigned int hardirq_enable_event ; unsigned long hardirq_disable_ip ; unsigned int hardirq_disable_event ; int softirqs_enabled ; unsigned long softirq_disable_ip ; unsigned int softirq_disable_event ; unsigned long softirq_enable_ip ; unsigned int softirq_enable_event ; int hardirq_context ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; void *journal_info ; struct bio *bio_list ; struct bio **bio_tail ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; int cpuset_mems_generation ; int cpuset_mem_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct mempolicy *mempolicy ; short il_next ; atomic_t fs_excl ; struct rcu_head rcu ; struct pipe_inode_info *splice_pipe ; struct task_delay_info *delays ; int make_it_fail ; struct prop_local_single dirties ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; struct list_head *scm_work_list ; }; struct linux_binprm { char buf[128U] ; struct vm_area_struct *vma ; struct mm_struct *mm ; unsigned long p ; unsigned char sh_bang : 1 ; unsigned char misc_bang : 1 ; unsigned int recursion_depth ; struct file *file ; int e_uid ; int e_gid ; kernel_cap_t cap_post_exec_permitted ; bool cap_effective ; void *security ; int argc ; int envc ; char *filename ; char *interp ; unsigned int interp_flags ; unsigned int interp_data ; unsigned long loader ; unsigned long exec ; }; struct linux_binfmt { struct list_head lh ; struct module *module ; int (*load_binary)(struct linux_binprm * , struct pt_regs * ) ; int (*load_shlib)(struct file * ) ; int (*core_dump)(long , struct pt_regs * , struct file * , unsigned long ) ; unsigned long min_coredump ; int hasvdso ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key_type; struct keyring_list; struct key_user; union __anonunion_type_data_147 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; }; union __anonunion_payload_148 { unsigned long value ; void *data ; struct keyring_list *subscriptions ; }; struct key { atomic_t usage ; key_serial_t serial ; struct rb_node serial_node ; struct key_type *type ; struct rw_semaphore sem ; struct key_user *user ; void *security ; time_t expiry ; uid_t uid ; gid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; char *description ; union __anonunion_type_data_147 type_data ; union __anonunion_payload_148 payload ; }; struct xfrm_policy; struct xfrm_state; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; struct sk_filter { atomic_t refcnt ; unsigned int len ; struct rcu_head rcu ; struct sock_filter insns[0U] ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct rcu_head rcu_head ; int base_reachable_time ; int retrans_time ; int gc_staletime ; int reachable_time ; int delay_probe_time ; int queue_len ; int ucast_probes ; int app_probes ; int mcast_probes ; int anycast_delay ; int proxy_delay ; int proxy_qlen ; int locktime ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; struct net_device *dev ; unsigned long used ; unsigned long confirmed ; unsigned long updated ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; atomic_t probes ; rwlock_t lock ; unsigned char ha[32U] ; struct hh_cache *hh ; atomic_t refcnt ; int (*output)(struct sk_buff * ) ; struct sk_buff_head arp_queue ; struct timer_list timer ; struct neigh_ops *ops ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; int (*connected_output)(struct sk_buff * ) ; int (*hh_output)(struct sk_buff * ) ; int (*queue_xmit)(struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct timer_list gc_timer ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct kmem_cache *kmem_cachep ; struct neigh_statistics *stats ; struct neighbour **hash_buckets ; unsigned int hash_mask ; __u32 hash_rnd ; unsigned int hash_chain_gc ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion_ldv_27789_152 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct rcu_head rcu_head ; struct dst_entry *child ; struct net_device *dev ; short error ; short obsolete ; int flags ; unsigned long expires ; unsigned short header_len ; unsigned short trailer_len ; unsigned int rate_tokens ; unsigned long rate_last ; struct dst_entry *path ; struct neighbour *neighbour ; struct hh_cache *hh ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; struct dst_ops *ops ; u32 metrics[13U] ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion_ldv_27789_152 ldv_27789 ; }; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , u32 ) ; int (*local_out)(struct sk_buff * ) ; atomic_t entries ; struct kmem_cache *kmem_cachep ; struct net *dst_net ; }; struct __anonstruct_socket_lock_t_153 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_153 socket_lock_t; struct proto; union __anonunion_ldv_27938_154 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse ; int skc_bound_dev_if ; union __anonunion_ldv_27938_154 ldv_27938 ; struct hlist_node skc_bind_node ; atomic_t skc_refcnt ; unsigned int skc_hash ; struct proto *skc_prot ; struct net *skc_net ; }; struct __anonstruct_sk_backlog_155 { struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; unsigned char sk_shutdown : 2 ; unsigned char sk_no_check : 2 ; unsigned char sk_userlocks : 4 ; unsigned char sk_protocol ; unsigned short sk_type ; int sk_rcvbuf ; socket_lock_t sk_lock ; struct __anonstruct_sk_backlog_155 sk_backlog ; wait_queue_head_t *sk_sleep ; struct dst_entry *sk_dst_cache ; struct xfrm_policy *sk_policy[2U] ; rwlock_t sk_dst_lock ; atomic_t sk_rmem_alloc ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_receive_queue ; struct sk_buff_head sk_write_queue ; struct sk_buff_head sk_async_wait_queue ; int sk_wmem_queued ; int sk_forward_alloc ; gfp_t sk_allocation ; int sk_route_caps ; int sk_gso_type ; unsigned int sk_gso_max_size ; int sk_rcvlowat ; unsigned long sk_flags ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; atomic_t sk_drops ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; struct ucred sk_peercred ; long sk_rcvtimeo ; long sk_sndtimeo ; struct sk_filter *sk_filter ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; struct socket *sk_socket ; void *sk_user_data ; struct page *sk_sndmsg_page ; struct sk_buff *sk_send_head ; __u32 sk_sndmsg_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * , int ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_156 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; unsigned int inuse_idx ; void (*enter_memory_pressure)(struct sock * ) ; atomic_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; int *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_156 h ; struct module *owner ; char name[32U] ; struct list_head node ; }; struct mISDNchannel; struct mISDNdevice; struct mISDNstack; struct channel_req { u_int protocol ; struct sockaddr_mISDN adr ; struct mISDNchannel *ch ; }; typedef int ctrl_func_t(struct mISDNchannel * , u_int , void * ); typedef int send_func_t(struct mISDNchannel * , struct sk_buff * ); typedef int create_func_t(struct channel_req * ); struct Bprotocol { struct list_head list ; char *name ; u_int Bprotocols ; create_func_t *create ; }; struct mISDNchannel { struct list_head list ; u_int protocol ; u_int nr ; u_long opt ; u_int addr ; struct mISDNstack *st ; struct mISDNchannel *peer ; send_func_t *send ; send_func_t *recv ; ctrl_func_t *ctrl ; }; struct mISDN_sock_list { struct hlist_head head ; rwlock_t lock ; }; struct mISDNdevice { struct mISDNchannel D ; u_int id ; char name[20U] ; u_int Dprotocols ; u_int Bprotocols ; u_int nrbchan ; u_char channelmap[16U] ; struct list_head bchannels ; struct mISDNchannel *teimgr ; struct device dev ; }; struct mISDNstack { u_long status ; struct mISDNdevice *dev ; struct task_struct *thread ; struct completion *notify ; wait_queue_head_t workq ; struct sk_buff_head msgq ; struct list_head layer2 ; struct mISDNchannel *layer1 ; struct mISDNchannel own ; struct mutex lmutex ; struct mISDN_sock_list l1sock ; }; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___19; struct FsmInst; typedef void (*FSMFNPTR)(struct FsmInst * , int , void * ); struct Fsm { FSMFNPTR (**jumpmatrix)(struct FsmInst * , int , void * ) ; int state_count ; int event_count ; char **strEvent ; char **strState ; }; struct FsmInst { struct Fsm *fsm ; int state ; int debug ; void *userdata ; int userint ; void (*printdebug)(struct FsmInst * , char * , ...) ; }; struct FsmNode { int state ; int event ; void (*routine)(struct FsmInst * , int , void * ) ; }; struct FsmTimer { struct FsmInst *fi ; struct timer_list tl ; int event ; void *arg ; }; typedef long __kernel_suseconds_t; typedef __kernel_suseconds_t suseconds_t; struct mISDNhead { unsigned int prim ; unsigned int id ; }; struct mISDNversion { unsigned char major ; unsigned char minor ; unsigned short release ; }; struct mISDN_devinfo { u_int id ; u_int Dprotocols ; u_int Bprotocols ; u_int protocol ; u_char channelmap[16U] ; u_int nrbchan ; char name[20U] ; }; struct mISDN_ctrl_req { int op ; int channel ; int p1 ; int p2 ; }; struct timeval { time_t tv_sec ; suseconds_t tv_usec ; }; struct net_proto_family { int family ; int (*create)(struct net * , struct socket * , int ) ; struct module *owner ; }; enum hrtimer_restart; enum sock_flags { SOCK_DEAD = 0, SOCK_DONE = 1, SOCK_URGINLINE = 2, SOCK_KEEPOPEN = 3, SOCK_LINGER = 4, SOCK_DESTROY = 5, SOCK_BROADCAST = 6, SOCK_TIMESTAMP = 7, SOCK_ZAPPED = 8, SOCK_USE_WRITE_QUEUE = 9, SOCK_DBG = 10, SOCK_RCVTSTAMP = 11, SOCK_RCVTSTAMPNS = 12, SOCK_LOCALROUTE = 13, SOCK_QUEUE_SHRUNK = 14 } ; struct mISDN_sock { struct sock sk ; struct mISDNchannel ch ; u_int cmask ; struct mISDNdevice *dev ; }; enum hrtimer_restart; struct dchannel { struct mISDNdevice dev ; u_long Flags ; struct work_struct workq ; void (*phfunc)(struct dchannel * ) ; u_int state ; void *l1 ; u_char (*read_reg)(void * , u_char ) ; void (*write_reg)(void * , u_char , u_char ) ; void (*read_fifo)(void * , u_char * , int ) ; void (*write_fifo)(void * , u_char * , int ) ; void *hw ; int slot ; struct timer_list timer ; struct sk_buff *rx_skb ; int maxlen ; struct sk_buff_head squeue ; struct sk_buff_head rqueue ; struct sk_buff *tx_skb ; int tx_idx ; int debug ; int err_crc ; int err_tx ; int err_rx ; }; struct bchannel { struct mISDNchannel ch ; int nr ; u_long Flags ; struct work_struct workq ; u_int state ; u_char (*read_reg)(void * , u_char ) ; void (*write_reg)(void * , u_char , u_char ) ; void (*read_fifo)(void * , u_char * , int ) ; void (*write_fifo)(void * , u_char * , int ) ; void *hw ; int slot ; struct timer_list timer ; struct sk_buff *rx_skb ; int maxlen ; struct sk_buff *next_skb ; struct sk_buff *tx_skb ; struct sk_buff_head rqueue ; int rcount ; int tx_idx ; int debug ; int err_crc ; int err_tx ; int err_rx ; }; struct x8664_pda { struct task_struct *pcurrent ; unsigned long data_offset ; unsigned long kernelstack ; unsigned long oldrsp ; int irqcount ; unsigned int cpunumber ; char *irqstackptr ; short nodenumber ; short in_bootmem ; unsigned int __softirq_pending ; unsigned int __nmi_count ; short mmu_state ; short isidle ; struct mm_struct *active_mm ; unsigned int apic_timer_irqs ; unsigned int irq0_irqs ; unsigned int irq_resched_count ; unsigned int irq_call_count ; unsigned int irq_tlb_count ; unsigned int irq_thermal_count ; unsigned int irq_threshold_count ; unsigned int irq_spurious_count ; }; enum hrtimer_restart; struct __va_list_tag; typedef struct __va_list_tag __va_list_tag; enum hrtimer_restart; typedef int dchannel_l1callback(struct dchannel * , u_int ); struct layer1; struct layer1 { u_long Flags ; struct FsmInst l1m ; struct FsmTimer timer ; int delay ; struct dchannel *dch ; dchannel_l1callback *dcb ; }; enum hrtimer_restart; struct manager { struct mISDNchannel ch ; struct mISDNchannel bcast ; u_long options ; struct list_head layer2 ; rwlock_t lock ; struct FsmInst deact ; struct FsmTimer datimer ; struct sk_buff_head sendq ; struct mISDNchannel *up ; u_int nextid ; u_int lastid ; }; struct layer2; struct teimgr { int ri ; int rcnt ; struct FsmInst tei_m ; struct FsmTimer timer ; int tval ; int nval ; struct layer2 *l2 ; struct manager *mgr ; }; struct laddr { u_char A ; u_char B ; }; struct layer2 { struct list_head list ; struct mISDNchannel ch ; u_long flag ; int id ; struct mISDNchannel *up ; signed char sapi ; signed char tei ; struct laddr addr ; u_int maxlen ; struct teimgr *tm ; u_int vs ; u_int va ; u_int vr ; int rc ; u_int window ; u_int sow ; struct FsmInst l2m ; struct FsmTimer t200 ; struct FsmTimer t203 ; int T200 ; int N200 ; int T203 ; u_int next_id ; u_int down_id ; struct sk_buff *windowar[8U] ; struct sk_buff_head i_queue ; struct sk_buff_head ui_queue ; struct sk_buff_head down_queue ; struct sk_buff_head tmp_queue ; }; enum hrtimer_restart; struct pollfd { int fd ; short events ; short revents ; }; enum hrtimer_restart; struct poll_table_struct { void (*qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; }; typedef struct poll_table_struct poll_table; struct miscdevice { int minor ; char const *name ; struct file_operations const *fops ; struct list_head list ; struct device *parent ; struct device *this_device ; }; struct mISDNtimerdev { int next_id ; struct list_head pending ; struct list_head expired ; wait_queue_head_t wait ; u_int work ; spinlock_t lock ; }; struct mISDNtimer { struct list_head list ; struct mISDNtimerdev *dev ; struct timer_list tl ; int id ; }; void __builtin_prefetch(void const * , ...) ; __inline static int test_and_set_bit(int nr , unsigned long volatile *addr ) { int oldbit ; { __asm__ volatile (".section .smp_locks,\"a\"\n .balign 8 \n .quad 661f\n.previous\n661:\n\tlock; bts %2,%1\n\tsbb %0,%0": "=r" (oldbit), "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return (oldbit); } } __inline static int test_and_clear_bit(int nr , unsigned long volatile *addr ) { int oldbit ; { __asm__ volatile (".section .smp_locks,\"a\"\n .balign 8 \n .quad 661f\n.previous\n661:\n\tlock; btr %2,%1\n\tsbb %0,%0": "=r" (oldbit), "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return (oldbit); } } extern int sprintf(char * , char const * , ...) ; extern int printk(char const * , ...) ; extern char *strcpy(char * , char const * ) ; extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { __list_add(new, head->prev, head); return; } } extern void list_del(struct list_head * ) ; __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern void _read_lock(rwlock_t * ) ; extern unsigned long _write_lock_irqsave(rwlock_t * ) ; extern void _read_unlock(rwlock_t * ) ; extern void _write_unlock_irqrestore(rwlock_t * , unsigned long ) ; extern void __ldv_spin_lock(spinlock_t * ) ; void ldv___ldv_spin_lock_1(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_4(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_5(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_8(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_10(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_12(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_14(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_16(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_19(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_20(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_24(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_26(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_27(spinlock_t *ldv_func_arg1 ) ; extern void __ldv_spin_unlock(spinlock_t * ) ; void ldv___ldv_spin_unlock_2(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_6(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_7(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_9(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_11(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_13(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_15(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_17(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_18(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_22(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_23(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_25(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_28(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_29(spinlock_t *ldv_func_arg1 ) ; extern int __ldv_spin_trylock(spinlock_t * ) ; int ldv___ldv_spin_trylock_3(spinlock_t *ldv_func_arg1 ) ; int ldv___ldv_spin_trylock_21(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) ; int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_lock_addr_list_lock_of_net_device(void) ; void ldv_spin_unlock_addr_list_lock_of_net_device(void) ; void ldv_spin_lock_alloc_lock_of_task_struct(void) ; void ldv_spin_unlock_alloc_lock_of_task_struct(void) ; void ldv_spin_lock_d_lock_of_dentry(void) ; void ldv_spin_unlock_d_lock_of_dentry(void) ; void ldv_spin_lock_dcache_lock(void) ; void ldv_spin_unlock_dcache_lock(void) ; void ldv_spin_lock_i_lock_of_inode(void) ; void ldv_spin_unlock_i_lock_of_inode(void) ; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) ; void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) ; int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) ; void ldv_spin_lock_siglock_of_sighand_struct(void) ; void ldv_spin_unlock_siglock_of_sighand_struct(void) ; void ldv_spin_lock_tx_global_lock_of_net_device(void) ; void ldv_spin_unlock_tx_global_lock_of_net_device(void) ; int mISDN_register_device(struct mISDNdevice *dev , char *name ) ; void mISDN_unregister_device(struct mISDNdevice *dev ) ; int mISDN_register_Bprotocol(struct Bprotocol *bp ) ; void mISDN_unregister_Bprotocol(struct Bprotocol *bp ) ; struct mISDNdevice *get_mdevice(u_int id ) ; int get_mdevice_count(void) ; int create_stack(struct mISDNdevice *dev ) ; void delete_stack(struct mISDNdevice *dev ) ; void mISDN_initstack(u_int *dp ) ; int misdn_sock_init(u_int *deb ) ; void misdn_sock_cleanup(void) ; u_int get_all_Bprotocols(void) ; struct Bprotocol *get_Bprotocol4mask(u_int m ) ; struct Bprotocol *get_Bprotocol4id(u_int id ) ; int mISDN_inittimer(u_int *deb ) ; void mISDN_timer_cleanup(void) ; int l1_init(u_int *deb ) ; void l1_cleanup(void) ; int Isdnl2_Init(u_int *deb ) ; void Isdnl2_cleanup(void) ; static u_int debug ; static struct list_head devices = {& devices, & devices}; static rwlock_t device_lock = {{16777216U}, 3736018669U, 4294967295U, 0xffffffffffffffffUL, {0, 0, "device_lock", 0}}; static u64 device_ids ; static struct list_head Bprotocols = {& Bprotocols, & Bprotocols}; static rwlock_t bp_lock = {{16777216U}, 3736018669U, 4294967295U, 0xffffffffffffffffUL, {0, 0, "bp_lock", 0}}; struct mISDNdevice *get_mdevice(u_int id ) { struct mISDNdevice *dev ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { _read_lock(& device_lock); __mptr = (struct list_head const *)devices.next; dev = (struct mISDNdevice *)__mptr; goto ldv_28924; ldv_28923: ; if (dev->id == id) { _read_unlock(& device_lock); return (dev); } else { } __mptr___0 = (struct list_head const *)dev->D.list.next; dev = (struct mISDNdevice *)__mptr___0; ldv_28924: __builtin_prefetch((void const *)dev->D.list.next); if ((unsigned long )(& dev->D.list) != (unsigned long )(& devices)) { goto ldv_28923; } else { } _read_unlock(& device_lock); return (0); } } int get_mdevice_count(void) { struct mISDNdevice *dev ; int cnt ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { cnt = 0; _read_lock(& device_lock); __mptr = (struct list_head const *)devices.next; dev = (struct mISDNdevice *)__mptr; goto ldv_28936; ldv_28935: cnt = cnt + 1; __mptr___0 = (struct list_head const *)dev->D.list.next; dev = (struct mISDNdevice *)__mptr___0; ldv_28936: __builtin_prefetch((void const *)dev->D.list.next); if ((unsigned long )(& dev->D.list) != (unsigned long )(& devices)) { goto ldv_28935; } else { } _read_unlock(& device_lock); return (cnt); } } static int get_free_devid(void) { u_int i ; int tmp ; { i = 0U; goto ldv_28943; ldv_28942: tmp = test_and_set_bit((int )i, (unsigned long volatile *)(& device_ids)); if (tmp == 0) { return ((int )i); } else { } i = i + (u_int )1; ldv_28943: ; if (i <= 63U) { goto ldv_28942; } else { } return (-1); } } int mISDN_register_device(struct mISDNdevice *dev , char *name ) { u_long flags ; int err ; int tmp ; { tmp = get_free_devid(); dev->id = (u_int )tmp; if ((unsigned long )name != (unsigned long )((char *)0) && (int )((signed char )*name) != 0) { strcpy((char *)(& dev->name), (char const *)name); } else { sprintf((char *)(& dev->name), "mISDN%d", dev->id); } if ((debug & 255U) != 0U) { printk("<7>mISDN_register %s %d\n", (char *)(& dev->name), dev->id); } else { } err = create_stack(dev); if (err != 0) { return (err); } else { } flags = _write_lock_irqsave(& device_lock); list_add_tail(& dev->D.list, & devices); _write_unlock_irqrestore(& device_lock, flags); return (0); } } void mISDN_unregister_device(struct mISDNdevice *dev ) { u_long flags ; { if ((debug & 255U) != 0U) { printk("<7>mISDN_unregister %s %d\n", (char *)(& dev->name), dev->id); } else { } flags = _write_lock_irqsave(& device_lock); list_del(& dev->D.list); _write_unlock_irqrestore(& device_lock, flags); test_and_clear_bit((int )dev->id, (unsigned long volatile *)(& device_ids)); delete_stack(dev); return; } } u_int get_all_Bprotocols(void) { struct Bprotocol *bp ; u_int m ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { m = 0U; _read_lock(& bp_lock); __mptr = (struct list_head const *)Bprotocols.next; bp = (struct Bprotocol *)__mptr; goto ldv_28990; ldv_28989: m = bp->Bprotocols | m; __mptr___0 = (struct list_head const *)bp->list.next; bp = (struct Bprotocol *)__mptr___0; ldv_28990: __builtin_prefetch((void const *)bp->list.next); if ((unsigned long )(& bp->list) != (unsigned long )(& Bprotocols)) { goto ldv_28989; } else { } _read_unlock(& bp_lock); return (m); } } struct Bprotocol *get_Bprotocol4mask(u_int m ) { struct Bprotocol *bp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { _read_lock(& bp_lock); __mptr = (struct list_head const *)Bprotocols.next; bp = (struct Bprotocol *)__mptr; goto ldv_29001; ldv_29000: ; if ((bp->Bprotocols & m) != 0U) { _read_unlock(& bp_lock); return (bp); } else { } __mptr___0 = (struct list_head const *)bp->list.next; bp = (struct Bprotocol *)__mptr___0; ldv_29001: __builtin_prefetch((void const *)bp->list.next); if ((unsigned long )(& bp->list) != (unsigned long )(& Bprotocols)) { goto ldv_29000; } else { } _read_unlock(& bp_lock); return (0); } } struct Bprotocol *get_Bprotocol4id(u_int id ) { u_int m ; struct Bprotocol *tmp ; { if (id <= 31U || id > 63U) { printk("<4>%s id not in range %d\n", "get_Bprotocol4id", id); return (0); } else { } m = (u_int )(1 << ((int )id & 31)); tmp = get_Bprotocol4mask(m); return (tmp); } } int mISDN_register_Bprotocol(struct Bprotocol *bp ) { u_long flags ; struct Bprotocol *old ; { if ((debug & 255U) != 0U) { printk("<7>%s: %s/%x\n", "mISDN_register_Bprotocol", bp->name, bp->Bprotocols); } else { } old = get_Bprotocol4mask(bp->Bprotocols); if ((unsigned long )old != (unsigned long )((struct Bprotocol *)0)) { printk("<4>register duplicate protocol old %s/%x new %s/%x\n", old->name, old->Bprotocols, bp->name, bp->Bprotocols); return (-16); } else { } flags = _write_lock_irqsave(& bp_lock); list_add_tail(& bp->list, & Bprotocols); _write_unlock_irqrestore(& bp_lock, flags); return (0); } } void mISDN_unregister_Bprotocol(struct Bprotocol *bp ) { u_long flags ; { if ((debug & 255U) != 0U) { printk("<7>%s: %s/%x\n", "mISDN_unregister_Bprotocol", bp->name, bp->Bprotocols); } else { } flags = _write_lock_irqsave(& bp_lock); list_del(& bp->list); _write_unlock_irqrestore(& bp_lock, flags); return; } } static int mISDNInit(void) { int err ; { printk("<6>Modular ISDN core version %d.%d.%d\n", 1, 0, 19); mISDN_initstack(& debug); err = mISDN_inittimer(& debug); if (err != 0) { goto error; } else { } err = l1_init(& debug); if (err != 0) { mISDN_timer_cleanup(); goto error; } else { } err = Isdnl2_Init(& debug); if (err != 0) { mISDN_timer_cleanup(); l1_cleanup(); goto error; } else { } err = misdn_sock_init(& debug); if (err != 0) { mISDN_timer_cleanup(); l1_cleanup(); Isdnl2_cleanup(); } else { } error: ; return (err); } } static void mISDN_cleanup(void) { int tmp ; int tmp___0 ; { misdn_sock_cleanup(); mISDN_timer_cleanup(); l1_cleanup(); Isdnl2_cleanup(); tmp = list_empty((struct list_head const *)(& devices)); if (tmp == 0) { printk("<3>%s devices still registered\n", "mISDN_cleanup"); } else { } tmp___0 = list_empty((struct list_head const *)(& Bprotocols)); if (tmp___0 == 0) { printk("<3>%s Bprotocols still registered\n", "mISDN_cleanup"); } else { } printk("<7>mISDNcore unloaded\n"); return; } } void ldv_check_final_state(void) ; void ldv_initialize(void) ; extern void ldv_handler_precall(void) ; extern int nondet_int(void) ; int LDV_IN_INTERRUPT ; int main(void) { int tmp ; int tmp___0 ; int tmp___1 ; { LDV_IN_INTERRUPT = 1; ldv_initialize(); ldv_handler_precall(); tmp = mISDNInit(); if (tmp != 0) { goto ldv_final; } else { } goto ldv_29082; ldv_29081: tmp___0 = nondet_int(); switch (tmp___0) { default: ; goto ldv_29080; } ldv_29080: ; ldv_29082: tmp___1 = nondet_int(); if (tmp___1 != 0) { goto ldv_29081; } else { } ldv_handler_precall(); mISDN_cleanup(); ldv_final: ldv_check_final_state(); return 0; } } void ldv___ldv_spin_lock_1(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_2(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_lock_of_NOT_ARG_SIGN(); __ldv_spin_unlock(ldv_func_arg1); return; } } int ldv___ldv_spin_trylock_3(spinlock_t *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = __ldv_spin_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock_lock_of_NOT_ARG_SIGN(); return (tmp___0); return (ldv_func_res); } } void ldv___ldv_spin_lock_4(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_dcache_lock(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_5(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_6(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_7(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_dcache_lock(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_8(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_9(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_10(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_i_lock_of_inode(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_11(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_i_lock_of_inode(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_12(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_13(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_14(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_siglock_of_sighand_struct(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_15(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_siglock_of_sighand_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_16(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_alloc_lock_of_task_struct(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_17(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_alloc_lock_of_task_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_18(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_siglock_of_sighand_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_19(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock__xmit_lock_of_netdev_queue(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_20(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock__xmit_lock_of_netdev_queue(); __ldv_spin_lock(ldv_func_arg1); return; } } int ldv___ldv_spin_trylock_21(spinlock_t *ldv_func_arg1 ) { ldv_func_ret_type___19 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = __ldv_spin_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock__xmit_lock_of_netdev_queue(); return (tmp___0); return (ldv_func_res); } } void ldv___ldv_spin_unlock_22(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_23(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_24(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_tx_global_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_25(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_tx_global_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_26(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_addr_list_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_27(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_addr_list_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_28(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_addr_list_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_29(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_addr_list_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } long ldv__builtin_expect(long exp , long c ) ; void ldv___ldv_spin_lock_59(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_60(spinlock_t *ldv_func_arg1 ) ; int ldv___ldv_spin_trylock_61(spinlock_t *ldv_func_arg1 ) ; extern void kfree(void const * ) ; extern unsigned long volatile jiffies ; extern void init_timer(struct timer_list * ) ; __inline static int timer_pending(struct timer_list const *timer ) { { return ((unsigned long )timer->entry.next != (unsigned long )((struct list_head */* const */)0)); } } extern int del_timer(struct timer_list * ) ; extern int __mod_timer(struct timer_list * , unsigned long ) ; __inline static void add_timer(struct timer_list *timer ) { int tmp ; long tmp___0 ; { tmp = timer_pending((struct timer_list const *)timer); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.quad 1b, %c0\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/timer.h"), "i" (165), "i" (24UL)); ldv_8547: ; goto ldv_8547; } else { } __mod_timer(timer, timer->expires); return; } } extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { tmp___2 = __kmalloc(size, flags); return (tmp___2); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } void mISDN_FsmNew(struct Fsm *fsm , struct FsmNode *fnlist , int fncount ) ; void mISDN_FsmFree(struct Fsm *fsm ) ; int mISDN_FsmEvent(struct FsmInst *fi , int event , void *arg ) ; void mISDN_FsmChangeState(struct FsmInst *fi , int newstate ) ; void mISDN_FsmInitTimer(struct FsmInst *fi , struct FsmTimer *ft ) ; int mISDN_FsmAddTimer(struct FsmTimer *ft , int millisec , int event , void *arg , int where ) ; void mISDN_FsmRestartTimer(struct FsmTimer *ft , int millisec , int event , void *arg , int where ) ; void mISDN_FsmDelTimer(struct FsmTimer *ft , int where ) ; void mISDN_FsmNew(struct Fsm *fsm , struct FsmNode *fnlist , int fncount ) { int i ; void *tmp ; { tmp = kzalloc(((unsigned long )fsm->state_count * (unsigned long )fsm->event_count) * 8UL, 208U); fsm->jumpmatrix = (FSMFNPTR (**)(struct FsmInst * , int , void * ))tmp; i = 0; goto ldv_10054; ldv_10053: ; if ((fnlist + (unsigned long )i)->state >= fsm->state_count || (fnlist + (unsigned long )i)->event >= fsm->event_count) { printk("<3>mISDN_FsmNew Error: %d st(%ld/%ld) ev(%ld/%ld)\n", i, (long )(fnlist + (unsigned long )i)->state, (long )fsm->state_count, (long )(fnlist + (unsigned long )i)->event, (long )fsm->event_count); } else { *(fsm->jumpmatrix + (unsigned long )(fsm->state_count * (fnlist + (unsigned long )i)->event + (fnlist + (unsigned long )i)->state)) = (fnlist + (unsigned long )i)->routine; } i = i + 1; ldv_10054: ; if (i < fncount) { goto ldv_10053; } else { } return; } } void mISDN_FsmFree(struct Fsm *fsm ) { { kfree((void const *)fsm->jumpmatrix); return; } } int mISDN_FsmEvent(struct FsmInst *fi , int event , void *arg ) { void (*r)(struct FsmInst * , int , void * ) ; { if (fi->state >= (fi->fsm)->state_count || (fi->fsm)->event_count <= event) { printk("<3>mISDN_FsmEvent Error st(%ld/%ld) ev(%d/%ld)\n", (long )fi->state, (long )(fi->fsm)->state_count, event, (long )(fi->fsm)->event_count); return (1); } else { } r = *((fi->fsm)->jumpmatrix + (unsigned long )((fi->fsm)->state_count * event + fi->state)); if ((unsigned long )r != (unsigned long )((void (*)(struct FsmInst * , int , void * ))0)) { if (fi->debug != 0) { (*(fi->printdebug))(fi, (char *)"State %s Event %s", *((fi->fsm)->strState + (unsigned long )fi->state), *((fi->fsm)->strEvent + (unsigned long )event)); } else { } (*r)(fi, event, arg); return (0); } else { if (fi->debug != 0) { (*(fi->printdebug))(fi, (char *)"State %s Event %s no action", *((fi->fsm)->strState + (unsigned long )fi->state), *((fi->fsm)->strEvent + (unsigned long )event)); } else { } return (1); } } } void mISDN_FsmChangeState(struct FsmInst *fi , int newstate ) { { fi->state = newstate; if (fi->debug != 0) { (*(fi->printdebug))(fi, (char *)"ChangeState %s", *((fi->fsm)->strState + (unsigned long )newstate)); } else { } return; } } static void FsmExpireTimer(struct FsmTimer *ft ) { { mISDN_FsmEvent(ft->fi, ft->event, ft->arg); return; } } void mISDN_FsmInitTimer(struct FsmInst *fi , struct FsmTimer *ft ) { { ft->fi = fi; ft->tl.function = (void (*)(unsigned long ))(& FsmExpireTimer); ft->tl.data = (unsigned long )ft; init_timer(& ft->tl); return; } } void mISDN_FsmDelTimer(struct FsmTimer *ft , int where ) { { del_timer(& ft->tl); return; } } int mISDN_FsmAddTimer(struct FsmTimer *ft , int millisec , int event , void *arg , int where ) { int tmp ; { tmp = timer_pending((struct timer_list const *)(& ft->tl)); if (tmp != 0) { if ((ft->fi)->debug != 0) { printk("<4>mISDN_FsmAddTimer: timer already active!\n"); (*((ft->fi)->printdebug))(ft->fi, (char *)"mISDN_FsmAddTimer already active!"); } else { } return (-1); } else { } init_timer(& ft->tl); ft->event = event; ft->arg = arg; ft->tl.expires = (unsigned long )((millisec * 250) / 1000) + (unsigned long )jiffies; add_timer(& ft->tl); return (0); } } void mISDN_FsmRestartTimer(struct FsmTimer *ft , int millisec , int event , void *arg , int where ) { int tmp ; { tmp = timer_pending((struct timer_list const *)(& ft->tl)); if (tmp != 0) { del_timer(& ft->tl); } else { } init_timer(& ft->tl); ft->event = event; ft->arg = arg; ft->tl.expires = (unsigned long )((millisec * 250) / 1000) + (unsigned long )jiffies; add_timer(& ft->tl); return; } } void ldv___ldv_spin_lock_59(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_60(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_lock_of_NOT_ARG_SIGN(); __ldv_spin_unlock(ldv_func_arg1); return; } } int ldv___ldv_spin_trylock_61(spinlock_t *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = __ldv_spin_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock_lock_of_NOT_ARG_SIGN(); return (tmp___0); return (ldv_func_res); } } void *memcpy(void * , void const * , unsigned long ) ; __inline static void __set_bit(int nr , unsigned long volatile *addr ) { { __asm__ volatile ("bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void __clear_bit(int nr , unsigned long volatile *addr ) { { __asm__ volatile ("btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } extern void warn_on_slowpath(char const * , int const ) ; extern void *memcpy(void * , void const * , size_t ) ; __inline static int hlist_unhashed(struct hlist_node const *h ) { { return ((unsigned long )h->pprev == (unsigned long )((struct hlist_node **/* const */)0)); } } __inline static void __hlist_del(struct hlist_node *n ) { struct hlist_node *next ; struct hlist_node **pprev ; { next = n->next; pprev = n->pprev; *pprev = next; if ((unsigned long )next != (unsigned long )((struct hlist_node *)0)) { next->pprev = pprev; } else { } return; } } __inline static void hlist_add_head(struct hlist_node *n , struct hlist_head *h ) { struct hlist_node *first ; { first = h->first; n->next = first; if ((unsigned long )first != (unsigned long )((struct hlist_node *)0)) { first->pprev = & n->next; } else { } h->first = n; n->pprev = & h->first; return; } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".section .smp_locks,\"a\"\n .balign 8 \n .quad 661f\n.previous\n661:\n\tlock; incl %0": "=m" (v->counter): "m" (v->counter)); return; } } __inline static void atomic_dec(atomic_t *v ) { { __asm__ volatile (".section .smp_locks,\"a\"\n .balign 8 \n .quad 661f\n.previous\n661:\n\tlock; decl %0": "=m" (v->counter): "m" (v->counter)); return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { unsigned char c ; { __asm__ volatile (".section .smp_locks,\"a\"\n .balign 8 \n .quad 661f\n.previous\n661:\n\tlock; decl %0; sete %1": "=m" (v->counter), "=qm" (c): "m" (v->counter): "memory"); return ((unsigned int )c != 0U); } } extern void _write_lock_bh(rwlock_t * ) ; extern void _write_unlock_bh(rwlock_t * ) ; void ldv___ldv_spin_lock_65(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_68(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_69(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_72(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_74(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_76(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_78(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_80(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_83(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_84(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_88(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_90(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_91(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_66(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_70(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_71(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_73(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_75(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_77(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_79(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_81(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_82(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_86(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_87(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_89(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_92(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_93(spinlock_t *ldv_func_arg1 ) ; int ldv___ldv_spin_trylock_67(spinlock_t *ldv_func_arg1 ) ; int ldv___ldv_spin_trylock_85(spinlock_t *ldv_func_arg1 ) ; extern int memcpy_fromiovec(unsigned char * , struct iovec * , int ) ; extern int put_cmsg(struct msghdr * , int , int , int , void * ) ; extern struct timeval ns_to_timeval(s64 const ) ; extern int sock_register(struct net_proto_family const * ) ; extern void sock_unregister(int ) ; extern struct module __this_module ; extern unsigned long copy_to_user(void * , void const * , unsigned int ) ; extern unsigned long copy_from_user(void * , void const * , unsigned int ) ; extern ktime_t ktime_get_real(void) ; extern void kfree_skb(struct sk_buff * ) ; extern struct sk_buff *__alloc_skb(unsigned int , gfp_t , int , int ) ; __inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t priority ) { struct sk_buff *tmp ; { tmp = __alloc_skb(size, priority, 0, -1); return (tmp); } } extern void skb_queue_head(struct sk_buff_head * , struct sk_buff * ) ; extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_push(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_pull(struct sk_buff * , unsigned int ) ; __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } extern void skb_queue_purge(struct sk_buff_head * ) ; extern struct sk_buff *skb_recv_datagram(struct sock * , unsigned int , int , int * ) ; extern unsigned int datagram_poll(struct file * , struct socket * , struct poll_table_struct * ) ; extern int skb_copy_datagram_iovec(struct sk_buff const * , int , struct iovec * , int ) ; extern void skb_free_datagram(struct sock * , struct sk_buff * ) ; __inline static void skb_get_timestamp(struct sk_buff const *skb , struct timeval *stamp ) { { *stamp = ns_to_timeval(skb->tstamp.tv64); return; } } __inline static void __net_timestamp(struct sk_buff *skb ) { { skb->tstamp = ktime_get_real(); return; } } __inline static int sk_unhashed(struct sock const *sk ) { int tmp ; { tmp = hlist_unhashed(& sk->__sk_common.ldv_27938.skc_node); return (tmp); } } __inline static int sk_hashed(struct sock const *sk ) { int tmp ; { tmp = sk_unhashed(sk); return (tmp == 0); } } __inline static void sk_node_init(struct hlist_node *node ) { { node->pprev = 0; return; } } __inline static void __sk_del_node(struct sock *sk ) { { __hlist_del(& sk->__sk_common.ldv_27938.skc_node); return; } } __inline static int __sk_del_node_init(struct sock *sk ) { int tmp ; { tmp = sk_hashed((struct sock const *)sk); if (tmp != 0) { __sk_del_node(sk); sk_node_init(& sk->__sk_common.ldv_27938.skc_node); return (1); } else { } return (0); } } __inline static void sock_hold(struct sock *sk ) { { atomic_inc(& sk->__sk_common.skc_refcnt); return; } } __inline static void __sock_put(struct sock *sk ) { { atomic_dec(& sk->__sk_common.skc_refcnt); return; } } __inline static int sk_del_node_init(struct sock *sk ) { int rc ; int tmp ; int __ret_warn_on ; long tmp___0 ; { tmp = __sk_del_node_init(sk); rc = tmp; if (rc != 0) { __ret_warn_on = sk->__sk_common.skc_refcnt.counter == 1; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___0 != 0L) { warn_on_slowpath("include/net/sock.h", 394); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); __sock_put(sk); } else { } return (rc); } } __inline static void __sk_add_node(struct sock *sk , struct hlist_head *list ) { { hlist_add_head(& sk->__sk_common.ldv_27938.skc_node, list); return; } } __inline static void sk_add_node(struct sock *sk , struct hlist_head *list ) { { sock_hold(sk); __sk_add_node(sk, list); return; } } __inline static void sock_set_flag(struct sock *sk , enum sock_flags flag ) { { __set_bit((int )flag, (unsigned long volatile *)(& sk->sk_flags)); return; } } __inline static void sock_reset_flag(struct sock *sk , enum sock_flags flag ) { { __clear_bit((int )flag, (unsigned long volatile *)(& sk->sk_flags)); return; } } extern void lock_sock_nested(struct sock * , int ) ; __inline static void lock_sock(struct sock *sk ) { { lock_sock_nested(sk, 0); return; } } extern void release_sock(struct sock * ) ; extern struct sock *sk_alloc(struct net * , int , gfp_t , struct proto * ) ; extern void sk_free(struct sock * ) ; extern int sock_no_connect(struct socket * , struct sockaddr * , int , int ) ; extern int sock_no_socketpair(struct socket * , struct socket * ) ; extern int sock_no_accept(struct socket * , struct socket * , int ) ; extern int sock_no_getname(struct socket * , struct sockaddr * , int * , int ) ; extern unsigned int sock_no_poll(struct file * , struct socket * , struct poll_table_struct * ) ; extern int sock_no_listen(struct socket * , int ) ; extern int sock_no_shutdown(struct socket * , int ) ; extern int sock_no_getsockopt(struct socket * , int , int , char * , int * ) ; extern int sock_no_setsockopt(struct socket * , int , int , char * , int ) ; extern int sock_no_sendmsg(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; extern int sock_no_recvmsg(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; extern int sock_no_mmap(struct file * , struct socket * , struct vm_area_struct * ) ; extern void sock_init_data(struct socket * , struct sock * ) ; __inline static void sock_put(struct sock *sk ) { int tmp ; { tmp = atomic_dec_and_test(& sk->__sk_common.skc_refcnt); if (tmp != 0) { sk_free(sk); } else { } return; } } __inline static void sk_set_socket(struct sock *sk , struct socket *sock ) { { sk->sk_socket = sock; return; } } __inline static void sock_orphan(struct sock *sk ) { { _write_lock_bh(& sk->sk_callback_lock); sock_set_flag(sk, SOCK_DEAD); sk_set_socket(sk, 0); sk->sk_sleep = 0; _write_unlock_bh(& sk->sk_callback_lock); return; } } extern int sock_queue_rcv_skb(struct sock * , struct sk_buff * ) ; int connect_Bstack(struct mISDNdevice *dev , struct mISDNchannel *ch , u_int protocol , struct sockaddr_mISDN *adr ) ; int connect_layer1(struct mISDNdevice *dev , struct mISDNchannel *ch , u_int protocol , struct sockaddr_mISDN *adr ) ; int create_l2entity(struct mISDNdevice *dev , struct mISDNchannel *ch , u_int protocol , struct sockaddr_mISDN *adr ) ; void delete_channel(struct mISDNchannel *ch ) ; static u_int *debug___0 ; static struct proto mISDN_proto = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0U, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1144U, 0, 0, 0, 0, {0}, & __this_module, {'m', 'i', 's', 'd', 'n', '\000'}, {0, 0}}; static struct mISDN_sock_list data_sockets = {{0}, {{16777216U}, 3736018669U, 4294967295U, 0xffffffffffffffffUL, {0, 0, "data_sockets.lock", 0}}}; static struct mISDN_sock_list base_sockets = {{0}, {{16777216U}, 3736018669U, 4294967295U, 0xffffffffffffffffUL, {0, 0, "base_sockets.lock", 0}}}; __inline static struct sk_buff *_l2_alloc_skb(unsigned int len , gfp_t gfp_mask ) { struct sk_buff *skb ; long tmp ; { skb = alloc_skb(len + 4U, gfp_mask); tmp = ldv__builtin_expect((unsigned long )skb != (unsigned long )((struct sk_buff *)0), 1L); if (tmp != 0L) { skb_reserve(skb, 4); } else { } return (skb); } } static void mISDN_sock_link(struct mISDN_sock_list *l , struct sock *sk ) { { _write_lock_bh(& l->lock); sk_add_node(sk, & l->head); _write_unlock_bh(& l->lock); return; } } static void mISDN_sock_unlink(struct mISDN_sock_list *l , struct sock *sk ) { { _write_lock_bh(& l->lock); sk_del_node_init(sk); _write_unlock_bh(& l->lock); return; } } static int mISDN_send(struct mISDNchannel *ch , struct sk_buff *skb ) { struct mISDN_sock *msk ; int err ; struct mISDNchannel const *__mptr ; { __mptr = (struct mISDNchannel const *)ch; msk = (struct mISDN_sock *)__mptr + 0xfffffffffffffbe8UL; if ((*debug___0 & 4U) != 0U) { printk("<7>%s len %d %p\n", "mISDN_send", skb->len, skb); } else { } if ((unsigned int )((unsigned char )msk->sk.__sk_common.skc_state) == 3U) { return (-49); } else { } __net_timestamp(skb); err = sock_queue_rcv_skb(& msk->sk, skb); if (err != 0) { printk("<4>%s: error %d\n", "mISDN_send", err); } else { } return (err); } } static int mISDN_ctrl(struct mISDNchannel *ch , u_int cmd , void *arg ) { struct mISDN_sock *msk ; struct mISDNchannel const *__mptr ; { __mptr = (struct mISDNchannel const *)ch; msk = (struct mISDN_sock *)__mptr + 0xfffffffffffffbe8UL; if ((*debug___0 & 4U) != 0U) { printk("<7>%s(%p, %x, %p)\n", "mISDN_ctrl", ch, cmd, arg); } else { } switch (cmd) { case (u_int )512: msk->sk.__sk_common.skc_state = 3U; goto ldv_28936; } ldv_28936: ; return (0); } } __inline static void mISDN_sock_cmsg(struct sock *sk , struct msghdr *msg , struct sk_buff *skb ) { struct timeval tv ; { if ((int )((struct mISDN_sock *)sk)->cmask & 1) { skb_get_timestamp((struct sk_buff const *)skb, & tv); put_cmsg(msg, 0, 1, 16, (void *)(& tv)); } else { } return; } } static int mISDN_sock_recvmsg(struct kiocb *iocb , struct socket *sock , struct msghdr *msg , size_t len , int flags ) { struct sk_buff *skb ; struct sock *sk ; struct sockaddr_mISDN *maddr ; int copied ; int err ; size_t __len ; void *__ret ; unsigned char *tmp ; unsigned char *tmp___0 ; { sk = sock->sk; if ((*debug___0 & 4U) != 0U) { printk("<7>%s: len %d, flags %x ch.nr %d, proto %x\n", "mISDN_sock_recvmsg", (int )len, flags, ((struct mISDN_sock *)sk)->ch.nr, (int )sk->sk_protocol); } else { } if (flags & 1) { return (-95); } else { } if ((unsigned int )((unsigned char )sk->__sk_common.skc_state) == 3U) { return (0); } else { } skb = skb_recv_datagram(sk, (unsigned int )flags, flags & 64, & err); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return (err); } else { } if ((unsigned int )msg->msg_namelen > 5U) { msg->msg_namelen = 6; maddr = (struct sockaddr_mISDN *)msg->msg_name; maddr->family = 34U; maddr->dev = (unsigned char )(((struct mISDN_sock *)sk)->dev)->id; if ((unsigned int )sk->sk_protocol == 16U || (unsigned int )sk->sk_protocol == 17U) { maddr->channel = (unsigned char )(((struct mISDNhead *)(& skb->cb))->id >> 16); maddr->tei = (unsigned char )(((struct mISDNhead *)(& skb->cb))->id >> 8); maddr->sapi = (unsigned char )((struct mISDNhead *)(& skb->cb))->id; } else { maddr->channel = (unsigned char )((struct mISDN_sock *)sk)->ch.nr; maddr->sapi = (unsigned char )((struct mISDN_sock *)sk)->ch.addr; maddr->tei = (unsigned char )(((struct mISDN_sock *)sk)->ch.addr >> 8); } } else { if (msg->msg_namelen != 0) { printk("<4>%s: too small namelen %d\n", "mISDN_sock_recvmsg", msg->msg_namelen); } else { } msg->msg_namelen = 0; } copied = (int )(skb->len + 8U); if ((size_t )copied > len) { if ((flags & 2) != 0) { atomic_dec(& skb->users); } else { skb_queue_head(& sk->sk_receive_queue, skb); } return (-28); } else { } __len = 8UL; if (__len > 63UL) { tmp = skb_push(skb, 8U); __ret = memcpy((void *)tmp, (void const *)(& skb->cb), __len); } else { tmp___0 = skb_push(skb, 8U); __ret = memcpy((void *)tmp___0, (void const *)(& skb->cb), __len); } err = skb_copy_datagram_iovec((struct sk_buff const *)skb, 0, msg->msg_iov, copied); mISDN_sock_cmsg(sk, msg, skb); skb_free_datagram(sk, skb); return (err != 0 ? err : copied); } } static int mISDN_sock_sendmsg(struct kiocb *iocb , struct socket *sock , struct msghdr *msg , size_t len ) { struct sock *sk ; struct sk_buff *skb ; int err ; struct sockaddr_mISDN *maddr ; unsigned char *tmp ; int tmp___0 ; size_t __len ; void *__ret ; { sk = sock->sk; err = -12; if ((*debug___0 & 4U) != 0U) { printk("<7>%s: len %d flags %x ch %d proto %x\n", "mISDN_sock_sendmsg", (int )len, msg->msg_flags, ((struct mISDN_sock *)sk)->ch.nr, (int )sk->sk_protocol); } else { } if ((int )msg->msg_flags & 1) { return (-95); } else { } if ((msg->msg_flags & 4294942655U) != 0U) { return (-22); } else { } if (len <= 7UL) { return (-22); } else { } if ((unsigned int )((unsigned char )sk->__sk_common.skc_state) != 2U) { return (-77); } else { } lock_sock(sk); skb = _l2_alloc_skb((unsigned int )len, 208U); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto done; } else { } tmp = skb_put(skb, (unsigned int )len); tmp___0 = memcpy_fromiovec(tmp, msg->msg_iov, (int )len); if (tmp___0 != 0) { err = -14; goto drop; } else { } __len = 8UL; if (__len > 63UL) { __ret = memcpy((void *)(& skb->cb), (void const *)skb->data, __len); } else { __ret = memcpy((void *)(& skb->cb), (void const *)skb->data, __len); } skb_pull(skb, 8U); if ((unsigned int )msg->msg_namelen > 5U) { maddr = (struct sockaddr_mISDN *)msg->msg_name; ((struct mISDNhead *)(& skb->cb))->id = (unsigned int )maddr->channel; } else if ((unsigned int )sk->sk_protocol == 16U || (unsigned int )sk->sk_protocol == 17U) { ((struct mISDNhead *)(& skb->cb))->id = ((struct mISDN_sock *)sk)->ch.nr; } else { } if ((*debug___0 & 4U) != 0U) { printk("<7>%s: ID:%x\n", "mISDN_sock_sendmsg", ((struct mISDNhead *)(& skb->cb))->id); } else { } err = -19; if ((unsigned long )((struct mISDN_sock *)sk)->ch.peer == (unsigned long )((struct mISDNchannel *)0)) { goto drop; } else { err = (*(((struct mISDN_sock *)sk)->ch.recv))(((struct mISDN_sock *)sk)->ch.peer, skb); if (err != 0) { goto drop; } else { } } err = (int )len; done: release_sock(sk); return (err); drop: kfree_skb(skb); goto done; } } static int data_sock_release(struct socket *sock ) { struct sock *sk ; { sk = sock->sk; if ((*debug___0 & 4U) != 0U) { printk("<7>%s(%p) sk=%p\n", "data_sock_release", sock, sk); } else { } if ((unsigned long )sk == (unsigned long )((struct sock *)0)) { return (0); } else { } switch ((int )sk->sk_protocol) { case 1: ; case 2: ; case 3: ; case 4: ; if ((unsigned int )((unsigned char )sk->__sk_common.skc_state) == 2U) { delete_channel(& ((struct mISDN_sock *)sk)->ch); } else { mISDN_sock_unlink(& data_sockets, sk); } goto ldv_28984; case 16: ; case 17: ; case 33: ; case 34: ; case 35: ; case 36: ; case 37: ; case 38: delete_channel(& ((struct mISDN_sock *)sk)->ch); mISDN_sock_unlink(& data_sockets, sk); goto ldv_28984; } ldv_28984: lock_sock(sk); sock_orphan(sk); skb_queue_purge(& sk->sk_receive_queue); release_sock(sk); sock_put(sk); return (0); } } static int data_sock_ioctl_bound(struct sock *sk , unsigned int cmd , void *p ) { struct mISDN_ctrl_req cq ; int err ; int val ; struct mISDNchannel *bchan ; struct mISDNchannel *next ; unsigned long tmp ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; unsigned long tmp___0 ; int __ret_gu ; unsigned long __val_gu ; { err = -22; lock_sock(sk); if ((unsigned long )((struct mISDN_sock *)sk)->dev == (unsigned long )((struct mISDNdevice *)0)) { err = -19; goto done; } else { } switch (cmd) { case 2147764549U: tmp = copy_from_user((void *)(& cq), (void const *)p, 16U); if (tmp != 0UL) { err = -14; goto ldv_29005; } else { } if (((int )sk->sk_protocol & -32) == 32) { __mptr = (struct list_head const *)(((struct mISDN_sock *)sk)->dev)->bchannels.next; bchan = (struct mISDNchannel *)__mptr; __mptr___0 = (struct list_head const *)bchan->list.next; next = (struct mISDNchannel *)__mptr___0; goto ldv_29014; ldv_29013: ; if (bchan->nr == (u_int )cq.channel) { err = (*(bchan->ctrl))(bchan, 768U, (void *)(& cq)); goto ldv_29012; } else { } bchan = next; __mptr___1 = (struct list_head const *)next->list.next; next = (struct mISDNchannel *)__mptr___1; ldv_29014: ; if ((unsigned long )(& bchan->list) != (unsigned long )(& (((struct mISDN_sock *)sk)->dev)->bchannels)) { goto ldv_29013; } else { } ldv_29012: ; } else { err = (*((((struct mISDN_sock *)sk)->dev)->D.ctrl))(& (((struct mISDN_sock *)sk)->dev)->D, 768U, (void *)(& cq)); } if (err != 0) { goto ldv_29005; } else { } tmp___0 = copy_to_user(p, (void const *)(& cq), 16U); if (tmp___0 != 0UL) { err = -14; } else { } goto ldv_29005; case 2147764550U: ; if ((unsigned int )sk->sk_protocol != 17U) { err = -22; goto ldv_29005; } else { } switch (4UL) { case 1UL: __asm__ volatile ("call __get_user_1": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)p)); goto ldv_29019; case 2UL: __asm__ volatile ("call __get_user_2": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)p)); goto ldv_29019; case 4UL: __asm__ volatile ("call __get_user_4": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)p)); goto ldv_29019; case 8UL: __asm__ volatile ("call __get_user_8": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)p)); goto ldv_29019; default: __asm__ volatile ("call __get_user_X": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)p)); goto ldv_29019; } ldv_29019: val = (int )__val_gu; if (__ret_gu != 0) { err = -14; goto ldv_29005; } else { } err = (*(((((struct mISDN_sock *)sk)->dev)->teimgr)->ctrl))((((struct mISDN_sock *)sk)->dev)->teimgr, 768U, (void *)(& val)); goto ldv_29005; default: err = -22; goto ldv_29005; } ldv_29005: ; done: release_sock(sk); return (err); } } static int data_sock_ioctl(struct socket *sock , unsigned int cmd , unsigned long arg ) { int err ; int id ; struct sock *sk ; struct mISDNdevice *dev ; struct mISDNversion ver ; unsigned long tmp ; int __ret_pu ; int __pu_val ; int __ret_gu ; unsigned long __val_gu ; struct mISDN_devinfo di ; u_int tmp___0 ; size_t __len ; void *__ret ; unsigned long tmp___1 ; { err = 0; sk = sock->sk; switch (cmd) { case 2147764546U: ver.major = 1U; ver.minor = 0U; ver.release = 19U; tmp = copy_to_user((void *)arg, (void const *)(& ver), 4U); if (tmp != 0UL) { err = -14; } else { } goto ldv_29037; case 2147764547U: id = get_mdevice_count(); __pu_val = id; switch (4UL) { case 1UL: __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_29042; case 2UL: __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_29042; case 4UL: __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_29042; case 8UL: __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_29042; default: __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_29042; } ldv_29042: ; if (__ret_pu != 0) { err = -14; } else { } goto ldv_29037; case 2147764548U: ; switch (4UL) { case 1UL: __asm__ volatile ("call __get_user_1": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); goto ldv_29052; case 2UL: __asm__ volatile ("call __get_user_2": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); goto ldv_29052; case 4UL: __asm__ volatile ("call __get_user_4": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); goto ldv_29052; case 8UL: __asm__ volatile ("call __get_user_8": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); goto ldv_29052; default: __asm__ volatile ("call __get_user_X": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); goto ldv_29052; } ldv_29052: id = (int )__val_gu; if (__ret_gu != 0) { err = -14; goto ldv_29037; } else { } dev = get_mdevice((u_int )id); if ((unsigned long )dev != (unsigned long )((struct mISDNdevice *)0)) { di.id = dev->id; di.Dprotocols = dev->Dprotocols; tmp___0 = get_all_Bprotocols(); di.Bprotocols = dev->Bprotocols | tmp___0; di.protocol = dev->D.protocol; __len = 16UL; if (__len > 63UL) { __ret = memcpy((void *)(& di.channelmap), (void const *)(& dev->channelmap), __len); } else { __ret = memcpy((void *)(& di.channelmap), (void const *)(& dev->channelmap), __len); } di.nrbchan = dev->nrbchan; strcpy((char *)(& di.name), (char const *)(& dev->name)); tmp___1 = copy_to_user((void *)arg, (void const *)(& di), 56U); if (tmp___1 != 0UL) { err = -14; } else { } } else { err = -19; } goto ldv_29037; default: ; if ((unsigned int )((unsigned char )sk->__sk_common.skc_state) == 2U) { err = data_sock_ioctl_bound(sk, cmd, (void *)arg); } else { err = -107; } } ldv_29037: ; return (err); } } static int data_sock_setsockopt(struct socket *sock , int level , int optname , char *optval , int len ) { struct sock *sk ; int err ; int opt ; int __ret_gu ; unsigned long __val_gu ; { sk = sock->sk; err = 0; opt = 0; if ((*debug___0 & 4U) != 0U) { printk("<7>%s(%p, %d, %x, %p, %d)\n", "data_sock_setsockopt", sock, level, optname, optval, len); } else { } lock_sock(sk); switch (optname) { case 1: ; switch (4UL) { case 1UL: __asm__ volatile ("call __get_user_1": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)optval)); goto ldv_29078; case 2UL: __asm__ volatile ("call __get_user_2": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)optval)); goto ldv_29078; case 4UL: __asm__ volatile ("call __get_user_4": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)optval)); goto ldv_29078; case 8UL: __asm__ volatile ("call __get_user_8": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)optval)); goto ldv_29078; default: __asm__ volatile ("call __get_user_X": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)optval)); goto ldv_29078; } ldv_29078: opt = (int )__val_gu; if (__ret_gu != 0) { err = -14; goto ldv_29084; } else { } if (opt != 0) { ((struct mISDN_sock *)sk)->cmask = ((struct mISDN_sock *)sk)->cmask | 1U; } else { ((struct mISDN_sock *)sk)->cmask = ((struct mISDN_sock *)sk)->cmask & 4294967294U; } goto ldv_29084; default: err = -92; goto ldv_29084; } ldv_29084: release_sock(sk); return (err); } } static int data_sock_getsockopt(struct socket *sock , int level , int optname , char *optval , int *optlen ) { struct sock *sk ; int len ; int opt ; int __ret_gu ; unsigned long __val_gu ; int __ret_pu ; char __pu_val ; { sk = sock->sk; switch (4UL) { case 1UL: __asm__ volatile ("call __get_user_1": "=a" (__ret_gu), "=d" (__val_gu): "0" (optlen)); goto ldv_29099; case 2UL: __asm__ volatile ("call __get_user_2": "=a" (__ret_gu), "=d" (__val_gu): "0" (optlen)); goto ldv_29099; case 4UL: __asm__ volatile ("call __get_user_4": "=a" (__ret_gu), "=d" (__val_gu): "0" (optlen)); goto ldv_29099; case 8UL: __asm__ volatile ("call __get_user_8": "=a" (__ret_gu), "=d" (__val_gu): "0" (optlen)); goto ldv_29099; default: __asm__ volatile ("call __get_user_X": "=a" (__ret_gu), "=d" (__val_gu): "0" (optlen)); goto ldv_29099; } ldv_29099: len = (int )__val_gu; if (__ret_gu != 0) { return (-14); } else { } switch (optname) { case 1: ; if ((int )((struct mISDN_sock *)sk)->cmask & 1) { opt = 1; } else { opt = 0; } __pu_val = (char )opt; switch (1UL) { case 1UL: __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" (optval): "ebx"); goto ldv_29109; case 2UL: __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" (optval): "ebx"); goto ldv_29109; case 4UL: __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" (optval): "ebx"); goto ldv_29109; case 8UL: __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" (optval): "ebx"); goto ldv_29109; default: __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" (optval): "ebx"); goto ldv_29109; } ldv_29109: ; if (__ret_pu != 0) { return (-14); } else { } goto ldv_29115; default: ; return (-92); } ldv_29115: ; return (0); } } static int data_sock_bind(struct socket *sock , struct sockaddr *addr , int addr_len ) { struct sockaddr_mISDN *maddr ; struct sock *sk ; int err ; { maddr = (struct sockaddr_mISDN *)addr; sk = sock->sk; err = 0; if ((*debug___0 & 4U) != 0U) { printk("<7>%s(%p) sk=%p\n", "data_sock_bind", sock, sk); } else { } if (addr_len != 6) { return (-22); } else { } if ((unsigned long )maddr == (unsigned long )((struct sockaddr_mISDN *)0) || (unsigned int )maddr->family != 34U) { return (-22); } else { } lock_sock(sk); if ((unsigned long )((struct mISDN_sock *)sk)->dev != (unsigned long )((struct mISDNdevice *)0)) { err = -114; goto done; } else { } ((struct mISDN_sock *)sk)->dev = get_mdevice((u_int )maddr->dev); if ((unsigned long )((struct mISDN_sock *)sk)->dev == (unsigned long )((struct mISDNdevice *)0)) { err = -19; goto done; } else { } ((struct mISDN_sock *)sk)->ch.send = & mISDN_send; ((struct mISDN_sock *)sk)->ch.ctrl = & mISDN_ctrl; switch ((int )sk->sk_protocol) { case 1: ; case 2: ; case 3: ; case 4: mISDN_sock_unlink(& data_sockets, sk); err = connect_layer1(((struct mISDN_sock *)sk)->dev, & ((struct mISDN_sock *)sk)->ch, (u_int )sk->sk_protocol, maddr); if (err != 0) { mISDN_sock_link(& data_sockets, sk); } else { } goto ldv_29131; case 16: ; case 17: err = create_l2entity(((struct mISDN_sock *)sk)->dev, & ((struct mISDN_sock *)sk)->ch, (u_int )sk->sk_protocol, maddr); goto ldv_29131; case 33: ; case 34: ; case 35: ; case 36: ; case 37: ; case 38: err = connect_Bstack(((struct mISDN_sock *)sk)->dev, & ((struct mISDN_sock *)sk)->ch, (u_int )sk->sk_protocol, maddr); goto ldv_29131; default: err = -93; } ldv_29131: ; if (err != 0) { goto done; } else { } sk->__sk_common.skc_state = 2U; ((struct mISDN_sock *)sk)->ch.protocol = (u_int )sk->sk_protocol; done: release_sock(sk); return (err); } } static int data_sock_getname(struct socket *sock , struct sockaddr *addr , int *addr_len , int peer ) { struct sockaddr_mISDN *maddr ; struct sock *sk ; { maddr = (struct sockaddr_mISDN *)addr; sk = sock->sk; if ((unsigned long )((struct mISDN_sock *)sk)->dev == (unsigned long )((struct mISDNdevice *)0)) { return (-77); } else { } lock_sock(sk); *addr_len = 6; maddr->dev = (unsigned char )(((struct mISDN_sock *)sk)->dev)->id; maddr->channel = (unsigned char )((struct mISDN_sock *)sk)->ch.nr; maddr->sapi = (unsigned char )((struct mISDN_sock *)sk)->ch.addr; maddr->tei = (unsigned char )(((struct mISDN_sock *)sk)->ch.addr >> 8); release_sock(sk); return (0); } } static struct proto_ops const data_sock_ops = {34, & __this_module, & data_sock_release, & data_sock_bind, & sock_no_connect, & sock_no_socketpair, & sock_no_accept, & data_sock_getname, & datagram_poll, & data_sock_ioctl, 0, & sock_no_listen, & sock_no_shutdown, & data_sock_setsockopt, & data_sock_getsockopt, 0, 0, & mISDN_sock_sendmsg, & mISDN_sock_recvmsg, & sock_no_mmap, 0, 0}; static int data_sock_create(struct net *net , struct socket *sock , int protocol ) { struct sock *sk ; { if ((int )sock->type != 2) { return (-94); } else { } sk = sk_alloc(net, 34, 208U, & mISDN_proto); if ((unsigned long )sk == (unsigned long )((struct sock *)0)) { return (-12); } else { } sock_init_data(sock, sk); sock->ops = & data_sock_ops; sock->state = SS_UNCONNECTED; sock_reset_flag(sk, SOCK_ZAPPED); sk->sk_protocol = (unsigned char )protocol; sk->__sk_common.skc_state = 1U; mISDN_sock_link(& data_sockets, sk); return (0); } } static int base_sock_release(struct socket *sock ) { struct sock *sk ; { sk = sock->sk; printk("<7>%s(%p) sk=%p\n", "base_sock_release", sock, sk); if ((unsigned long )sk == (unsigned long )((struct sock *)0)) { return (0); } else { } mISDN_sock_unlink(& base_sockets, sk); sock_orphan(sk); sock_put(sk); return (0); } } static int base_sock_ioctl(struct socket *sock , unsigned int cmd , unsigned long arg ) { int err ; int id ; struct mISDNdevice *dev ; struct mISDNversion ver ; unsigned long tmp ; int __ret_pu ; int __pu_val ; int __ret_gu ; unsigned long __val_gu ; struct mISDN_devinfo di ; u_int tmp___0 ; size_t __len ; void *__ret ; unsigned long tmp___1 ; { err = 0; switch (cmd) { case 2147764546U: ver.major = 1U; ver.minor = 0U; ver.release = 19U; tmp = copy_to_user((void *)arg, (void const *)(& ver), 4U); if (tmp != 0UL) { err = -14; } else { } goto ldv_29171; case 2147764547U: id = get_mdevice_count(); __pu_val = id; switch (4UL) { case 1UL: __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_29176; case 2UL: __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_29176; case 4UL: __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_29176; case 8UL: __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_29176; default: __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_29176; } ldv_29176: ; if (__ret_pu != 0) { err = -14; } else { } goto ldv_29171; case 2147764548U: ; switch (4UL) { case 1UL: __asm__ volatile ("call __get_user_1": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); goto ldv_29186; case 2UL: __asm__ volatile ("call __get_user_2": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); goto ldv_29186; case 4UL: __asm__ volatile ("call __get_user_4": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); goto ldv_29186; case 8UL: __asm__ volatile ("call __get_user_8": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); goto ldv_29186; default: __asm__ volatile ("call __get_user_X": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); goto ldv_29186; } ldv_29186: id = (int )__val_gu; if (__ret_gu != 0) { err = -14; goto ldv_29171; } else { } dev = get_mdevice((u_int )id); if ((unsigned long )dev != (unsigned long )((struct mISDNdevice *)0)) { di.id = dev->id; di.Dprotocols = dev->Dprotocols; tmp___0 = get_all_Bprotocols(); di.Bprotocols = dev->Bprotocols | tmp___0; di.protocol = dev->D.protocol; __len = 16UL; if (__len > 63UL) { __ret = memcpy((void *)(& di.channelmap), (void const *)(& dev->channelmap), __len); } else { __ret = memcpy((void *)(& di.channelmap), (void const *)(& dev->channelmap), __len); } di.nrbchan = dev->nrbchan; strcpy((char *)(& di.name), (char const *)(& dev->name)); tmp___1 = copy_to_user((void *)arg, (void const *)(& di), 56U); if (tmp___1 != 0UL) { err = -14; } else { } } else { err = -19; } goto ldv_29171; default: err = -22; } ldv_29171: ; return (err); } } static int base_sock_bind(struct socket *sock , struct sockaddr *addr , int addr_len ) { struct sockaddr_mISDN *maddr ; struct sock *sk ; int err ; { maddr = (struct sockaddr_mISDN *)addr; sk = sock->sk; err = 0; if ((unsigned long )maddr == (unsigned long )((struct sockaddr_mISDN *)0) || (unsigned int )maddr->family != 34U) { return (-22); } else { } lock_sock(sk); if ((unsigned long )((struct mISDN_sock *)sk)->dev != (unsigned long )((struct mISDNdevice *)0)) { err = -114; goto done; } else { } ((struct mISDN_sock *)sk)->dev = get_mdevice((u_int )maddr->dev); if ((unsigned long )((struct mISDN_sock *)sk)->dev == (unsigned long )((struct mISDNdevice *)0)) { err = -19; goto done; } else { } sk->__sk_common.skc_state = 2U; done: release_sock(sk); return (err); } } static struct proto_ops const base_sock_ops = {34, & __this_module, & base_sock_release, & base_sock_bind, & sock_no_connect, & sock_no_socketpair, & sock_no_accept, & sock_no_getname, & sock_no_poll, & base_sock_ioctl, 0, & sock_no_listen, & sock_no_shutdown, & sock_no_setsockopt, & sock_no_getsockopt, 0, 0, & sock_no_sendmsg, & sock_no_recvmsg, & sock_no_mmap, 0, 0}; static int base_sock_create(struct net *net , struct socket *sock , int protocol ) { struct sock *sk ; { if ((int )sock->type != 3) { return (-94); } else { } sk = sk_alloc(net, 34, 208U, & mISDN_proto); if ((unsigned long )sk == (unsigned long )((struct sock *)0)) { return (-12); } else { } sock_init_data(sock, sk); sock->ops = & base_sock_ops; sock->state = SS_UNCONNECTED; sock_reset_flag(sk, SOCK_ZAPPED); sk->sk_protocol = (unsigned char )protocol; sk->__sk_common.skc_state = 1U; mISDN_sock_link(& base_sockets, sk); return (0); } } static int mISDN_sock_create(struct net *net , struct socket *sock , int proto ) { int err ; { err = -93; switch (proto) { case 0: err = base_sock_create(net, sock, proto); goto ldv_29220; case 1: ; case 2: ; case 3: ; case 4: ; case 16: ; case 17: ; case 33: ; case 34: ; case 35: ; case 36: ; case 37: ; case 38: err = data_sock_create(net, sock, proto); goto ldv_29220; default: ; return (err); } ldv_29220: ; return (err); } } static struct net_proto_family mISDN_sock_family_ops = {34, & mISDN_sock_create, & __this_module}; int misdn_sock_init(u_int *deb ) { int err ; { debug___0 = deb; err = sock_register((struct net_proto_family const *)(& mISDN_sock_family_ops)); if (err != 0) { printk("<3>%s: error(%d)\n", "misdn_sock_init", err); } else { } return (err); } } void misdn_sock_cleanup(void) { { sock_unregister(34); return; } } void ldv_main2_sequence_infinite_withcheck_stateful(void) { struct socket *var_group1 ; unsigned int var_data_sock_ioctl_10_p1 ; unsigned long var_data_sock_ioctl_10_p2 ; struct sockaddr *var_group2 ; int var_data_sock_bind_13_p2 ; int *var_data_sock_getname_14_p2 ; int var_data_sock_getname_14_p3 ; struct kiocb *var_group3 ; struct msghdr *var_mISDN_sock_sendmsg_7_p2 ; size_t var_mISDN_sock_sendmsg_7_p3 ; struct msghdr *var_mISDN_sock_recvmsg_6_p2 ; size_t var_mISDN_sock_recvmsg_6_p3 ; int var_mISDN_sock_recvmsg_6_p4 ; int var_data_sock_setsockopt_11_p1 ; int var_data_sock_setsockopt_11_p2 ; char *var_data_sock_setsockopt_11_p3 ; int var_data_sock_setsockopt_11_p4 ; int var_data_sock_getsockopt_12_p1 ; int var_data_sock_getsockopt_12_p2 ; char *var_data_sock_getsockopt_12_p3 ; int *var_data_sock_getsockopt_12_p4 ; unsigned int var_base_sock_ioctl_17_p1 ; unsigned long var_base_sock_ioctl_17_p2 ; int var_base_sock_bind_18_p2 ; struct net *var_group4 ; int var_mISDN_sock_create_20_p2 ; int ldv_s_data_sock_ops_proto_ops ; int ldv_s_base_sock_ops_proto_ops ; int tmp ; int tmp___0 ; { ldv_s_data_sock_ops_proto_ops = 0; ldv_s_base_sock_ops_proto_ops = 0; LDV_IN_INTERRUPT = 1; ldv_initialize(); goto ldv_29302; ldv_29301: tmp = nondet_int(); switch (tmp) { case 0: ; if (ldv_s_data_sock_ops_proto_ops == 0) { ldv_handler_precall(); data_sock_release(var_group1); ldv_s_data_sock_ops_proto_ops = 0; } else { } goto ldv_29288; case 1: ldv_handler_precall(); data_sock_ioctl(var_group1, var_data_sock_ioctl_10_p1, var_data_sock_ioctl_10_p2); goto ldv_29288; case 2: ldv_handler_precall(); data_sock_bind(var_group1, var_group2, var_data_sock_bind_13_p2); goto ldv_29288; case 3: ldv_handler_precall(); data_sock_getname(var_group1, var_group2, var_data_sock_getname_14_p2, var_data_sock_getname_14_p3); goto ldv_29288; case 4: ldv_handler_precall(); mISDN_sock_sendmsg(var_group3, var_group1, var_mISDN_sock_sendmsg_7_p2, var_mISDN_sock_sendmsg_7_p3); goto ldv_29288; case 5: ldv_handler_precall(); mISDN_sock_recvmsg(var_group3, var_group1, var_mISDN_sock_recvmsg_6_p2, var_mISDN_sock_recvmsg_6_p3, var_mISDN_sock_recvmsg_6_p4); goto ldv_29288; case 6: ldv_handler_precall(); data_sock_setsockopt(var_group1, var_data_sock_setsockopt_11_p1, var_data_sock_setsockopt_11_p2, var_data_sock_setsockopt_11_p3, var_data_sock_setsockopt_11_p4); goto ldv_29288; case 7: ldv_handler_precall(); data_sock_getsockopt(var_group1, var_data_sock_getsockopt_12_p1, var_data_sock_getsockopt_12_p2, var_data_sock_getsockopt_12_p3, var_data_sock_getsockopt_12_p4); goto ldv_29288; case 8: ; if (ldv_s_base_sock_ops_proto_ops == 0) { ldv_handler_precall(); base_sock_release(var_group1); ldv_s_base_sock_ops_proto_ops = 0; } else { } goto ldv_29288; case 9: ldv_handler_precall(); base_sock_ioctl(var_group1, var_base_sock_ioctl_17_p1, var_base_sock_ioctl_17_p2); goto ldv_29288; case 10: ldv_handler_precall(); base_sock_bind(var_group1, var_group2, var_base_sock_bind_18_p2); goto ldv_29288; case 11: ldv_handler_precall(); mISDN_sock_create(var_group4, var_group1, var_mISDN_sock_create_20_p2); goto ldv_29288; default: ; goto ldv_29288; } ldv_29288: ; ldv_29302: tmp___0 = nondet_int(); if ((tmp___0 != 0 || ldv_s_data_sock_ops_proto_ops != 0) || ldv_s_base_sock_ops_proto_ops != 0) { goto ldv_29301; } else { } ldv_check_final_state(); return; } } void ldv___ldv_spin_lock_65(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_66(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_lock_of_NOT_ARG_SIGN(); __ldv_spin_unlock(ldv_func_arg1); return; } } int ldv___ldv_spin_trylock_67(spinlock_t *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = __ldv_spin_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock_lock_of_NOT_ARG_SIGN(); return (tmp___0); return (ldv_func_res); } } void ldv___ldv_spin_lock_68(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_dcache_lock(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_69(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_70(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_71(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_dcache_lock(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_72(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_73(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_74(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_i_lock_of_inode(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_75(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_i_lock_of_inode(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_76(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_77(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_78(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_siglock_of_sighand_struct(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_79(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_siglock_of_sighand_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_80(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_alloc_lock_of_task_struct(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_81(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_alloc_lock_of_task_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_82(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_siglock_of_sighand_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_83(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock__xmit_lock_of_netdev_queue(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_84(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock__xmit_lock_of_netdev_queue(); __ldv_spin_lock(ldv_func_arg1); return; } } int ldv___ldv_spin_trylock_85(spinlock_t *ldv_func_arg1 ) { ldv_func_ret_type___19 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = __ldv_spin_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock__xmit_lock_of_netdev_queue(); return (tmp___0); return (ldv_func_res); } } void ldv___ldv_spin_unlock_86(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_87(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_88(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_tx_global_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_89(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_tx_global_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_90(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_addr_list_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_91(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_addr_list_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_92(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_addr_list_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_93(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_addr_list_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } __inline static int constant_test_bit(int nr , unsigned long const volatile *addr ) { { return ((int )(*((unsigned long *)addr + (unsigned long )(nr / 64)) >> nr % 64) & 1); } } __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __spin_lock_init(spinlock_t * , char const * , struct lock_class_key * ) ; void ldv___ldv_spin_lock_123(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_126(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_127(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_130(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_132(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_134(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_136(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_138(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_141(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_142(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_146(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_148(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_149(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_124(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_128(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_129(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_131(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_133(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_135(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_137(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_139(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_140(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_144(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_145(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_147(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_150(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_151(spinlock_t *ldv_func_arg1 ) ; int ldv___ldv_spin_trylock_125(spinlock_t *ldv_func_arg1 ) ; int ldv___ldv_spin_trylock_143(spinlock_t *ldv_func_arg1 ) ; extern void flush_scheduled_work(void) ; extern int schedule_work(struct work_struct * ) ; __inline static void __skb_queue_head_init(struct sk_buff_head *list ) { struct sk_buff *tmp ; { tmp = (struct sk_buff *)list; list->next = tmp; list->prev = tmp; list->qlen = 0U; return; } } __inline static void skb_queue_head_init(struct sk_buff_head *list ) { struct lock_class_key __key ; { __spin_lock_init(& list->lock, "&list->lock", & __key); __skb_queue_head_init(list); return; } } extern void skb_queue_tail(struct sk_buff_head * , struct sk_buff * ) ; extern struct sk_buff *skb_dequeue(struct sk_buff_head * ) ; __inline static struct sk_buff *mI_alloc_skb(unsigned int len , gfp_t gfp_mask ) { struct sk_buff *skb ; long tmp ; { skb = alloc_skb(len + 8U, gfp_mask); tmp = ldv__builtin_expect((unsigned long )skb != (unsigned long )((struct sk_buff *)0), 1L); if (tmp != 0L) { skb_reserve(skb, 8); } else { } return (skb); } } __inline static struct sk_buff *_alloc_mISDN_skb(u_int prim , u_int id , u_int len , void *dp , gfp_t gfp_mask ) { struct sk_buff *skb ; struct sk_buff *tmp ; struct mISDNhead *hh ; size_t __len ; void *__ret ; unsigned char *tmp___1 ; { tmp = mI_alloc_skb(len, gfp_mask); skb = tmp; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return (0); } else { } if (len != 0U) { __len = (size_t )len; tmp___1 = skb_put(skb, len); __ret = memcpy((void *)tmp___1, (void const *)dp, __len); } else { } hh = (struct mISDNhead *)(& skb->cb); hh->prim = prim; hh->id = id; return (skb); } } __inline static void _queue_data(struct mISDNchannel *ch , u_int prim , u_int id , u_int len , void *dp , gfp_t gfp_mask ) { struct sk_buff *skb ; int tmp ; { if ((unsigned long )ch->peer == (unsigned long )((struct mISDNchannel *)0)) { return; } else { } skb = _alloc_mISDN_skb(prim, id, len, dp, gfp_mask); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return; } else { } tmp = (*(ch->recv))(ch->peer, skb); if (tmp != 0) { kfree_skb(skb); } else { } return; } } int mISDN_initdchannel(struct dchannel *ch , int maxlen , void *phf ) ; int mISDN_initbchannel(struct bchannel *ch , int maxlen ) ; int mISDN_freedchannel(struct dchannel *ch ) ; int mISDN_freebchannel(struct bchannel *ch ) ; void queue_ch_frame(struct mISDNchannel *ch , u_int pr , int id , struct sk_buff *skb ) ; int dchannel_senddata(struct dchannel *ch , struct sk_buff *skb ) ; int bchannel_senddata(struct bchannel *ch , struct sk_buff *skb ) ; void recv_Dchannel(struct dchannel *dch ) ; void recv_Bchannel(struct bchannel *bch ) ; void recv_Dchannel_skb(struct dchannel *dch , struct sk_buff *skb ) ; void recv_Bchannel_skb(struct bchannel *bch , struct sk_buff *skb ) ; void confirm_Bsend(struct bchannel *bch ) ; int get_next_bframe(struct bchannel *bch ) ; int get_next_dframe(struct dchannel *dch ) ; static void dchannel_bh(struct work_struct *ws ) { struct dchannel *dch ; struct work_struct const *__mptr ; struct sk_buff *skb ; int err ; long tmp ; int tmp___0 ; int tmp___1 ; { __mptr = (struct work_struct const *)ws; dch = (struct dchannel *)__mptr + 0xfffffffffffffb80UL; tmp___0 = test_and_clear_bit(30, (unsigned long volatile *)(& dch->Flags)); if (tmp___0 != 0) { goto ldv_28967; ldv_28966: tmp = ldv__builtin_expect((unsigned long )dch->dev.D.peer != (unsigned long )((struct mISDNchannel *)0), 1L); if (tmp != 0L) { err = (*(dch->dev.D.recv))(dch->dev.D.peer, skb); if (err != 0) { kfree_skb(skb); } else { } } else { kfree_skb(skb); } ldv_28967: skb = skb_dequeue(& dch->rqueue); if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { goto ldv_28966; } else { } } else { } tmp___1 = test_and_clear_bit(31, (unsigned long volatile *)(& dch->Flags)); if (tmp___1 != 0) { if ((unsigned long )dch->phfunc != (unsigned long )((void (*)(struct dchannel * ))0)) { (*(dch->phfunc))(dch); } else { } } else { } return; } } static void bchannel_bh(struct work_struct *ws ) { struct bchannel *bch ; struct work_struct const *__mptr ; struct sk_buff *skb ; int err ; long tmp ; int tmp___0 ; { __mptr = (struct work_struct const *)ws; bch = (struct bchannel *)__mptr + 0xffffffffffffffa0UL; tmp___0 = test_and_clear_bit(30, (unsigned long volatile *)(& bch->Flags)); if (tmp___0 != 0) { goto ldv_28978; ldv_28977: ; if (bch->rcount > 63) { printk("<4>B-channel %p receive queue if full, but empties...\n", bch); } else { } bch->rcount = bch->rcount - 1; tmp = ldv__builtin_expect((unsigned long )bch->ch.peer != (unsigned long )((struct mISDNchannel *)0), 1L); if (tmp != 0L) { err = (*(bch->ch.recv))(bch->ch.peer, skb); if (err != 0) { kfree_skb(skb); } else { } } else { kfree_skb(skb); } ldv_28978: skb = skb_dequeue(& bch->rqueue); if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { goto ldv_28977; } else { } } else { } return; } } int mISDN_initdchannel(struct dchannel *ch , int maxlen , void *phf ) { struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; { test_and_set_bit(13, (unsigned long volatile *)(& ch->Flags)); ch->maxlen = maxlen; ch->hw = 0; ch->rx_skb = 0; ch->tx_skb = 0; ch->tx_idx = 0; ch->phfunc = (void (*)(struct dchannel * ))phf; skb_queue_head_init(& ch->squeue); skb_queue_head_init(& ch->rqueue); INIT_LIST_HEAD(& ch->dev.bchannels); __constr_expr_0.counter = 0L; ch->workq.data = __constr_expr_0; lockdep_init_map(& ch->workq.lockdep_map, "&ch->workq", & __key, 0); INIT_LIST_HEAD(& ch->workq.entry); ch->workq.func = & dchannel_bh; return (0); } } int mISDN_initbchannel(struct bchannel *ch , int maxlen ) { struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; { ch->Flags = 0UL; ch->maxlen = maxlen; ch->hw = 0; ch->rx_skb = 0; ch->tx_skb = 0; ch->tx_idx = 0; skb_queue_head_init(& ch->rqueue); ch->rcount = 0; ch->next_skb = 0; __constr_expr_0.counter = 0L; ch->workq.data = __constr_expr_0; lockdep_init_map(& ch->workq.lockdep_map, "&ch->workq", & __key, 0); INIT_LIST_HEAD(& ch->workq.entry); ch->workq.func = & bchannel_bh; return (0); } } int mISDN_freedchannel(struct dchannel *ch ) { { if ((unsigned long )ch->tx_skb != (unsigned long )((struct sk_buff *)0)) { kfree_skb(ch->tx_skb); ch->tx_skb = 0; } else { } if ((unsigned long )ch->rx_skb != (unsigned long )((struct sk_buff *)0)) { kfree_skb(ch->rx_skb); ch->rx_skb = 0; } else { } skb_queue_purge(& ch->squeue); skb_queue_purge(& ch->rqueue); flush_scheduled_work(); return (0); } } int mISDN_freebchannel(struct bchannel *ch ) { { if ((unsigned long )ch->tx_skb != (unsigned long )((struct sk_buff *)0)) { kfree_skb(ch->tx_skb); ch->tx_skb = 0; } else { } if ((unsigned long )ch->rx_skb != (unsigned long )((struct sk_buff *)0)) { kfree_skb(ch->rx_skb); ch->rx_skb = 0; } else { } if ((unsigned long )ch->next_skb != (unsigned long )((struct sk_buff *)0)) { kfree_skb(ch->next_skb); ch->next_skb = 0; } else { } skb_queue_purge(& ch->rqueue); ch->rcount = 0; flush_scheduled_work(); return (0); } } __inline static u_int get_sapi_tei(u_char *p ) { u_int sapi ; u_int tei ; { sapi = (u_int )((int )*p >> 2); tei = (u_int )((int )*(p + 1UL) >> 1); return ((tei << 8) | sapi); } } void recv_Dchannel(struct dchannel *dch ) { struct mISDNhead *hh ; { if ((dch->rx_skb)->len <= 1U) { kfree_skb(dch->rx_skb); dch->rx_skb = 0; return; } else { } hh = (struct mISDNhead *)(& (dch->rx_skb)->cb); hh->prim = 8194U; hh->id = get_sapi_tei((dch->rx_skb)->data); skb_queue_tail(& dch->rqueue, dch->rx_skb); dch->rx_skb = 0; test_and_set_bit(30, (unsigned long volatile *)(& dch->Flags)); schedule_work(& dch->workq); return; } } void recv_Bchannel(struct bchannel *bch ) { struct mISDNhead *hh ; { hh = (struct mISDNhead *)(& (bch->rx_skb)->cb); hh->prim = 8194U; hh->id = 65535U; if (bch->rcount > 63) { kfree_skb(bch->rx_skb); bch->rx_skb = 0; return; } else { } bch->rcount = bch->rcount + 1; skb_queue_tail(& bch->rqueue, bch->rx_skb); bch->rx_skb = 0; test_and_set_bit(30, (unsigned long volatile *)(& bch->Flags)); schedule_work(& bch->workq); return; } } void recv_Dchannel_skb(struct dchannel *dch , struct sk_buff *skb ) { { skb_queue_tail(& dch->rqueue, skb); test_and_set_bit(30, (unsigned long volatile *)(& dch->Flags)); schedule_work(& dch->workq); return; } } void recv_Bchannel_skb(struct bchannel *bch , struct sk_buff *skb ) { { if (bch->rcount > 63) { kfree_skb(skb); return; } else { } bch->rcount = bch->rcount + 1; skb_queue_tail(& bch->rqueue, skb); test_and_set_bit(30, (unsigned long volatile *)(& bch->Flags)); schedule_work(& bch->workq); return; } } static void confirm_Dsend(struct dchannel *dch ) { struct sk_buff *skb ; { skb = _alloc_mISDN_skb(24578U, ((struct mISDNhead *)(& (dch->tx_skb)->cb))->id, 0U, 0, 32U); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { printk("<3>%s: no skb id %x\n", "confirm_Dsend", ((struct mISDNhead *)(& (dch->tx_skb)->cb))->id); return; } else { } skb_queue_tail(& dch->rqueue, skb); test_and_set_bit(30, (unsigned long volatile *)(& dch->Flags)); schedule_work(& dch->workq); return; } } int get_next_dframe(struct dchannel *dch ) { { dch->tx_idx = 0; dch->tx_skb = skb_dequeue(& dch->squeue); if ((unsigned long )dch->tx_skb != (unsigned long )((struct sk_buff *)0)) { confirm_Dsend(dch); return (1); } else { } dch->tx_skb = 0; test_and_clear_bit(0, (unsigned long volatile *)(& dch->Flags)); return (0); } } void confirm_Bsend(struct bchannel *bch ) { struct sk_buff *skb ; { if (bch->rcount > 63) { return; } else { } skb = _alloc_mISDN_skb(24578U, ((struct mISDNhead *)(& (bch->tx_skb)->cb))->id, 0U, 0, 32U); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { printk("<3>%s: no skb id %x\n", "confirm_Bsend", ((struct mISDNhead *)(& (bch->tx_skb)->cb))->id); return; } else { } bch->rcount = bch->rcount + 1; skb_queue_tail(& bch->rqueue, skb); test_and_set_bit(30, (unsigned long volatile *)(& bch->Flags)); schedule_work(& bch->workq); return; } } int get_next_bframe(struct bchannel *bch ) { int tmp ; int tmp___0 ; { bch->tx_idx = 0; tmp___0 = constant_test_bit(1, (unsigned long const volatile *)(& bch->Flags)); if (tmp___0 != 0) { bch->tx_skb = bch->next_skb; if ((unsigned long )bch->tx_skb != (unsigned long )((struct sk_buff *)0)) { bch->next_skb = 0; test_and_clear_bit(1, (unsigned long volatile *)(& bch->Flags)); tmp = constant_test_bit(12, (unsigned long const volatile *)(& bch->Flags)); if (tmp == 0) { confirm_Bsend(bch); } else { } return (1); } else { test_and_clear_bit(1, (unsigned long volatile *)(& bch->Flags)); printk("<4>B TX_NEXT without skb\n"); } } else { } bch->tx_skb = 0; test_and_clear_bit(0, (unsigned long volatile *)(& bch->Flags)); return (0); } } void queue_ch_frame(struct mISDNchannel *ch , u_int pr , int id , struct sk_buff *skb ) { struct mISDNhead *hh ; int tmp ; { if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { _queue_data(ch, pr, (u_int )id, 0U, 0, 32U); } else { if ((unsigned long )ch->peer != (unsigned long )((struct mISDNchannel *)0)) { hh = (struct mISDNhead *)(& skb->cb); hh->prim = pr; hh->id = (unsigned int )id; tmp = (*(ch->recv))(ch->peer, skb); if (tmp == 0) { return; } else { } } else { } kfree_skb(skb); } return; } } int dchannel_senddata(struct dchannel *ch , struct sk_buff *skb ) { int tmp ; { if (skb->len == 0U) { printk("<4>%s: skb too small\n", "dchannel_senddata"); return (-22); } else { } if (skb->len > (unsigned int )ch->maxlen) { printk("<4>%s: skb too large(%d/%d)\n", "dchannel_senddata", skb->len, ch->maxlen); return (-22); } else { } tmp = test_and_set_bit(0, (unsigned long volatile *)(& ch->Flags)); if (tmp != 0) { skb_queue_tail(& ch->squeue, skb); return (0); } else { ch->tx_skb = skb; ch->tx_idx = 0; return (1); } } } int bchannel_senddata(struct bchannel *ch , struct sk_buff *skb ) { int tmp ; { if (skb->len == 0U) { printk("<4>%s: skb too small\n", "bchannel_senddata"); return (-22); } else { } if (skb->len > (unsigned int )ch->maxlen) { printk("<4>%s: skb too large(%d/%d)\n", "bchannel_senddata", skb->len, ch->maxlen); return (-22); } else { } if ((unsigned long )ch->next_skb != (unsigned long )((struct sk_buff *)0)) { printk("<4>%s: next_skb exist ERROR (skb->len=%d next_skb->len=%d)\n", "bchannel_senddata", skb->len, (ch->next_skb)->len); return (-16); } else { } tmp = test_and_set_bit(0, (unsigned long volatile *)(& ch->Flags)); if (tmp != 0) { test_and_set_bit(1, (unsigned long volatile *)(& ch->Flags)); ch->next_skb = skb; return (0); } else { ch->tx_skb = skb; ch->tx_idx = 0; return (1); } } } void ldv___ldv_spin_lock_123(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_124(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_lock_of_NOT_ARG_SIGN(); __ldv_spin_unlock(ldv_func_arg1); return; } } int ldv___ldv_spin_trylock_125(spinlock_t *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = __ldv_spin_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock_lock_of_NOT_ARG_SIGN(); return (tmp___0); return (ldv_func_res); } } void ldv___ldv_spin_lock_126(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_dcache_lock(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_127(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_128(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_129(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_dcache_lock(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_130(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_131(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_132(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_i_lock_of_inode(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_133(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_i_lock_of_inode(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_134(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_135(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_136(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_siglock_of_sighand_struct(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_137(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_siglock_of_sighand_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_138(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_alloc_lock_of_task_struct(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_139(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_alloc_lock_of_task_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_140(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_siglock_of_sighand_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_141(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock__xmit_lock_of_netdev_queue(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_142(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock__xmit_lock_of_netdev_queue(); __ldv_spin_lock(ldv_func_arg1); return; } } int ldv___ldv_spin_trylock_143(spinlock_t *ldv_func_arg1 ) { ldv_func_ret_type___19 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = __ldv_spin_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock__xmit_lock_of_netdev_queue(); return (tmp___0); return (ldv_func_res); } } void ldv___ldv_spin_unlock_144(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_145(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_146(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_tx_global_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_147(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_tx_global_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_148(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_addr_list_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_149(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_addr_list_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_150(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_addr_list_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_151(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_addr_list_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } __inline static int variable_test_bit(int nr , unsigned long const volatile *addr ) { int oldbit ; { __asm__ volatile ("bt %2,%1\n\tsbb %0,%0": "=r" (oldbit): "m" (*((unsigned long *)addr)), "Ir" (nr)); return (oldbit); } } extern void *memset(void * , int , size_t ) ; extern void __bad_pda_field(void) ; extern struct x8664_pda _proxy_pda ; __inline static struct task_struct *get_current(void) { struct task_struct *ret__ ; { switch (8UL) { case 2UL: __asm__ ("movw %%gs:%c1,%0": "=r" (ret__): "i" (0UL), "m" (_proxy_pda.pcurrent)); goto ldv_4269; case 4UL: __asm__ ("movl %%gs:%c1,%0": "=r" (ret__): "i" (0UL), "m" (_proxy_pda.pcurrent)); goto ldv_4269; case 8UL: __asm__ ("movq %%gs:%c1,%0": "=r" (ret__): "i" (0UL), "m" (_proxy_pda.pcurrent)); goto ldv_4269; default: __bad_pda_field(); } ldv_4269: ; return (ret__); } } __inline static int test_ti_thread_flag(struct thread_info *ti , int flag ) { int tmp ; { tmp = variable_test_bit(flag, (unsigned long const volatile *)(& ti->flags)); return (tmp); } } __inline static int list_is_last(struct list_head const *list , struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)list->next) == (unsigned long )head); } } __inline static int hlist_empty(struct hlist_head const *h ) { { return ((unsigned long )h->first == (unsigned long )((struct hlist_node */* const */)0)); } } extern void __rwlock_init(rwlock_t * , char const * , struct lock_class_key * ) ; void ldv___ldv_spin_lock_181(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_184(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_185(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_188(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_190(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_192(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_194(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_196(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_199(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_200(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_204(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_206(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_207(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_182(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_186(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_187(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_189(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_191(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_193(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_195(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_197(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_198(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_202(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_203(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_205(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_208(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_209(spinlock_t *ldv_func_arg1 ) ; int ldv___ldv_spin_trylock_183(spinlock_t *ldv_func_arg1 ) ; int ldv___ldv_spin_trylock_201(spinlock_t *ldv_func_arg1 ) ; extern void init_waitqueue_head(wait_queue_head_t * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern void prepare_to_wait(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; extern int autoremove_wake_function(wait_queue_t * , unsigned int , int , void * ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; extern void mutex_lock_nested(struct mutex * , unsigned int ) ; extern void mutex_unlock(struct mutex * ) ; __inline static void init_completion(struct completion *x ) { { x->done = 0U; init_waitqueue_head(& x->wait); return; } } extern void wait_for_completion(struct completion * ) ; extern void complete(struct completion * ) ; __inline static long PTR_ERR(void const *ptr ) { { return ((long )ptr); } } __inline static long IS_ERR(void const *ptr ) { long tmp ; { tmp = ldv__builtin_expect((unsigned long )ptr > 0xfffffffffffff000UL, 0L); return (tmp); } } extern struct sk_buff *skb_copy(struct sk_buff const * , gfp_t ) ; __inline static int skb_queue_empty(struct sk_buff_head const *list ) { { return ((unsigned long )((struct sk_buff *)list->next) == (unsigned long )((struct sk_buff *)list)); } } __inline static void sigfillset(sigset_t *set ) { { switch (1) { default: memset((void *)set, -1, 8UL); goto ldv_21916; case 2: set->sig[1] = 0xffffffffffffffffUL; case 1: set->sig[0] = 0xffffffffffffffffUL; goto ldv_21916; } ldv_21916: ; return; } } extern void schedule(void) ; extern int wake_up_process(struct task_struct * ) ; __inline static int test_tsk_thread_flag(struct task_struct *tsk , int flag ) { int tmp ; { tmp = test_ti_thread_flag((struct thread_info *)tsk->stack, flag); return (tmp); } } __inline static int signal_pending(struct task_struct *p ) { int tmp ; long tmp___0 ; { tmp = test_tsk_thread_flag(p, 2); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); return ((int )tmp___0); } } extern void lock_kernel(void) ; extern void unlock_kernel(void) ; void set_channel_address(struct mISDNchannel *ch , u_int sapi , u_int tei ) ; extern struct task_struct *kthread_create(int (*)(void * ) , void * , char const * , ...) ; int create_teimanager(struct mISDNdevice *dev ) ; void delete_teimanager(struct mISDNchannel *ch ) ; void add_layer2(struct mISDNchannel *ch , struct mISDNstack *st ) ; void __add_layer2(struct mISDNchannel *ch , struct mISDNstack *st ) ; static u_int *debug___1 ; __inline static void _queue_message(struct mISDNstack *st , struct sk_buff *skb ) { struct mISDNhead *hh ; int tmp ; long tmp___0 ; { hh = (struct mISDNhead *)(& skb->cb); if ((*debug___1 & 64U) != 0U) { printk("<7>%s prim(%x) id(%x) %p\n", "_queue_message", hh->prim, hh->id, skb); } else { } skb_queue_tail(& st->msgq, skb); tmp = constant_test_bit(16, (unsigned long const volatile *)(& st->status)); tmp___0 = ldv__builtin_expect(tmp == 0, 1L); if (tmp___0 != 0L) { test_and_set_bit(0, (unsigned long volatile *)(& st->status)); __wake_up(& st->workq, 1U, 1, 0); } else { } return; } } static int mISDN_queue_message(struct mISDNchannel *ch , struct sk_buff *skb ) { { _queue_message(ch->st, skb); return (0); } } static struct mISDNchannel *get_channel4id(struct mISDNstack *st , u_int id ) { struct mISDNchannel *ch ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { mutex_lock_nested(& st->lmutex, 0U); __mptr = (struct list_head const *)st->layer2.next; ch = (struct mISDNchannel *)__mptr; goto ldv_28935; ldv_28934: ; if (ch->nr == id) { goto unlock; } else { } __mptr___0 = (struct list_head const *)ch->list.next; ch = (struct mISDNchannel *)__mptr___0; ldv_28935: __builtin_prefetch((void const *)ch->list.next); if ((unsigned long )(& ch->list) != (unsigned long )(& st->layer2)) { goto ldv_28934; } else { } ch = 0; unlock: mutex_unlock(& st->lmutex); return (ch); } } static void send_socklist(struct mISDN_sock_list *sl , struct sk_buff *skb ) { struct hlist_node *node ; struct sock *sk ; struct sk_buff *cskb ; int tmp ; struct hlist_node const *__mptr ; { cskb = 0; _read_lock(& sl->lock); node = sl->head.first; goto ldv_28952; ldv_28951: ; if ((unsigned int )((unsigned char )sk->__sk_common.skc_state) != 2U) { goto ldv_28948; } else { } if ((unsigned long )cskb == (unsigned long )((struct sk_buff *)0)) { cskb = skb_copy((struct sk_buff const *)skb, 208U); } else { } if ((unsigned long )cskb == (unsigned long )((struct sk_buff *)0)) { printk("<4>%s no skb\n", "send_socklist"); goto ldv_28950; } else { } tmp = sock_queue_rcv_skb(sk, cskb); if (tmp == 0) { cskb = 0; } else { } ldv_28948: node = node->next; ldv_28952: ; if ((unsigned long )node != (unsigned long )((struct hlist_node *)0)) { __builtin_prefetch((void const *)node->next); if (1 != 0) { __mptr = (struct hlist_node const *)node; sk = (struct sock *)__mptr + 0xfffffffffffffff8UL; if (1 != 0) { goto ldv_28951; } else { goto ldv_28950; } } else { goto ldv_28950; } } else { } ldv_28950: _read_unlock(& sl->lock); if ((unsigned long )cskb != (unsigned long )((struct sk_buff *)0)) { kfree_skb(cskb); } else { } return; } } static void send_layer2(struct mISDNstack *st , struct sk_buff *skb ) { struct sk_buff *cskb ; struct mISDNhead *hh ; struct mISDNchannel *ch ; int ret ; struct list_head const *__mptr ; int tmp ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; { hh = (struct mISDNhead *)(& skb->cb); if ((unsigned long )st == (unsigned long )((struct mISDNstack *)0)) { return; } else { } mutex_lock_nested(& st->lmutex, 0U); if ((hh->id & 65535U) == 65535U) { __mptr = (struct list_head const *)st->layer2.next; ch = (struct mISDNchannel *)__mptr; goto ldv_28968; ldv_28967: tmp = list_is_last((struct list_head const *)(& ch->list), (struct list_head const *)(& st->layer2)); if (tmp != 0) { cskb = skb; skb = 0; } else { cskb = skb_copy((struct sk_buff const *)skb, 208U); } if ((unsigned long )cskb != (unsigned long )((struct sk_buff *)0)) { ret = (*(ch->send))(ch, cskb); if (ret != 0) { if ((*debug___1 & 16U) != 0U) { printk("<7>%s ch%d prim(%x) addr(%x) err %d\n", "send_layer2", ch->nr, hh->prim, ch->addr, ret); } else { } kfree_skb(cskb); } else { } } else { printk("<4>%s ch%d addr %x no mem\n", "send_layer2", ch->nr, ch->addr); goto out; } __mptr___0 = (struct list_head const *)ch->list.next; ch = (struct mISDNchannel *)__mptr___0; ldv_28968: __builtin_prefetch((void const *)ch->list.next); if ((unsigned long )(& ch->list) != (unsigned long )(& st->layer2)) { goto ldv_28967; } else { } } else { __mptr___1 = (struct list_head const *)st->layer2.next; ch = (struct mISDNchannel *)__mptr___1; goto ldv_28975; ldv_28974: ; if ((hh->id & 65535U) == ch->addr) { ret = (*(ch->send))(ch, skb); if (ret == 0) { skb = 0; } else { } goto out; } else { } __mptr___2 = (struct list_head const *)ch->list.next; ch = (struct mISDNchannel *)__mptr___2; ldv_28975: __builtin_prefetch((void const *)ch->list.next); if ((unsigned long )(& ch->list) != (unsigned long )(& st->layer2)) { goto ldv_28974; } else { } ret = (*(((st->dev)->teimgr)->ctrl))((st->dev)->teimgr, 1024U, (void *)skb); if (ret == 0) { skb = 0; } else if ((*debug___1 & 16U) != 0U) { printk("<7>%s ch%d mgr prim(%x) addr(%x) err %d\n", "send_layer2", ch->nr, hh->prim, ch->addr, ret); } else { } } out: mutex_unlock(& st->lmutex); if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { kfree_skb(skb); } else { } return; } } __inline static int send_msg_to_layer(struct mISDNstack *st , struct sk_buff *skb ) { struct mISDNhead *hh ; struct mISDNchannel *ch ; int lm ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int __ret_warn_on ; long tmp___3 ; int tmp___4 ; { hh = (struct mISDNhead *)(& skb->cb); lm = (int )hh->prim & 255; if ((*debug___1 & 64U) != 0U) { printk("<7>%s prim(%x) id(%x) %p\n", "send_msg_to_layer", hh->prim, hh->id, skb); } else { } if (lm == 1) { tmp = hlist_empty((struct hlist_head const *)(& st->l1sock.head)); if (tmp == 0) { __net_timestamp(skb); send_socklist(& st->l1sock, skb); } else { } tmp___0 = (*((st->layer1)->send))(st->layer1, skb); return (tmp___0); } else if (lm == 2) { tmp___1 = hlist_empty((struct hlist_head const *)(& st->l1sock.head)); if (tmp___1 == 0) { send_socklist(& st->l1sock, skb); } else { } send_layer2(st, skb); return (0); } else if (lm == 4) { ch = get_channel4id(st, hh->id); if ((unsigned long )ch != (unsigned long )((struct mISDNchannel *)0)) { tmp___2 = (*(ch->send))(ch, skb); return (tmp___2); } else { printk("<4>%s: dev(%s) prim(%x) id(%x) no channel\n", "send_msg_to_layer", (char *)(& (st->dev)->name), hh->prim, hh->id); } } else if (lm == 8) { __ret_warn_on = lm == 8; tmp___3 = ldv__builtin_expect(__ret_warn_on != 0, 0L); if (tmp___3 != 0L) { warn_on_slowpath("/work/ldvuser/novikov/work/current--X--drivers/isdn/mISDN/mISDN_core.ko--X--defaultlinux--X--39_7a--X--cpachecker/linux/csd_deg_dscv/29/dscv_tempdir/dscv/ri/39_7a/drivers/isdn/mISDN/stack.c.prepared", 268); } else { } ldv__builtin_expect(__ret_warn_on != 0, 0L); ch = get_channel4id(st, hh->id); if ((unsigned long )ch != (unsigned long )((struct mISDNchannel *)0)) { tmp___4 = (*(ch->send))(ch, skb); return (tmp___4); } else { printk("<4>%s: dev(%s) prim(%x) id(%x) no channel\n", "send_msg_to_layer", (char *)(& (st->dev)->name), hh->prim, hh->id); } } else { printk("<4>%s: dev(%s) prim %x not delivered\n", "send_msg_to_layer", (char *)(& (st->dev)->name), hh->prim); } return (-3); } } static void do_clear_stack(struct mISDNstack *st ) { { return; } } static int mISDNStackd(void *data ) { struct mISDNstack *st ; int err ; struct task_struct *tmp ; struct sk_buff *skb ; int tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; long tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int __ret ; wait_queue_t __wait ; struct task_struct *tmp___10 ; struct task_struct *tmp___11 ; int tmp___12 ; int tmp___13 ; { st = (struct mISDNstack *)data; err = 0; lock_kernel(); tmp = get_current(); sigfillset(& tmp->blocked); unlock_kernel(); if ((*debug___1 & 32U) != 0U) { printk("<7>mISDNStackd %s started\n", (char *)(& (st->dev)->name)); } else { } if ((unsigned long )st->notify != (unsigned long )((struct completion *)0)) { complete(st->notify); st->notify = 0; } else { } ldv_29007: tmp___0 = constant_test_bit(16, (unsigned long const volatile *)(& st->status)); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); if (tmp___1 != 0L) { test_and_clear_bit(0, (unsigned long volatile *)(& st->status)); test_and_clear_bit(30, (unsigned long volatile *)(& st->status)); } else { test_and_set_bit(30, (unsigned long volatile *)(& st->status)); } goto ldv_28996; ldv_28999: skb = skb_dequeue(& st->msgq); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { test_and_clear_bit(0, (unsigned long volatile *)(& st->status)); skb = skb_dequeue(& st->msgq); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto ldv_28996; } else { } test_and_set_bit(0, (unsigned long volatile *)(& st->status)); } else { } err = send_msg_to_layer(st, skb); tmp___2 = ldv__builtin_expect(err != 0, 0L); if (tmp___2 != 0L) { if ((*debug___1 & 16U) != 0U) { printk("<7>%s: %s prim(%x) id(%x) send call(%d)\n", "mISDNStackd", (char *)(& (st->dev)->name), ((struct mISDNhead *)(& skb->cb))->prim, ((struct mISDNhead *)(& skb->cb))->id, err); } else { } kfree_skb(skb); goto ldv_28996; } else { } tmp___3 = constant_test_bit(16, (unsigned long const volatile *)(& st->status)); tmp___4 = ldv__builtin_expect(tmp___3 != 0, 0L); if (tmp___4 != 0L) { test_and_clear_bit(0, (unsigned long volatile *)(& st->status)); test_and_clear_bit(30, (unsigned long volatile *)(& st->status)); goto ldv_28998; } else { } ldv_28996: tmp___5 = constant_test_bit(0, (unsigned long const volatile *)(& st->status)); if (tmp___5 != 0) { goto ldv_28999; } else { } ldv_28998: tmp___6 = constant_test_bit(2, (unsigned long const volatile *)(& st->status)); if (tmp___6 != 0) { test_and_set_bit(16, (unsigned long volatile *)(& st->status)); test_and_clear_bit(30, (unsigned long volatile *)(& st->status)); do_clear_stack(st); test_and_clear_bit(2, (unsigned long volatile *)(& st->status)); test_and_set_bit(3, (unsigned long volatile *)(& st->status)); } else { } tmp___8 = test_and_clear_bit(3, (unsigned long volatile *)(& st->status)); if (tmp___8 != 0) { test_and_clear_bit(16, (unsigned long volatile *)(& st->status)); test_and_set_bit(30, (unsigned long volatile *)(& st->status)); tmp___7 = skb_queue_empty((struct sk_buff_head const *)(& st->msgq)); if (tmp___7 == 0) { test_and_set_bit(0, (unsigned long volatile *)(& st->status)); } else { } } else { } tmp___9 = constant_test_bit(15, (unsigned long const volatile *)(& st->status)); if (tmp___9 != 0) { goto ldv_29000; } else { } if ((unsigned long )st->notify != (unsigned long )((struct completion *)0)) { complete(st->notify); st->notify = 0; } else { } test_and_clear_bit(29, (unsigned long volatile *)(& st->status)); __ret = 0; if ((st->status & 65535UL) == 0UL) { tmp___10 = get_current(); __wait.flags = 0U; __wait.private = (void *)tmp___10; __wait.func = & autoremove_wake_function; __wait.task_list.next = & __wait.task_list; __wait.task_list.prev = & __wait.task_list; ldv_29005: prepare_to_wait(& st->workq, & __wait, 1); if ((st->status & 65535UL) != 0UL) { goto ldv_29003; } else { } tmp___11 = get_current(); tmp___12 = signal_pending(tmp___11); if (tmp___12 == 0) { schedule(); goto ldv_29004; } else { } __ret = -512; goto ldv_29003; ldv_29004: ; goto ldv_29005; ldv_29003: finish_wait(& st->workq, & __wait); } else { } if ((*debug___1 & 32U) != 0U) { printk("<7>%s: %s wake status %08lx\n", "mISDNStackd", (char *)(& (st->dev)->name), st->status); } else { } test_and_set_bit(29, (unsigned long volatile *)(& st->status)); test_and_clear_bit(4, (unsigned long volatile *)(& st->status)); tmp___13 = constant_test_bit(16, (unsigned long const volatile *)(& st->status)); if (tmp___13 != 0) { test_and_clear_bit(30, (unsigned long volatile *)(& st->status)); } else { } goto ldv_29007; ldv_29000: test_and_set_bit(31, (unsigned long volatile *)(& st->status)); test_and_clear_bit(30, (unsigned long volatile *)(& st->status)); test_and_clear_bit(29, (unsigned long volatile *)(& st->status)); test_and_clear_bit(15, (unsigned long volatile *)(& st->status)); skb_queue_purge(& st->msgq); st->thread = 0; if ((unsigned long )st->notify != (unsigned long )((struct completion *)0)) { complete(st->notify); st->notify = 0; } else { } return (0); } } static int l1_receive(struct mISDNchannel *ch , struct sk_buff *skb ) { { if ((unsigned long )ch->st == (unsigned long )((struct mISDNstack *)0)) { return (-19); } else { } __net_timestamp(skb); _queue_message(ch->st, skb); return (0); } } void set_channel_address(struct mISDNchannel *ch , u_int sapi , u_int tei ) { { ch->addr = (tei << 8) | sapi; return; } } void __add_layer2(struct mISDNchannel *ch , struct mISDNstack *st ) { { list_add_tail(& ch->list, & st->layer2); return; } } void add_layer2(struct mISDNchannel *ch , struct mISDNstack *st ) { { mutex_lock_nested(& st->lmutex, 0U); __add_layer2(ch, st); mutex_unlock(& st->lmutex); return; } } static int st_own_ctrl(struct mISDNchannel *ch , u_int cmd , void *arg ) { int tmp ; { if ((unsigned long )ch->st == (unsigned long )((struct mISDNstack *)0) || (unsigned long )(ch->st)->layer1 != (unsigned long )((struct mISDNchannel *)0)) { return (-22); } else { } tmp = (*(((ch->st)->layer1)->ctrl))((ch->st)->layer1, cmd, arg); return (tmp); } } int create_stack(struct mISDNdevice *dev ) { struct mISDNstack *newst ; int err ; struct completion done ; void *tmp ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct task_struct *__k ; struct task_struct *tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; { init_completion(& done); done = done; tmp = kzalloc(488UL, 208U); newst = (struct mISDNstack *)tmp; if ((unsigned long )newst == (unsigned long )((struct mISDNstack *)0)) { printk("<3>kmalloc mISDN_stack failed\n"); return (-12); } else { } newst->dev = dev; INIT_LIST_HEAD(& newst->layer2); newst->l1sock.head.first = 0; __rwlock_init(& newst->l1sock.lock, "&newst->l1sock.lock", & __key); init_waitqueue_head(& newst->workq); skb_queue_head_init(& newst->msgq); __mutex_init(& newst->lmutex, "&newst->lmutex", & __key___0); dev->D.st = newst; err = create_teimanager(dev); if (err != 0) { printk("<3>kmalloc teimanager failed\n"); kfree((void const *)newst); return (err); } else { } (dev->teimgr)->peer = & newst->own; (dev->teimgr)->recv = & mISDN_queue_message; (dev->teimgr)->st = newst; newst->layer1 = & dev->D; dev->D.recv = & l1_receive; dev->D.peer = & newst->own; newst->own.st = newst; newst->own.ctrl = & st_own_ctrl; newst->own.send = & mISDN_queue_message; newst->own.recv = & mISDN_queue_message; if ((*debug___1 & 2U) != 0U) { printk("<7>%s: st(%s)\n", "create_stack", (char *)(& (newst->dev)->name)); } else { } newst->notify = & done; tmp___0 = kthread_create(& mISDNStackd, (void *)newst, "mISDN_%s", (char *)(& (newst->dev)->name)); __k = tmp___0; tmp___1 = IS_ERR((void const *)__k); if (tmp___1 == 0L) { wake_up_process(__k); } else { } newst->thread = __k; tmp___3 = IS_ERR((void const *)newst->thread); if (tmp___3 != 0L) { tmp___2 = PTR_ERR((void const *)newst->thread); err = (int )tmp___2; printk("<3>mISDN:cannot create kernel thread for %s (%d)\n", (char *)(& (newst->dev)->name), err); delete_teimanager(dev->teimgr); kfree((void const *)newst); } else { wait_for_completion(& done); } return (err); } } int connect_layer1(struct mISDNdevice *dev , struct mISDNchannel *ch , u_int protocol , struct sockaddr_mISDN *adr ) { struct mISDN_sock *msk ; struct mISDNchannel const *__mptr ; struct channel_req rq ; int err ; { __mptr = (struct mISDNchannel const *)ch; msk = (struct mISDN_sock *)__mptr + 0xfffffffffffffbe8UL; if ((*debug___1 & 2U) != 0U) { printk("<7>%s: %s proto(%x) adr(%d %d %d %d)\n", "connect_layer1", (char *)(& dev->name), protocol, (int )adr->dev, (int )adr->channel, (int )adr->sapi, (int )adr->tei); } else { } switch (protocol) { case (u_int )2: ; case (u_int )4: ; case (u_int )1: ; case (u_int )3: ch->recv = & mISDN_queue_message; ch->peer = & (dev->D.st)->own; ch->st = dev->D.st; rq.protocol = protocol; rq.adr.channel = 0U; err = (*(dev->D.ctrl))(& dev->D, 256U, (void *)(& rq)); printk("<7>%s: ret 1 %d\n", "connect_layer1", err); if (err != 0) { return (err); } else { } _write_lock_bh(& (dev->D.st)->l1sock.lock); sk_add_node(& msk->sk, & (dev->D.st)->l1sock.head); _write_unlock_bh(& (dev->D.st)->l1sock.lock); goto ldv_29058; default: ; return (-92); } ldv_29058: ; return (0); } } int connect_Bstack(struct mISDNdevice *dev , struct mISDNchannel *ch , u_int protocol , struct sockaddr_mISDN *adr ) { struct channel_req rq ; struct channel_req rq2 ; int pmask ; int err ; struct Bprotocol *bp ; { if ((*debug___1 & 2U) != 0U) { printk("<7>%s: %s proto(%x) adr(%d %d %d %d)\n", "connect_Bstack", (char *)(& dev->name), protocol, (int )adr->dev, (int )adr->channel, (int )adr->sapi, (int )adr->tei); } else { } ch->st = dev->D.st; pmask = 1 << ((int )protocol & 31); if ((dev->Bprotocols & (u_int )pmask) != 0U) { rq.protocol = protocol; rq.adr = *adr; err = (*(dev->D.ctrl))(& dev->D, 256U, (void *)(& rq)); if (err != 0) { return (err); } else { } ch->recv = (rq.ch)->send; ch->peer = rq.ch; (rq.ch)->recv = ch->send; (rq.ch)->peer = ch; (rq.ch)->st = dev->D.st; } else { bp = get_Bprotocol4mask((u_int )pmask); if ((unsigned long )bp == (unsigned long )((struct Bprotocol *)0)) { return (-92); } else { } rq2.protocol = protocol; rq2.adr = *adr; rq2.ch = ch; err = (*(bp->create))(& rq2); if (err != 0) { return (err); } else { } ch->recv = (rq2.ch)->send; ch->peer = rq2.ch; (rq2.ch)->st = dev->D.st; rq.protocol = rq2.protocol; rq.adr = *adr; err = (*(dev->D.ctrl))(& dev->D, 256U, (void *)(& rq)); if (err != 0) { (*((rq2.ch)->ctrl))(rq2.ch, 512U, 0); return (err); } else { } (rq2.ch)->recv = (rq.ch)->send; (rq2.ch)->peer = rq.ch; (rq.ch)->recv = (rq2.ch)->send; (rq.ch)->peer = rq2.ch; (rq.ch)->st = dev->D.st; } ch->protocol = protocol; ch->nr = (rq.ch)->nr; return (0); } } int create_l2entity(struct mISDNdevice *dev , struct mISDNchannel *ch , u_int protocol , struct sockaddr_mISDN *adr ) { struct channel_req rq ; int err ; { if ((*debug___1 & 2U) != 0U) { printk("<7>%s: %s proto(%x) adr(%d %d %d %d)\n", "create_l2entity", (char *)(& dev->name), protocol, (int )adr->dev, (int )adr->channel, (int )adr->sapi, (int )adr->tei); } else { } rq.protocol = 1U; if ((dev->Dprotocols & 8U) != 0U) { rq.protocol = 3U; } else { } switch (protocol) { case (u_int )17: rq.protocol = 2U; if ((dev->Dprotocols & 16U) != 0U) { rq.protocol = 4U; } else { } case (u_int )16: ch->recv = & mISDN_queue_message; ch->peer = & (dev->D.st)->own; ch->st = dev->D.st; rq.adr.channel = 0U; err = (*(dev->D.ctrl))(& dev->D, 256U, (void *)(& rq)); printk("<7>%s: ret 1 %d\n", "create_l2entity", err); if (err != 0) { goto ldv_29083; } else { } rq.protocol = protocol; rq.adr = *adr; rq.ch = ch; err = (*((dev->teimgr)->ctrl))(dev->teimgr, 256U, (void *)(& rq)); printk("<7>%s: ret 2 %d\n", "create_l2entity", err); if (err == 0) { if (protocol == 17U && (unsigned long )rq.ch == (unsigned long )((struct mISDNchannel *)0)) { goto ldv_29083; } else { } add_layer2(rq.ch, dev->D.st); (rq.ch)->recv = & mISDN_queue_message; (rq.ch)->peer = & (dev->D.st)->own; (*((rq.ch)->ctrl))(rq.ch, 256U, 0); } else { } goto ldv_29083; default: err = -93; } ldv_29083: ; return (err); } } void delete_channel(struct mISDNchannel *ch ) { struct mISDN_sock *msk ; struct mISDNchannel const *__mptr ; struct mISDNchannel *pch ; { __mptr = (struct mISDNchannel const *)ch; msk = (struct mISDN_sock *)__mptr + 0xfffffffffffffbe8UL; if ((unsigned long )ch->st == (unsigned long )((struct mISDNstack *)0)) { printk("<4>%s: no stack\n", "delete_channel"); return; } else { } if ((*debug___1 & 2U) != 0U) { printk("<7>%s: st(%s) protocol(%x)\n", "delete_channel", (char *)(& ((ch->st)->dev)->name), ch->protocol); } else { } if (ch->protocol > 31U) { if ((unsigned long )ch->peer != (unsigned long )((struct mISDNchannel *)0)) { (*((ch->peer)->ctrl))(ch->peer, 512U, 0); ch->peer = 0; } else { } return; } else { } switch (ch->protocol) { case (u_int )2: ; case (u_int )1: ; case (u_int )4: ; case (u_int )3: _write_lock_bh(& (ch->st)->l1sock.lock); sk_del_node_init(& msk->sk); _write_unlock_bh(& (ch->st)->l1sock.lock); (*(((ch->st)->dev)->D.ctrl))(& ((ch->st)->dev)->D, 512U, 0); goto ldv_29097; case (u_int )16: pch = get_channel4id(ch->st, ch->nr); if ((unsigned long )pch != (unsigned long )((struct mISDNchannel *)0)) { mutex_lock_nested(& (ch->st)->lmutex, 0U); list_del(& pch->list); mutex_unlock(& (ch->st)->lmutex); (*(pch->ctrl))(pch, 512U, 0); pch = ((ch->st)->dev)->teimgr; (*(pch->ctrl))(pch, 512U, 0); } else { printk("<4>%s: no l2 channel\n", "delete_channel"); } goto ldv_29097; case (u_int )17: pch = ((ch->st)->dev)->teimgr; if ((unsigned long )pch != (unsigned long )((struct mISDNchannel *)0)) { (*(pch->ctrl))(pch, 512U, 0); } else { printk("<4>%s: no l2 channel\n", "delete_channel"); } goto ldv_29097; default: ; goto ldv_29097; } ldv_29097: ; return; } } void delete_stack(struct mISDNdevice *dev ) { struct mISDNstack *st ; struct completion done ; int tmp ; int tmp___0 ; { st = dev->D.st; init_completion(& done); done = done; if ((*debug___1 & 2U) != 0U) { printk("<7>%s: st(%s)\n", "delete_stack", (char *)(& (st->dev)->name)); } else { } if ((unsigned long )dev->teimgr != (unsigned long )((struct mISDNchannel *)0)) { delete_teimanager(dev->teimgr); } else { } if ((unsigned long )st->thread != (unsigned long )((struct task_struct *)0)) { if ((unsigned long )st->notify != (unsigned long )((struct completion *)0)) { printk("<4>%s: notifier in use\n", "delete_stack"); complete(st->notify); } else { } st->notify = & done; test_and_set_bit(15, (unsigned long volatile *)(& st->status)); test_and_set_bit(4, (unsigned long volatile *)(& st->status)); __wake_up(& st->workq, 1U, 1, 0); wait_for_completion(& done); } else { } tmp = list_empty((struct list_head const *)(& st->layer2)); if (tmp == 0) { printk("<4>%s: layer2 list not empty\n", "delete_stack"); } else { } tmp___0 = hlist_empty((struct hlist_head const *)(& st->l1sock.head)); if (tmp___0 == 0) { printk("<4>%s: layer1 list not empty\n", "delete_stack"); } else { } kfree((void const *)st); return; } } void mISDN_initstack(u_int *dp ) { { debug___1 = dp; return; } } void ldv___ldv_spin_lock_181(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_182(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_lock_of_NOT_ARG_SIGN(); __ldv_spin_unlock(ldv_func_arg1); return; } } int ldv___ldv_spin_trylock_183(spinlock_t *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = __ldv_spin_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock_lock_of_NOT_ARG_SIGN(); return (tmp___0); return (ldv_func_res); } } void ldv___ldv_spin_lock_184(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_dcache_lock(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_185(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_186(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_187(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_dcache_lock(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_188(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_189(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_190(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_i_lock_of_inode(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_191(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_i_lock_of_inode(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_192(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_193(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_194(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_siglock_of_sighand_struct(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_195(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_siglock_of_sighand_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_196(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_alloc_lock_of_task_struct(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_197(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_alloc_lock_of_task_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_198(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_siglock_of_sighand_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_199(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock__xmit_lock_of_netdev_queue(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_200(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock__xmit_lock_of_netdev_queue(); __ldv_spin_lock(ldv_func_arg1); return; } } int ldv___ldv_spin_trylock_201(spinlock_t *ldv_func_arg1 ) { ldv_func_ret_type___19 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = __ldv_spin_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock__xmit_lock_of_netdev_queue(); return (tmp___0); return (ldv_func_res); } } void ldv___ldv_spin_unlock_202(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_203(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_204(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_tx_global_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_205(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_tx_global_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_206(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_addr_list_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_207(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_addr_list_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_208(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_addr_list_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_209(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_addr_list_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv__builtin_va_end(__builtin_va_list ) ; void ldv__builtin_va_start(__builtin_va_list ) ; extern int vprintk(char const * , __va_list_tag * ) ; void ldv___ldv_spin_lock_239(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_242(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_243(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_246(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_248(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_250(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_252(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_254(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_257(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_258(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_262(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_264(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_265(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_240(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_244(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_245(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_247(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_249(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_251(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_253(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_255(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_256(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_260(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_261(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_263(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_266(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_267(spinlock_t *ldv_func_arg1 ) ; int ldv___ldv_spin_trylock_241(spinlock_t *ldv_func_arg1 ) ; int ldv___ldv_spin_trylock_259(spinlock_t *ldv_func_arg1 ) ; __inline static void local_inc(local_t *l ) { { __asm__ volatile (" incq %0": "+m" (l->a.counter)); return; } } extern unsigned int module_refcount(struct module * ) ; __inline static void __module_get(struct module *module ) { unsigned int tmp ; long tmp___0 ; unsigned int ret__ ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { tmp = module_refcount(module); tmp___0 = ldv__builtin_expect(tmp == 0U, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.quad 1b, %c0\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/module.h"), "i" (394), "i" (24UL)); ldv_10022: ; goto ldv_10022; } else { } switch (4UL) { case 2UL: __asm__ ("movw %%gs:%c1,%0": "=r" (ret__): "i" (36UL), "m" (_proxy_pda.cpunumber)); goto ldv_10025; case 4UL: __asm__ ("movl %%gs:%c1,%0": "=r" (ret__): "i" (36UL), "m" (_proxy_pda.cpunumber)); goto ldv_10025; case 8UL: __asm__ ("movq %%gs:%c1,%0": "=r" (ret__): "i" (36UL), "m" (_proxy_pda.cpunumber)); goto ldv_10025; default: __bad_pda_field(); } ldv_10025: local_inc(& module->ref[ret__].count); } else { } return; } } extern void module_put(struct module * ) ; int create_l1(struct dchannel *dch , dchannel_l1callback *dcb ) ; int l1_event(struct layer1 *l1 , u_int event ) ; static u_int *debug___2 ; static struct Fsm l1fsm_s = {0, 0, 0, 0, 0}; static char *strL1SState[7U] = { (char *)"ST_L1_F2", (char *)"ST_L1_F3", (char *)"ST_L1_F4", (char *)"ST_L1_F5", (char *)"ST_L1_F6", (char *)"ST_L1_F7", (char *)"ST_L1_F8"}; static char *strL1Event[12U] = { (char *)"EV_PH_ACTIVATE", (char *)"EV_PH_DEACTIVATE", (char *)"EV_RESET_IND", (char *)"EV_DEACT_CNF", (char *)"EV_DEACT_IND", (char *)"EV_POWER_UP", (char *)"EV_ANYSIG_IND", (char *)"EV_INFO2_IND", (char *)"EV_INFO4_IND", (char *)"EV_TIMER_DEACT", (char *)"EV_TIMER_ACT", (char *)"EV_TIMER3"}; static void l1m_debug(struct FsmInst *fi , char *fmt , ...) { struct layer1 *l1 ; va_list va ; { l1 = (struct layer1 *)fi->userdata; ldv__builtin_va_start((__va_list_tag *)(& va)); printk("<7>%s: ", (char *)(& (l1->dch)->dev.name)); vprintk((char const *)fmt, (__va_list_tag *)(& va)); printk("\n"); ldv__builtin_va_end((__va_list_tag *)(& va)); return; } } static void l1_reset(struct FsmInst *fi , int event , void *arg ) { { mISDN_FsmChangeState(fi, 1); return; } } static void l1_deact_cnf(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; int tmp ; { l1 = (struct layer1 *)fi->userdata; mISDN_FsmChangeState(fi, 1); tmp = constant_test_bit(1, (unsigned long const volatile *)(& l1->Flags)); if (tmp != 0) { (*(l1->dcb))(l1->dch, 35586U); } else { } return; } } static void l1_deact_req_s(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; { l1 = (struct layer1 *)fi->userdata; mISDN_FsmChangeState(fi, 1); mISDN_FsmRestartTimer(& l1->timer, 550, 9, 0, 2); test_and_set_bit(3, (unsigned long volatile *)(& l1->Flags)); return; } } static void l1_power_up_s(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; int tmp ; { l1 = (struct layer1 *)fi->userdata; tmp = constant_test_bit(1, (unsigned long const volatile *)(& l1->Flags)); if (tmp != 0) { mISDN_FsmChangeState(fi, 2); (*(l1->dcb))(l1->dch, 33538U); } else { mISDN_FsmChangeState(fi, 1); } return; } } static void l1_go_F5(struct FsmInst *fi , int event , void *arg ) { { mISDN_FsmChangeState(fi, 3); return; } } static void l1_go_F8(struct FsmInst *fi , int event , void *arg ) { { mISDN_FsmChangeState(fi, 6); return; } } static void l1_info2_ind(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; { l1 = (struct layer1 *)fi->userdata; mISDN_FsmChangeState(fi, 4); (*(l1->dcb))(l1->dch, 33538U); return; } } static void l1_info4_ind(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; int tmp ; int tmp___0 ; int tmp___1 ; { l1 = (struct layer1 *)fi->userdata; mISDN_FsmChangeState(fi, 5); (*(l1->dcb))(l1->dch, 33538U); tmp = test_and_clear_bit(3, (unsigned long volatile *)(& l1->Flags)); if (tmp != 0) { mISDN_FsmDelTimer(& l1->timer, 4); } else { } tmp___1 = constant_test_bit(2, (unsigned long const volatile *)(& l1->Flags)); if (tmp___1 == 0) { tmp___0 = test_and_clear_bit(5, (unsigned long volatile *)(& l1->Flags)); if (tmp___0 != 0) { mISDN_FsmDelTimer(& l1->timer, 3); } else { } mISDN_FsmRestartTimer(& l1->timer, 110, 10, 0, 2); test_and_set_bit(4, (unsigned long volatile *)(& l1->Flags)); } else { } return; } } static void l1_timer3(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; int tmp ; int tmp___0 ; { l1 = (struct layer1 *)fi->userdata; test_and_clear_bit(5, (unsigned long volatile *)(& l1->Flags)); tmp___0 = test_and_clear_bit(1, (unsigned long volatile *)(& l1->Flags)); if (tmp___0 != 0) { tmp = test_and_clear_bit(8, (unsigned long volatile *)(& l1->Flags)); if (tmp != 0) { (*(l1->dcb))(l1->dch, 36610U); } else { } (*(l1->dcb))(l1->dch, 514U); } else { } if (l1->l1m.state != 4) { mISDN_FsmChangeState(fi, 1); (*(l1->dcb))(l1->dch, 35586U); } else { } return; } } static void l1_timer_act(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; { l1 = (struct layer1 *)fi->userdata; test_and_clear_bit(4, (unsigned long volatile *)(& l1->Flags)); test_and_set_bit(2, (unsigned long volatile *)(& l1->Flags)); (*(l1->dcb))(l1->dch, 258U); return; } } static void l1_timer_deact(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; int tmp ; { l1 = (struct layer1 *)fi->userdata; test_and_clear_bit(3, (unsigned long volatile *)(& l1->Flags)); test_and_clear_bit(2, (unsigned long volatile *)(& l1->Flags)); tmp = test_and_clear_bit(8, (unsigned long volatile *)(& l1->Flags)); if (tmp != 0) { (*(l1->dcb))(l1->dch, 36610U); } else { } (*(l1->dcb))(l1->dch, 514U); (*(l1->dcb))(l1->dch, 35842U); return; } } static void l1_activate_s(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; { l1 = (struct layer1 *)fi->userdata; mISDN_FsmRestartTimer(& l1->timer, 7000, 11, 0, 2); test_and_set_bit(5, (unsigned long volatile *)(& l1->Flags)); (*(l1->dcb))(l1->dch, 35330U); return; } } static void l1_activate_no(struct FsmInst *fi , int event , void *arg ) { struct layer1 *l1 ; int tmp ; int tmp___0 ; int tmp___1 ; { l1 = (struct layer1 *)fi->userdata; tmp___0 = constant_test_bit(3, (unsigned long const volatile *)(& l1->Flags)); if (tmp___0 == 0) { tmp___1 = constant_test_bit(5, (unsigned long const volatile *)(& l1->Flags)); if (tmp___1 == 0) { test_and_clear_bit(1, (unsigned long volatile *)(& l1->Flags)); tmp = test_and_clear_bit(8, (unsigned long volatile *)(& l1->Flags)); if (tmp != 0) { (*(l1->dcb))(l1->dch, 36610U); } else { } (*(l1->dcb))(l1->dch, 514U); } else { } } else { } return; } } static struct FsmNode L1SFnList[44U] = { {1, 0, & l1_activate_s}, {4, 0, & l1_activate_no}, {6, 0, & l1_activate_no}, {1, 2, & l1_reset}, {2, 2, & l1_reset}, {3, 2, & l1_reset}, {4, 2, & l1_reset}, {5, 2, & l1_reset}, {6, 2, & l1_reset}, {1, 3, & l1_deact_cnf}, {2, 3, & l1_deact_cnf}, {3, 3, & l1_deact_cnf}, {4, 3, & l1_deact_cnf}, {5, 3, & l1_deact_cnf}, {6, 3, & l1_deact_cnf}, {4, 4, & l1_deact_req_s}, {5, 4, & l1_deact_req_s}, {6, 4, & l1_deact_req_s}, {1, 5, & l1_power_up_s}, {2, 6, & l1_go_F5}, {4, 6, & l1_go_F8}, {5, 6, & l1_go_F8}, {1, 7, & l1_info2_ind}, {2, 7, & l1_info2_ind}, {3, 7, & l1_info2_ind}, {5, 7, & l1_info2_ind}, {6, 7, & l1_info2_ind}, {1, 8, & l1_info4_ind}, {2, 8, & l1_info4_ind}, {3, 8, & l1_info4_ind}, {4, 8, & l1_info4_ind}, {6, 8, & l1_info4_ind}, {1, 11, & l1_timer3}, {2, 11, & l1_timer3}, {3, 11, & l1_timer3}, {4, 11, & l1_timer3}, {6, 11, & l1_timer3}, {5, 10, & l1_timer_act}, {1, 9, & l1_timer_deact}, {2, 9, & l1_timer_deact}, {3, 9, & l1_timer_deact}, {4, 9, & l1_timer_deact}, {5, 9, & l1_timer_deact}, {6, 9, & l1_timer_deact}}; static void release_l1(struct layer1 *l1 ) { { mISDN_FsmDelTimer(& l1->timer, 0); if ((unsigned long )l1->dch != (unsigned long )((struct dchannel *)0)) { (l1->dch)->l1 = 0; } else { } module_put(& __this_module); kfree((void const *)l1); return; } } int l1_event(struct layer1 *l1 , u_int event ) { int err ; int tmp ; { err = 0; if ((unsigned long )l1 == (unsigned long )((struct layer1 *)0)) { return (-22); } else { } switch (event) { case (u_int )36866: mISDN_FsmEvent(& l1->l1m, 2, 0); goto ldv_29201; case (u_int )37378: mISDN_FsmEvent(& l1->l1m, 4, 0); goto ldv_29201; case (u_int )37122: mISDN_FsmEvent(& l1->l1m, 5, 0); goto ldv_29201; case (u_int )37890: mISDN_FsmEvent(& l1->l1m, 3, 0); goto ldv_29201; case (u_int )34818: mISDN_FsmEvent(& l1->l1m, 6, 0); goto ldv_29201; case (u_int )34562: mISDN_FsmEvent(& l1->l1m, 6, 0); goto ldv_29201; case (u_int )33282: mISDN_FsmEvent(& l1->l1m, 7, 0); goto ldv_29201; case (u_int )34050: mISDN_FsmEvent(& l1->l1m, 8, 0); goto ldv_29201; case (u_int )34306: mISDN_FsmEvent(& l1->l1m, 8, 0); goto ldv_29201; case (u_int )257: tmp = constant_test_bit(2, (unsigned long const volatile *)(& l1->Flags)); if (tmp != 0) { (*(l1->dcb))(l1->dch, 258U); } else { test_and_set_bit(1, (unsigned long volatile *)(& l1->Flags)); mISDN_FsmEvent(& l1->l1m, 0, 0); } goto ldv_29201; case (u_int )512: release_l1(l1); goto ldv_29201; default: ; if ((*debug___2 & 65280U) != 0U) { printk("<7>%s %x unhandled\n", "l1_event", event); } else { } err = -22; } ldv_29201: ; return (err); } } int create_l1(struct dchannel *dch , dchannel_l1callback *dcb ) { struct layer1 *nl1 ; void *tmp ; { tmp = kzalloc(176UL, 32U); nl1 = (struct layer1 *)tmp; if ((unsigned long )nl1 == (unsigned long )((struct layer1 *)0)) { printk("<3>kmalloc struct layer1 failed\n"); return (-12); } else { } nl1->l1m.fsm = & l1fsm_s; nl1->l1m.state = 1; nl1->Flags = 0UL; nl1->l1m.debug = (int )*debug___2 & 512; nl1->l1m.userdata = (void *)nl1; nl1->l1m.userint = 0; nl1->l1m.printdebug = & l1m_debug; nl1->dch = dch; nl1->dcb = dcb; mISDN_FsmInitTimer(& nl1->l1m, & nl1->timer); __module_get(& __this_module); dch->l1 = (void *)nl1; return (0); } } int l1_init(u_int *deb ) { { debug___2 = deb; l1fsm_s.state_count = 7; l1fsm_s.event_count = 12; l1fsm_s.strEvent = (char **)(& strL1Event); l1fsm_s.strState = (char **)(& strL1SState); mISDN_FsmNew(& l1fsm_s, (struct FsmNode *)(& L1SFnList), 44); return (0); } } void l1_cleanup(void) { { mISDN_FsmFree(& l1fsm_s); return; } } void ldv___ldv_spin_lock_239(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_240(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_lock_of_NOT_ARG_SIGN(); __ldv_spin_unlock(ldv_func_arg1); return; } } int ldv___ldv_spin_trylock_241(spinlock_t *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = __ldv_spin_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock_lock_of_NOT_ARG_SIGN(); return (tmp___0); return (ldv_func_res); } } void ldv___ldv_spin_lock_242(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_dcache_lock(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_243(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_244(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_245(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_dcache_lock(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_246(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_247(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_248(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_i_lock_of_inode(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_249(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_i_lock_of_inode(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_250(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_251(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_252(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_siglock_of_sighand_struct(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_253(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_siglock_of_sighand_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_254(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_alloc_lock_of_task_struct(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_255(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_alloc_lock_of_task_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_256(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_siglock_of_sighand_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_257(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock__xmit_lock_of_netdev_queue(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_258(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock__xmit_lock_of_netdev_queue(); __ldv_spin_lock(ldv_func_arg1); return; } } int ldv___ldv_spin_trylock_259(spinlock_t *ldv_func_arg1 ) { ldv_func_ret_type___19 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = __ldv_spin_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock__xmit_lock_of_netdev_queue(); return (tmp___0); return (ldv_func_res); } } void ldv___ldv_spin_unlock_260(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_261(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_262(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_tx_global_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_263(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_tx_global_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_264(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_addr_list_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_265(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_addr_list_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_266(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_addr_list_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_267(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_addr_list_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_297(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_300(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_301(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_304(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_306(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_308(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_310(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_312(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_315(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_316(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_320(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_322(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_323(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_298(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_302(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_303(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_305(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_307(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_309(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_311(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_313(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_314(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_318(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_319(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_321(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_324(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_325(spinlock_t *ldv_func_arg1 ) ; int ldv___ldv_spin_trylock_299(spinlock_t *ldv_func_arg1 ) ; int ldv___ldv_spin_trylock_317(spinlock_t *ldv_func_arg1 ) ; extern struct sk_buff *skb_clone(struct sk_buff * , gfp_t ) ; __inline static __u32 skb_queue_len(struct sk_buff_head const *list_ ) { { return ((__u32 )list_->qlen); } } __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return ((unsigned int )((long )skb->data) - (unsigned int )((long )skb->head)); } } extern void skb_trim(struct sk_buff * , unsigned int ) ; struct layer2 *create_l2(struct mISDNchannel *ch , u_int protocol , u_long options , u_long arg ) ; int tei_l2(struct layer2 *l2 , u_int cmd , u_long arg ) ; int l2_tei(struct layer2 *l2 , u_int cmd , u_long arg ) ; void TEIrelease(struct layer2 *l2 ) ; int TEIInit(u_int *deb ) ; void TEIFree(void) ; static u_int *debug___3 ; static struct Fsm l2fsm = {0, 0, 0, 0, 0}; static char *strL2State[8U] = { (char *)"ST_L2_1", (char *)"ST_L2_2", (char *)"ST_L2_3", (char *)"ST_L2_4", (char *)"ST_L2_5", (char *)"ST_L2_6", (char *)"ST_L2_7", (char *)"ST_L2_8"}; static char *strL2Event[22U] = { (char *)"EV_L2_UI", (char *)"EV_L2_SABME", (char *)"EV_L2_DISC", (char *)"EV_L2_DM", (char *)"EV_L2_UA", (char *)"EV_L2_FRMR", (char *)"EV_L2_SUPER", (char *)"EV_L2_I", (char *)"EV_L2_DL_DATA", (char *)"EV_L2_ACK_PULL", (char *)"EV_L2_DL_UNITDATA", (char *)"EV_L2_DL_ESTABLISH_REQ", (char *)"EV_L2_DL_RELEASE_REQ", (char *)"EV_L2_MDL_ASSIGN", (char *)"EV_L2_MDL_REMOVE", (char *)"EV_L2_MDL_ERROR", (char *)"EV_L1_DEACTIVATE", (char *)"EV_L2_T200", (char *)"EV_L2_T203", (char *)"EV_L2_SET_OWN_BUSY", (char *)"EV_L2_CLEAR_OWN_BUSY", (char *)"EV_L2_FRAME_ERROR"}; static void l2m_debug(struct FsmInst *fi , char *fmt , ...) { struct layer2 *l2 ; va_list va ; { l2 = (struct layer2 *)fi->userdata; if ((*debug___3 & 131072U) == 0U) { return; } else { } ldv__builtin_va_start((__va_list_tag *)(& va)); printk("<7>l2 (tei %d): ", (int )l2->tei); vprintk((char const *)fmt, (__va_list_tag *)(& va)); printk("\n"); ldv__builtin_va_end((__va_list_tag *)(& va)); return; } } __inline u_int l2headersize(struct layer2 *l2 , int ui ) { int tmp ; int tmp___0 ; { tmp = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); tmp___0 = constant_test_bit(1, (unsigned long const volatile *)(& l2->flag)); return ((u_int )((tmp != 0 && ui == 0 ? 2 : 1) + (tmp___0 != 0 ? 2 : 1))); } } __inline u_int l2addrsize(struct layer2 *l2 ) { int tmp ; { tmp = constant_test_bit(1, (unsigned long const volatile *)(& l2->flag)); return (tmp != 0 ? 2U : 1U); } } static u_int l2_newid(struct layer2 *l2 ) { u_int id ; u_int tmp ; { tmp = l2->next_id; l2->next_id = l2->next_id + (u_int )1; id = tmp; if (id == 32767U) { l2->next_id = 1U; } else { } id = id << 16; id = (u_int )((int )l2->tei << 8) | id; id = (u_int )l2->sapi | id; return (id); } } static void l2up(struct layer2 *l2 , u_int prim , struct sk_buff *skb ) { int err ; { if ((unsigned long )l2->up == (unsigned long )((struct mISDNchannel *)0)) { return; } else { } ((struct mISDNhead *)(& skb->cb))->prim = prim; ((struct mISDNhead *)(& skb->cb))->id = (l2->ch.nr << 16) | l2->ch.addr; err = (*((l2->up)->send))(l2->up, skb); if (err != 0) { printk("<4>%s: err=%d\n", "l2up", err); kfree_skb(skb); } else { } return; } } static void l2up_create(struct layer2 *l2 , u_int prim , int len , void *arg ) { struct sk_buff *skb ; struct mISDNhead *hh ; int err ; size_t __len ; void *__ret ; unsigned char *tmp___0 ; { if ((unsigned long )l2->up == (unsigned long )((struct mISDNchannel *)0)) { return; } else { } skb = mI_alloc_skb((unsigned int )len, 32U); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return; } else { } hh = (struct mISDNhead *)(& skb->cb); hh->prim = prim; hh->id = (l2->ch.nr << 16) | l2->ch.addr; if (len != 0) { __len = (size_t )len; tmp___0 = skb_put(skb, (unsigned int )len); __ret = memcpy((void *)tmp___0, (void const *)arg, __len); } else { } err = (*((l2->up)->send))(l2->up, skb); if (err != 0) { printk("<4>%s: err=%d\n", "l2up_create", err); kfree_skb(skb); } else { } return; } } static int l2down_skb(struct layer2 *l2 , struct sk_buff *skb ) { int ret ; { ret = (*(l2->ch.recv))(l2->ch.peer, skb); if (ret != 0 && (*debug___3 & 524288U) != 0U) { printk("<7>l2down_skb: ret(%d)\n", ret); } else { } return (ret); } } static int l2down_raw(struct layer2 *l2 , struct sk_buff *skb ) { struct mISDNhead *hh ; int tmp ; int tmp___0 ; { hh = (struct mISDNhead *)(& skb->cb); if (hh->prim == 8193U) { tmp = test_and_set_bit(17, (unsigned long volatile *)(& l2->flag)); if (tmp != 0) { skb_queue_tail(& l2->down_queue, skb); return (0); } else { } l2->down_id = ((struct mISDNhead *)(& skb->cb))->id; } else { } tmp___0 = l2down_skb(l2, skb); return (tmp___0); } } static int l2down(struct layer2 *l2 , u_int prim , u_int id , struct sk_buff *skb ) { struct mISDNhead *hh ; int tmp ; { hh = (struct mISDNhead *)(& skb->cb); hh->prim = prim; hh->id = id; tmp = l2down_raw(l2, skb); return (tmp); } } static int l2down_create(struct layer2 *l2 , u_int prim , u_int id , int len , void *arg ) { struct sk_buff *skb ; int err ; struct mISDNhead *hh ; size_t __len ; void *__ret ; unsigned char *tmp___0 ; { skb = mI_alloc_skb((unsigned int )len, 32U); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return (-12); } else { } hh = (struct mISDNhead *)(& skb->cb); hh->prim = prim; hh->id = id; if (len != 0) { __len = (size_t )len; tmp___0 = skb_put(skb, (unsigned int )len); __ret = memcpy((void *)tmp___0, (void const *)arg, __len); } else { } err = l2down_raw(l2, skb); if (err != 0) { kfree_skb(skb); } else { } return (err); } } static int ph_data_confirm(struct layer2 *l2 , struct mISDNhead *hh , struct sk_buff *skb ) { struct sk_buff *nskb ; int ret ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { nskb = skb; ret = -11; tmp___0 = constant_test_bit(17, (unsigned long const volatile *)(& l2->flag)); if (tmp___0 != 0) { if (hh->id == l2->down_id) { nskb = skb_dequeue(& l2->down_queue); if ((unsigned long )nskb != (unsigned long )((struct sk_buff *)0)) { l2->down_id = ((struct mISDNhead *)(& nskb->cb))->id; tmp = l2down_skb(l2, nskb); if (tmp != 0) { kfree_skb(nskb); l2->down_id = 65534U; } else { } } else { l2->down_id = 65534U; } if (ret != 0) { kfree_skb(skb); ret = 0; } else { } if (l2->down_id == 65534U) { test_and_clear_bit(17, (unsigned long volatile *)(& l2->flag)); mISDN_FsmEvent(& l2->l2m, 9, 0); } else { } } else { } } else { } tmp___2 = test_and_set_bit(17, (unsigned long volatile *)(& l2->flag)); if (tmp___2 == 0) { nskb = skb_dequeue(& l2->down_queue); if ((unsigned long )nskb != (unsigned long )((struct sk_buff *)0)) { l2->down_id = ((struct mISDNhead *)(& nskb->cb))->id; tmp___1 = l2down_skb(l2, nskb); if (tmp___1 != 0) { kfree_skb(nskb); l2->down_id = 65534U; test_and_clear_bit(17, (unsigned long volatile *)(& l2->flag)); } else { } } else { test_and_clear_bit(17, (unsigned long volatile *)(& l2->flag)); } } else { } return (ret); } } static int l2mgr(struct layer2 *l2 , u_int prim , void *arg ) { long c ; int tmp ; int tmp___0 ; { c = (long )arg; printk("<4>l2mgr: addr:%x prim %x %c\n", l2->id, prim, (int )((char )c)); tmp = constant_test_bit(1, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { tmp___0 = constant_test_bit(15, (unsigned long const volatile *)(& l2->flag)); if (tmp___0 == 0) { switch (c) { case 67L: ; case 68L: ; case 71L: ; case 72L: l2_tei(l2, prim, (unsigned long )arg); goto ldv_29153; } ldv_29153: ; } else { } } else { } return (0); } } static void set_peer_busy(struct layer2 *l2 ) { __u32 tmp ; __u32 tmp___0 ; { test_and_set_bit(10, (unsigned long volatile *)(& l2->flag)); tmp = skb_queue_len((struct sk_buff_head const *)(& l2->i_queue)); if (tmp != 0U) { test_and_set_bit(16, (unsigned long volatile *)(& l2->flag)); } else { tmp___0 = skb_queue_len((struct sk_buff_head const *)(& l2->ui_queue)); if (tmp___0 != 0U) { test_and_set_bit(16, (unsigned long volatile *)(& l2->flag)); } else { } } return; } } static void clear_peer_busy(struct layer2 *l2 ) { int tmp ; { tmp = test_and_clear_bit(10, (unsigned long volatile *)(& l2->flag)); if (tmp != 0) { test_and_clear_bit(16, (unsigned long volatile *)(& l2->flag)); } else { } return; } } static void InitWin(struct layer2 *l2 ) { int i ; { i = 0; goto ldv_29165; ldv_29164: l2->windowar[i] = 0; i = i + 1; ldv_29165: ; if (i <= 7) { goto ldv_29164; } else { } return; } } static int freewin(struct layer2 *l2 ) { int i ; int cnt ; { cnt = 0; i = 0; goto ldv_29173; ldv_29172: ; if ((unsigned long )l2->windowar[i] != (unsigned long )((struct sk_buff *)0)) { cnt = cnt + 1; kfree_skb(l2->windowar[i]); l2->windowar[i] = 0; } else { } i = i + 1; ldv_29173: ; if (i <= 7) { goto ldv_29172; } else { } return (cnt); } } static void ReleaseWin(struct layer2 *l2 ) { int cnt ; int tmp ; { tmp = freewin(l2); cnt = tmp; if (cnt != 0) { printk("<4>isdnl2 freed %d skbuffs in release\n", cnt); } else { } return; } } __inline unsigned int cansend(struct layer2 *l2 ) { unsigned int p1 ; int tmp ; int tmp___0 ; int tmp___1 ; { tmp = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { p1 = (l2->vs - l2->va) & 127U; } else { p1 = (l2->vs - l2->va) & 7U; } if (l2->window > p1) { tmp___0 = constant_test_bit(10, (unsigned long const volatile *)(& l2->flag)); if (tmp___0 == 0) { tmp___1 = 1; } else { tmp___1 = 0; } } else { tmp___1 = 0; } return ((unsigned int )tmp___1); } } __inline void clear_exception(struct layer2 *l2 ) { { test_and_clear_bit(7, (unsigned long volatile *)(& l2->flag)); test_and_clear_bit(8, (unsigned long volatile *)(& l2->flag)); test_and_clear_bit(9, (unsigned long volatile *)(& l2->flag)); clear_peer_busy(l2); return; } } static int sethdraddr(struct layer2 *l2 , u_char *header , int rsp ) { u_char *ptr ; int crbit ; int tmp ; u_char *tmp___0 ; u_char *tmp___1 ; int tmp___2 ; u_char *tmp___3 ; u_char *tmp___4 ; int tmp___5 ; { ptr = header; crbit = rsp; tmp___5 = constant_test_bit(1, (unsigned long const volatile *)(& l2->flag)); if (tmp___5 != 0) { tmp = constant_test_bit(18, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { crbit = crbit == 0; } else { } tmp___0 = ptr; ptr = ptr + 1; *tmp___0 = (u_char )((int )((signed char )((int )l2->sapi << 2)) | (crbit != 0 ? 2 : 0)); tmp___1 = ptr; ptr = ptr + 1; *tmp___1 = (u_char )((int )((signed char )((int )l2->tei << 1)) | 1); return (2); } else { tmp___2 = constant_test_bit(2, (unsigned long const volatile *)(& l2->flag)); if (tmp___2 != 0) { crbit = crbit == 0; } else { } if (crbit != 0) { tmp___3 = ptr; ptr = ptr + 1; *tmp___3 = l2->addr.B; } else { tmp___4 = ptr; ptr = ptr + 1; *tmp___4 = l2->addr.A; } return (1); } } } __inline static void enqueue_super(struct layer2 *l2 , struct sk_buff *skb ) { u_int tmp ; int tmp___0 ; { tmp = l2_newid(l2); tmp___0 = l2down(l2, 8193U, tmp, skb); if (tmp___0 != 0) { kfree_skb(skb); } else { } return; } } __inline static void enqueue_ui(struct layer2 *l2 , struct sk_buff *skb ) { u_int tmp ; int tmp___0 ; { if ((unsigned long )l2->tm != (unsigned long )((struct teimgr *)0)) { l2_tei(l2, 7684U, 0UL); } else { } tmp = l2_newid(l2); tmp___0 = l2down(l2, 8193U, tmp, skb); if (tmp___0 != 0) { kfree_skb(skb); } else { } return; } } __inline int IsUI(u_char *data ) { { return (((int )*data & 239) == 3); } } __inline int IsUA(u_char *data ) { { return (((int )*data & 239) == 99); } } __inline int IsDM(u_char *data ) { { return (((int )*data & 239) == 15); } } __inline int IsDISC(u_char *data ) { { return (((int )*data & 239) == 67); } } __inline int IsSFrame(u_char *data , struct layer2 *l2 ) { register u_char d ; int tmp ; { d = *data; tmp = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); if (tmp == 0) { d = (unsigned int )d & 15U; } else { } return (((int )d & 243) == 1 && ((int )d & 12) != 12); } } __inline int IsSABME(u_char *data , struct layer2 *l2 ) { u_char d ; int tmp ; { d = (unsigned int )*data & 239U; tmp = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); return (tmp != 0 ? (unsigned int )d == 111U : (unsigned int )d == 47U); } } __inline int IsREJ(u_char *data , struct layer2 *l2 ) { int tmp ; { tmp = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); return (tmp != 0 ? (unsigned int )*data == 9U : ((int )*data & 15) == 9); } } __inline int IsFRMR(u_char *data ) { { return (((int )*data & 239) == 135); } } __inline int IsRNR(u_char *data , struct layer2 *l2 ) { int tmp ; { tmp = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); return (tmp != 0 ? (unsigned int )*data == 5U : ((int )*data & 15) == 5); } } static int iframe_error(struct layer2 *l2 , struct sk_buff *skb ) { u_int i ; int rsp ; u_int tmp ; int tmp___0 ; int tmp___1 ; { rsp = (int )*(skb->data) & 2; tmp = l2addrsize(l2); tmp___0 = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); i = tmp + (tmp___0 != 0 ? 2U : 1U); tmp___1 = constant_test_bit(2, (unsigned long const volatile *)(& l2->flag)); if (tmp___1 != 0) { rsp = rsp == 0; } else { } if (rsp != 0) { return (76); } else { } if (skb->len < i) { return (78); } else { } if (skb->len - i > l2->maxlen) { return (79); } else { } return (0); } } static int super_error(struct layer2 *l2 , struct sk_buff *skb ) { u_int tmp ; int tmp___0 ; { tmp = l2addrsize(l2); tmp___0 = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); if (skb->len != tmp + (tmp___0 != 0 ? 2U : 1U)) { return (78); } else { } return (0); } } static int unnum_error(struct layer2 *l2 , struct sk_buff *skb , int wantrsp ) { int rsp ; int tmp ; u_int tmp___0 ; { rsp = ((int )*(skb->data) & 2) >> 1; tmp = constant_test_bit(2, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { rsp = rsp == 0; } else { } if (rsp != wantrsp) { return (76); } else { } tmp___0 = l2addrsize(l2); if (skb->len != tmp___0 + 1U) { return (78); } else { } return (0); } } static int UI_error(struct layer2 *l2 , struct sk_buff *skb ) { int rsp ; int tmp ; u_int tmp___0 ; { rsp = (int )*(skb->data) & 2; tmp = constant_test_bit(2, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { rsp = rsp == 0; } else { } if (rsp != 0) { return (76); } else { } tmp___0 = l2addrsize(l2); if (skb->len > (l2->maxlen + tmp___0) + 1U) { return (79); } else { } return (0); } } static int FRMR_error(struct layer2 *l2 , struct sk_buff *skb ) { u_int headers ; u_int tmp ; u_char *datap ; int rsp ; int tmp___0 ; int tmp___1 ; { tmp = l2addrsize(l2); headers = tmp + 1U; datap = skb->data + (unsigned long )headers; rsp = (int )*(skb->data) & 2; tmp___0 = constant_test_bit(2, (unsigned long const volatile *)(& l2->flag)); if (tmp___0 != 0) { rsp = rsp == 0; } else { } if (rsp == 0) { return (76); } else { } tmp___1 = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); if (tmp___1 != 0) { if (skb->len < headers + 5U) { return (78); } else if ((*debug___3 & 16711680U) != 0U) { l2m_debug(& l2->l2m, (char *)"FRMR information %2x %2x %2x %2x %2x", (int )*datap, (int )*(datap + 1UL), (int )*(datap + 2UL), (int )*(datap + 3UL), (int )*(datap + 4UL)); } else if (skb->len < headers + 3U) { return (78); } else if ((*debug___3 & 16711680U) != 0U) { l2m_debug(& l2->l2m, (char *)"FRMR information %2x %2x %2x", (int )*datap, (int )*(datap + 1UL), (int )*(datap + 2UL)); } else { } } else { } return (0); } } static unsigned int legalnr(struct layer2 *l2 , unsigned int nr ) { int tmp ; { tmp = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { return (((nr - l2->va) & 127U) <= ((l2->vs - l2->va) & 127U)); } else { return (((nr - l2->va) & 7U) <= ((l2->vs - l2->va) & 7U)); } } } static void setva(struct layer2 *l2 , unsigned int nr ) { struct sk_buff *skb ; int tmp ; { goto ldv_29276; ldv_29275: l2->va = l2->va + (u_int )1; tmp = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { l2->va = l2->va & 127U; } else { l2->va = l2->va & 7U; } if ((unsigned long )l2->windowar[l2->sow] != (unsigned long )((struct sk_buff *)0)) { skb_trim(l2->windowar[l2->sow], 0U); skb_queue_tail(& l2->tmp_queue, l2->windowar[l2->sow]); l2->windowar[l2->sow] = 0; } else { } l2->sow = (l2->sow + 1U) % l2->window; ldv_29276: ; if (l2->va != nr) { goto ldv_29275; } else { } skb = skb_dequeue(& l2->tmp_queue); goto ldv_29279; ldv_29278: kfree_skb(skb); skb = skb_dequeue(& l2->tmp_queue); ldv_29279: ; if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { goto ldv_29278; } else { } return; } } static void send_uframe(struct layer2 *l2 , struct sk_buff *skb , u_char cmd , u_char cr ) { u_char tmp[4U] ; int i ; int tmp___0 ; size_t __len ; void *__ret ; unsigned char *tmp___2 ; { i = sethdraddr(l2, (u_char *)(& tmp), (int )cr); tmp___0 = i; i = i + 1; tmp[tmp___0] = cmd; if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { skb_trim(skb, 0U); } else { skb = mI_alloc_skb((unsigned int )i, 32U); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { printk("<4>%s: can\'t alloc skbuff\n", "send_uframe"); return; } else { } } __len = (size_t )i; tmp___2 = skb_put(skb, (unsigned int )i); __ret = memcpy((void *)tmp___2, (void const *)(& tmp), __len); enqueue_super(l2, skb); return; } } __inline u_char get_PollFlag(struct layer2 *l2 , struct sk_buff *skb ) { u_int tmp ; { tmp = l2addrsize(l2); return ((unsigned int )*(skb->data + (unsigned long )tmp) & 16U); } } __inline u_char get_PollFlagFree(struct layer2 *l2 , struct sk_buff *skb ) { u_char PF ; { PF = get_PollFlag(l2, skb); kfree_skb(skb); return (PF); } } __inline void start_t200(struct layer2 *l2 , int i ) { { mISDN_FsmAddTimer(& l2->t200, l2->T200, 17, 0, i); test_and_set_bit(6, (unsigned long volatile *)(& l2->flag)); return; } } __inline void restart_t200(struct layer2 *l2 , int i ) { { mISDN_FsmRestartTimer(& l2->t200, l2->T200, 17, 0, i); test_and_set_bit(6, (unsigned long volatile *)(& l2->flag)); return; } } __inline void stop_t200(struct layer2 *l2 , int i ) { int tmp ; { tmp = test_and_clear_bit(6, (unsigned long volatile *)(& l2->flag)); if (tmp != 0) { mISDN_FsmDelTimer(& l2->t200, i); } else { } return; } } __inline void st5_dl_release_l2l3(struct layer2 *l2 ) { int pr ; int tmp ; { tmp = test_and_clear_bit(4, (unsigned long volatile *)(& l2->flag)); if (tmp != 0) { pr = 20744; } else { pr = 4360; } l2up_create(l2, (u_int )pr, 0, 0); return; } } __inline void lapb_dl_release_l2l3(struct layer2 *l2 , int f ) { u_int tmp ; int tmp___0 ; { tmp___0 = constant_test_bit(0, (unsigned long const volatile *)(& l2->flag)); if (tmp___0 != 0) { tmp = l2_newid(l2); l2down_create(l2, 513U, tmp, 0, 0); } else { } l2up_create(l2, (u_int )f, 0, 0); return; } } static void establishlink(struct FsmInst *fi ) { struct layer2 *l2 ; u_char cmd ; int tmp ; { l2 = (struct layer2 *)fi->userdata; clear_exception(l2); l2->rc = 0; tmp = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); cmd = tmp != 0 ? 127U : 63U; send_uframe(l2, 0, (int )cmd, 0); mISDN_FsmDelTimer(& l2->t203, 1); restart_t200(l2, 1); test_and_clear_bit(4, (unsigned long volatile *)(& l2->flag)); freewin(l2); mISDN_FsmChangeState(fi, 4); return; } } static void l2_mdl_error_ua(struct FsmInst *fi , int event , void *arg ) { struct sk_buff *skb ; struct layer2 *l2 ; u_char tmp ; { skb = (struct sk_buff *)arg; l2 = (struct layer2 *)fi->userdata; tmp = get_PollFlagFree(l2, skb); if ((unsigned int )tmp != 0U) { l2mgr(l2, 7940U, 67); } else { l2mgr(l2, 7940U, 68); } return; } } static void l2_mdl_error_dm(struct FsmInst *fi , int event , void *arg ) { struct sk_buff *skb ; struct layer2 *l2 ; u_char tmp ; { skb = (struct sk_buff *)arg; l2 = (struct layer2 *)fi->userdata; tmp = get_PollFlagFree(l2, skb); if ((unsigned int )tmp != 0U) { l2mgr(l2, 7940U, 66); } else { l2mgr(l2, 7940U, 69); establishlink(fi); test_and_clear_bit(5, (unsigned long volatile *)(& l2->flag)); } return; } } static void l2_st8_mdl_error_dm(struct FsmInst *fi , int event , void *arg ) { struct sk_buff *skb ; struct layer2 *l2 ; u_char tmp ; { skb = (struct sk_buff *)arg; l2 = (struct layer2 *)fi->userdata; tmp = get_PollFlagFree(l2, skb); if ((unsigned int )tmp != 0U) { l2mgr(l2, 7940U, 66); } else { l2mgr(l2, 7940U, 69); } establishlink(fi); test_and_clear_bit(5, (unsigned long volatile *)(& l2->flag)); return; } } static void l2_go_st3(struct FsmInst *fi , int event , void *arg ) { { kfree_skb((struct sk_buff *)arg); mISDN_FsmChangeState(fi, 2); return; } } static void l2_mdl_assign(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; { l2 = (struct layer2 *)fi->userdata; mISDN_FsmChangeState(fi, 2); kfree_skb((struct sk_buff *)arg); l2_tei(l2, 6404U, 0UL); return; } } static void l2_queue_ui_assign(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; skb_queue_tail(& l2->ui_queue, skb); mISDN_FsmChangeState(fi, 1); l2_tei(l2, 6404U, 0UL); return; } } static void l2_queue_ui(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; skb_queue_tail(& l2->ui_queue, skb); return; } } static void tx_ui(struct layer2 *l2 ) { struct sk_buff *skb ; u_char header[4U] ; int i ; int tmp ; int tmp___0 ; size_t __len ; void *__ret ; unsigned char *tmp___2 ; { i = sethdraddr(l2, (u_char *)(& header), 0); tmp = constant_test_bit(18, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { header[1] = 255U; } else { } tmp___0 = i; i = i + 1; header[tmp___0] = 3U; goto ldv_29383; ldv_29382: __len = (size_t )i; tmp___2 = skb_push(skb, (unsigned int )i); __ret = memcpy((void *)tmp___2, (void const *)(& header), __len); enqueue_ui(l2, skb); ldv_29383: skb = skb_dequeue(& l2->ui_queue); if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { goto ldv_29382; } else { } return; } } static void l2_send_ui(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; skb_queue_tail(& l2->ui_queue, skb); tx_ui(l2); return; } } static void l2_got_ui(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; u_int tmp ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; tmp = l2headersize(l2, 1); skb_pull(skb, tmp); if ((unsigned long )l2->tm != (unsigned long )((struct teimgr *)0)) { l2_tei(l2, 7684U, 0UL); } else { } l2up(l2, 12552U, skb); return; } } static void l2_establish(struct FsmInst *fi , int event , void *arg ) { struct sk_buff *skb ; struct layer2 *l2 ; { skb = (struct sk_buff *)arg; l2 = (struct layer2 *)fi->userdata; establishlink(fi); test_and_set_bit(5, (unsigned long volatile *)(& l2->flag)); kfree_skb(skb); return; } } static void l2_discard_i_setl3(struct FsmInst *fi , int event , void *arg ) { struct sk_buff *skb ; struct layer2 *l2 ; { skb = (struct sk_buff *)arg; l2 = (struct layer2 *)fi->userdata; skb_queue_purge(& l2->i_queue); test_and_set_bit(5, (unsigned long volatile *)(& l2->flag)); test_and_clear_bit(4, (unsigned long volatile *)(& l2->flag)); kfree_skb(skb); return; } } static void l2_l3_reestablish(struct FsmInst *fi , int event , void *arg ) { struct sk_buff *skb ; struct layer2 *l2 ; { skb = (struct sk_buff *)arg; l2 = (struct layer2 *)fi->userdata; skb_queue_purge(& l2->i_queue); establishlink(fi); test_and_set_bit(5, (unsigned long volatile *)(& l2->flag)); kfree_skb(skb); return; } } static void l2_release(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; skb_trim(skb, 0U); l2up(l2, 20744U, skb); return; } } static void l2_pend_rel(struct FsmInst *fi , int event , void *arg ) { struct sk_buff *skb ; struct layer2 *l2 ; { skb = (struct sk_buff *)arg; l2 = (struct layer2 *)fi->userdata; test_and_set_bit(4, (unsigned long volatile *)(& l2->flag)); kfree_skb(skb); return; } } static void l2_disconnect(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; skb_queue_purge(& l2->i_queue); freewin(l2); mISDN_FsmChangeState(fi, 5); l2->rc = 0; send_uframe(l2, 0, 83, 0); mISDN_FsmDelTimer(& l2->t203, 1); restart_t200(l2, 2); if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { kfree_skb(skb); } else { } return; } } static void l2_start_multi(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; u_char tmp ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; l2->vs = 0U; l2->va = 0U; l2->vr = 0U; l2->sow = 0U; clear_exception(l2); tmp = get_PollFlag(l2, skb); send_uframe(l2, 0, (int )((unsigned int )tmp | 99U), 1); mISDN_FsmChangeState(fi, 6); mISDN_FsmAddTimer(& l2->t203, l2->T203, 18, 0, 3); skb_trim(skb, 0U); l2up(l2, 4104U, skb); if ((unsigned long )l2->tm != (unsigned long )((struct teimgr *)0)) { l2_tei(l2, 7172U, 0UL); } else { } return; } } static void l2_send_UA(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; u_char tmp ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; tmp = get_PollFlag(l2, skb); send_uframe(l2, skb, (int )((unsigned int )tmp | 99U), 1); return; } } static void l2_send_DM(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; u_char tmp ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; tmp = get_PollFlag(l2, skb); send_uframe(l2, skb, (int )((unsigned int )tmp | 15U), 1); return; } } static void l2_restart_multi(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int est ; u_char tmp ; __u32 tmp___0 ; unsigned int tmp___1 ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; est = 0; tmp = get_PollFlag(l2, skb); send_uframe(l2, skb, (int )((unsigned int )tmp | 99U), 1); l2mgr(l2, 7940U, 70); if (l2->vs != l2->va) { skb_queue_purge(& l2->i_queue); est = 1; } else { } clear_exception(l2); l2->vs = 0U; l2->va = 0U; l2->vr = 0U; l2->sow = 0U; mISDN_FsmChangeState(fi, 6); stop_t200(l2, 3); mISDN_FsmRestartTimer(& l2->t203, l2->T203, 18, 0, 3); if (est != 0) { l2up_create(l2, 4104U, 0, 0); } else { } tmp___0 = skb_queue_len((struct sk_buff_head const *)(& l2->i_queue)); if (tmp___0 != 0U) { tmp___1 = cansend(l2); if (tmp___1 != 0U) { mISDN_FsmEvent(fi, 9, 0); } else { } } else { } return; } } static void l2_stop_multi(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; u_char tmp ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; mISDN_FsmChangeState(fi, 3); mISDN_FsmDelTimer(& l2->t203, 3); stop_t200(l2, 4); tmp = get_PollFlag(l2, skb); send_uframe(l2, skb, (int )((unsigned int )tmp | 99U), 1); skb_queue_purge(& l2->i_queue); freewin(l2); lapb_dl_release_l2l3(l2, 4360); if ((unsigned long )l2->tm != (unsigned long )((struct teimgr *)0)) { l2_tei(l2, 7428U, 0UL); } else { } return; } } static void l2_connected(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int pr ; u_char tmp ; int tmp___0 ; int tmp___1 ; __u32 tmp___2 ; unsigned int tmp___3 ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; pr = -1; tmp = get_PollFlag(l2, skb); if ((unsigned int )tmp == 0U) { l2_mdl_error_ua(fi, event, arg); return; } else { } kfree_skb(skb); tmp___0 = test_and_clear_bit(4, (unsigned long volatile *)(& l2->flag)); if (tmp___0 != 0) { l2_disconnect(fi, event, 0); } else { } tmp___1 = test_and_clear_bit(5, (unsigned long volatile *)(& l2->flag)); if (tmp___1 != 0) { pr = 20488; } else if (l2->vs != l2->va) { skb_queue_purge(& l2->i_queue); pr = 4104; } else { } stop_t200(l2, 5); l2->vr = 0U; l2->vs = 0U; l2->va = 0U; l2->sow = 0U; mISDN_FsmChangeState(fi, 6); mISDN_FsmAddTimer(& l2->t203, l2->T203, 18, 0, 4); if (pr != -1) { l2up_create(l2, (u_int )pr, 0, 0); } else { } tmp___2 = skb_queue_len((struct sk_buff_head const *)(& l2->i_queue)); if (tmp___2 != 0U) { tmp___3 = cansend(l2); if (tmp___3 != 0U) { mISDN_FsmEvent(fi, 9, 0); } else { } } else { } if ((unsigned long )l2->tm != (unsigned long )((struct teimgr *)0)) { l2_tei(l2, 7172U, 0UL); } else { } return; } } static void l2_released(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; u_char tmp ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; tmp = get_PollFlag(l2, skb); if ((unsigned int )tmp == 0U) { l2_mdl_error_ua(fi, event, arg); return; } else { } kfree_skb(skb); stop_t200(l2, 6); lapb_dl_release_l2l3(l2, 20744); mISDN_FsmChangeState(fi, 3); if ((unsigned long )l2->tm != (unsigned long )((struct teimgr *)0)) { l2_tei(l2, 7428U, 0UL); } else { } return; } } static void l2_reestablish(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; u_char tmp ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; tmp = get_PollFlagFree(l2, skb); if ((unsigned int )tmp == 0U) { establishlink(fi); test_and_set_bit(5, (unsigned long volatile *)(& l2->flag)); } else { } return; } } static void l2_st5_dm_release(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int tmp ; u_int tmp___0 ; int tmp___1 ; u_char tmp___2 ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; tmp___2 = get_PollFlagFree(l2, skb); if ((unsigned int )tmp___2 != 0U) { stop_t200(l2, 7); tmp = constant_test_bit(5, (unsigned long const volatile *)(& l2->flag)); if (tmp == 0) { skb_queue_purge(& l2->i_queue); } else { } tmp___1 = constant_test_bit(0, (unsigned long const volatile *)(& l2->flag)); if (tmp___1 != 0) { tmp___0 = l2_newid(l2); l2down_create(l2, 513U, tmp___0, 0, 0); } else { } st5_dl_release_l2l3(l2); mISDN_FsmChangeState(fi, 3); if ((unsigned long )l2->tm != (unsigned long )((struct teimgr *)0)) { l2_tei(l2, 7428U, 0UL); } else { } } else { } return; } } static void l2_st6_dm_release(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; u_char tmp ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; tmp = get_PollFlagFree(l2, skb); if ((unsigned int )tmp != 0U) { stop_t200(l2, 8); lapb_dl_release_l2l3(l2, 20744); mISDN_FsmChangeState(fi, 3); if ((unsigned long )l2->tm != (unsigned long )((struct teimgr *)0)) { l2_tei(l2, 7428U, 0UL); } else { } } else { } return; } } static void enquiry_cr(struct layer2 *l2 , u_char typ , u_char cr , u_char pf ) { struct sk_buff *skb ; u_char tmp[4U] ; int i ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; size_t __len ; void *__ret ; unsigned char *tmp___5 ; { i = sethdraddr(l2, (u_char *)(& tmp), (int )cr); tmp___3 = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); if (tmp___3 != 0) { tmp___0 = i; i = i + 1; tmp[tmp___0] = typ; tmp___1 = i; i = i + 1; tmp[tmp___1] = (unsigned int )((int )((u_char )l2->vr) << 1U) | ((unsigned int )pf != 0U ? 1U : 0U); } else { tmp___2 = i; i = i + 1; tmp[tmp___2] = (unsigned int )(((int )((u_char )l2->vr) << 5U) | (int )typ) | ((unsigned int )pf != 0U ? 16U : 0U); } skb = mI_alloc_skb((unsigned int )i, 32U); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { printk("<4>isdnl2 can\'t alloc sbbuff for enquiry_cr\n"); return; } else { } __len = (size_t )i; tmp___5 = skb_put(skb, (unsigned int )i); __ret = memcpy((void *)tmp___5, (void const *)(& tmp), __len); enqueue_super(l2, skb); return; } } __inline void enquiry_response(struct layer2 *l2 ) { int tmp ; { tmp = constant_test_bit(9, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { enquiry_cr(l2, 5, 1, 1); } else { enquiry_cr(l2, 1, 1, 1); } test_and_clear_bit(7, (unsigned long volatile *)(& l2->flag)); return; } } __inline void transmit_enquiry(struct layer2 *l2 ) { int tmp ; { tmp = constant_test_bit(9, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { enquiry_cr(l2, 5, 0, 1); } else { enquiry_cr(l2, 1, 0, 1); } test_and_clear_bit(7, (unsigned long volatile *)(& l2->flag)); start_t200(l2, 9); return; } } static void nrerrorrecovery(struct FsmInst *fi ) { struct layer2 *l2 ; { l2 = (struct layer2 *)fi->userdata; l2mgr(l2, 7940U, 74); establishlink(fi); test_and_clear_bit(5, (unsigned long volatile *)(& l2->flag)); return; } } static void invoke_retransmission(struct layer2 *l2 , unsigned int nr ) { u_int p1 ; int tmp ; { if (l2->vs != nr) { goto ldv_29542; ldv_29541: l2->vs = l2->vs - (u_int )1; tmp = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { l2->vs = l2->vs & 127U; p1 = (l2->vs - l2->va) & 127U; } else { l2->vs = l2->vs & 7U; p1 = (l2->vs - l2->va) & 7U; } p1 = (l2->sow + p1) % l2->window; if ((unsigned long )l2->windowar[p1] != (unsigned long )((struct sk_buff *)0)) { skb_queue_head(& l2->i_queue, l2->windowar[p1]); } else { printk("<4>%s: windowar[%d] is NULL\n", "invoke_retransmission", p1); } l2->windowar[p1] = 0; ldv_29542: ; if (l2->vs != nr) { goto ldv_29541; } else { } mISDN_FsmEvent(& l2->l2m, 9, 0); } else { } return; } } static void l2_st7_got_super(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int PollFlag ; int rsp ; int typ ; unsigned int nr ; int tmp ; u_int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; __u32 tmp___5 ; unsigned int tmp___6 ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; typ = 1; rsp = (int )*(skb->data) & 2; tmp = constant_test_bit(2, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { rsp = rsp == 0; } else { } tmp___0 = l2addrsize(l2); skb_pull(skb, tmp___0); tmp___1 = IsRNR(skb->data, l2); if (tmp___1 != 0) { set_peer_busy(l2); typ = 5; } else { clear_peer_busy(l2); } tmp___2 = IsREJ(skb->data, l2); if (tmp___2 != 0) { typ = 9; } else { } tmp___3 = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); if (tmp___3 != 0) { PollFlag = (int )*(skb->data + 1UL) & 1; nr = (unsigned int )((int )*(skb->data + 1UL) >> 1); } else { PollFlag = (int )*(skb->data) & 16; nr = (unsigned int )((int )*(skb->data) >> 5) & 7U; } kfree_skb(skb); if (PollFlag != 0) { if (rsp != 0) { l2mgr(l2, 7940U, 65); } else { enquiry_response(l2); } } else { } tmp___6 = legalnr(l2, nr); if (tmp___6 != 0U) { if (typ == 9) { setva(l2, nr); invoke_retransmission(l2, nr); stop_t200(l2, 10); tmp___4 = mISDN_FsmAddTimer(& l2->t203, l2->T203, 18, 0, 6); if (tmp___4 != 0) { l2m_debug(& l2->l2m, (char *)"Restart T203 ST7 REJ"); } else { } } else if (l2->vs == nr && typ == 1) { setva(l2, nr); stop_t200(l2, 11); mISDN_FsmRestartTimer(& l2->t203, l2->T203, 18, 0, 7); } else if (l2->va != nr || typ == 5) { setva(l2, nr); if (typ != 1) { mISDN_FsmDelTimer(& l2->t203, 9); } else { } restart_t200(l2, 12); } else { } tmp___5 = skb_queue_len((struct sk_buff_head const *)(& l2->i_queue)); if (tmp___5 != 0U && typ == 1) { mISDN_FsmEvent(fi, 9, 0); } else { } } else { nrerrorrecovery(fi); } return; } } static void l2_feed_i_if_reest(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int tmp ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; tmp = constant_test_bit(5, (unsigned long const volatile *)(& l2->flag)); if (tmp == 0) { skb_queue_tail(& l2->i_queue, skb); } else { kfree_skb(skb); } return; } } static void l2_feed_i_pull(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; skb_queue_tail(& l2->i_queue, skb); mISDN_FsmEvent(fi, 9, 0); return; } } static void l2_feed_iqueue(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; skb_queue_tail(& l2->i_queue, skb); return; } } static void l2_got_iframe(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int PollFlag ; int i ; u_int ns ; u_int nr ; u_int tmp ; int tmp___0 ; int tmp___1 ; u_int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; unsigned int tmp___6 ; __u32 tmp___7 ; int tmp___8 ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; tmp = l2addrsize(l2); i = (int )tmp; tmp___0 = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); if (tmp___0 != 0) { PollFlag = (int )*(skb->data + ((unsigned long )i + 1UL)) & 1; ns = (u_int )((int )*(skb->data + (unsigned long )i) >> 1); nr = (u_int )((int )*(skb->data + ((unsigned long )i + 1UL)) >> 1) & 127U; } else { PollFlag = (int )*(skb->data + (unsigned long )i) & 16; ns = (u_int )((int )*(skb->data + (unsigned long )i) >> 1) & 7U; nr = (u_int )((int )*(skb->data + (unsigned long )i) >> 5) & 7U; } tmp___4 = constant_test_bit(9, (unsigned long const volatile *)(& l2->flag)); if (tmp___4 != 0) { kfree_skb(skb); if (PollFlag != 0) { enquiry_response(l2); } else { } } else if (l2->vr == ns) { l2->vr = l2->vr + (u_int )1; tmp___1 = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); if (tmp___1 != 0) { l2->vr = l2->vr & 127U; } else { l2->vr = l2->vr & 7U; } test_and_clear_bit(8, (unsigned long volatile *)(& l2->flag)); if (PollFlag != 0) { enquiry_response(l2); } else { test_and_set_bit(7, (unsigned long volatile *)(& l2->flag)); } tmp___2 = l2headersize(l2, 0); skb_pull(skb, tmp___2); l2up(l2, 12296U, skb); } else { kfree_skb(skb); tmp___3 = test_and_set_bit(8, (unsigned long volatile *)(& l2->flag)); if (tmp___3 != 0) { if (PollFlag != 0) { enquiry_response(l2); } else { enquiry_cr(l2, 9, 1, (int )((u_char )PollFlag)); test_and_clear_bit(7, (unsigned long volatile *)(& l2->flag)); } } else { } } tmp___6 = legalnr(l2, nr); if (tmp___6 != 0U) { tmp___5 = constant_test_bit(10, (unsigned long const volatile *)(& l2->flag)); if (tmp___5 == 0 && fi->state == 6) { if (l2->vs == nr) { stop_t200(l2, 13); mISDN_FsmRestartTimer(& l2->t203, l2->T203, 18, 0, 7); } else if (l2->va != nr) { restart_t200(l2, 14); } else { } } else { } setva(l2, nr); } else { nrerrorrecovery(fi); return; } tmp___7 = skb_queue_len((struct sk_buff_head const *)(& l2->i_queue)); if (tmp___7 != 0U && fi->state == 6) { mISDN_FsmEvent(fi, 9, 0); } else { } tmp___8 = test_and_clear_bit(7, (unsigned long volatile *)(& l2->flag)); if (tmp___8 != 0) { enquiry_cr(l2, 1, 1, 0); } else { } return; } } static void l2_got_tei(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; u_int info ; __u32 tmp ; { l2 = (struct layer2 *)fi->userdata; l2->tei = (signed char )((long )arg); set_channel_address(& l2->ch, (u_int )l2->sapi, (u_int )l2->tei); info = 1U; l2up_create(l2, 8U, 4, (void *)(& info)); if (fi->state == 2) { establishlink(fi); test_and_set_bit(5, (unsigned long volatile *)(& l2->flag)); } else { mISDN_FsmChangeState(fi, 3); } tmp = skb_queue_len((struct sk_buff_head const *)(& l2->ui_queue)); if (tmp != 0U) { tx_ui(l2); } else { } return; } } static void l2_st5_tout_200(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; u_int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { l2 = (struct layer2 *)fi->userdata; tmp___2 = constant_test_bit(1, (unsigned long const volatile *)(& l2->flag)); if (tmp___2 != 0) { tmp___3 = constant_test_bit(11, (unsigned long const volatile *)(& l2->flag)); if (tmp___3 != 0) { mISDN_FsmAddTimer(& l2->t200, l2->T200, 17, 0, 9); } else { goto _L; } } else _L: /* CIL Label */ if (l2->rc == l2->N200) { mISDN_FsmChangeState(fi, 3); test_and_clear_bit(6, (unsigned long volatile *)(& l2->flag)); skb_queue_purge(& l2->i_queue); l2mgr(l2, 7940U, 71); tmp___0 = constant_test_bit(0, (unsigned long const volatile *)(& l2->flag)); if (tmp___0 != 0) { tmp = l2_newid(l2); l2down_create(l2, 513U, tmp, 0, 0); } else { } st5_dl_release_l2l3(l2); if ((unsigned long )l2->tm != (unsigned long )((struct teimgr *)0)) { l2_tei(l2, 7428U, 0UL); } else { } } else { l2->rc = l2->rc + 1; mISDN_FsmAddTimer(& l2->t200, l2->T200, 17, 0, 9); tmp___1 = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); send_uframe(l2, 0, tmp___1 != 0 ? 127 : 63, 0); } return; } } static void l2_st6_tout_200(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; int tmp ; int tmp___0 ; { l2 = (struct layer2 *)fi->userdata; tmp = constant_test_bit(1, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { tmp___0 = constant_test_bit(11, (unsigned long const volatile *)(& l2->flag)); if (tmp___0 != 0) { mISDN_FsmAddTimer(& l2->t200, l2->T200, 17, 0, 9); } else { goto _L; } } else _L: /* CIL Label */ if (l2->rc == l2->N200) { mISDN_FsmChangeState(fi, 3); test_and_clear_bit(6, (unsigned long volatile *)(& l2->flag)); l2mgr(l2, 7940U, 72); lapb_dl_release_l2l3(l2, 20744); if ((unsigned long )l2->tm != (unsigned long )((struct teimgr *)0)) { l2_tei(l2, 7428U, 0UL); } else { } } else { l2->rc = l2->rc + 1; mISDN_FsmAddTimer(& l2->t200, l2->T200, 17, 0, 9); send_uframe(l2, 0, 83, 0); } return; } } static void l2_st7_tout_200(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; int tmp ; int tmp___0 ; { l2 = (struct layer2 *)fi->userdata; tmp = constant_test_bit(1, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { tmp___0 = constant_test_bit(11, (unsigned long const volatile *)(& l2->flag)); if (tmp___0 != 0) { mISDN_FsmAddTimer(& l2->t200, l2->T200, 17, 0, 9); return; } else { } } else { } test_and_clear_bit(6, (unsigned long volatile *)(& l2->flag)); l2->rc = 0; mISDN_FsmChangeState(fi, 7); transmit_enquiry(l2); l2->rc = l2->rc + 1; return; } } static void l2_st8_tout_200(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; int tmp ; int tmp___0 ; { l2 = (struct layer2 *)fi->userdata; tmp = constant_test_bit(1, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { tmp___0 = constant_test_bit(11, (unsigned long const volatile *)(& l2->flag)); if (tmp___0 != 0) { mISDN_FsmAddTimer(& l2->t200, l2->T200, 17, 0, 9); return; } else { } } else { } test_and_clear_bit(6, (unsigned long volatile *)(& l2->flag)); if (l2->rc == l2->N200) { l2mgr(l2, 7940U, 73); establishlink(fi); test_and_clear_bit(5, (unsigned long volatile *)(& l2->flag)); } else { transmit_enquiry(l2); l2->rc = l2->rc + 1; } return; } } static void l2_st7_tout_203(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; int tmp ; int tmp___0 ; { l2 = (struct layer2 *)fi->userdata; tmp = constant_test_bit(1, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { tmp___0 = constant_test_bit(11, (unsigned long const volatile *)(& l2->flag)); if (tmp___0 != 0) { mISDN_FsmAddTimer(& l2->t203, l2->T203, 18, 0, 9); return; } else { } } else { } mISDN_FsmChangeState(fi, 7); transmit_enquiry(l2); l2->rc = 0; return; } } static void l2_pull_iqueue(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; struct sk_buff *nskb ; struct sk_buff *oskb ; u_char header[4U] ; u_int i ; u_int p1 ; unsigned int tmp ; int tmp___0 ; int tmp___1 ; u_int tmp___2 ; u_int tmp___3 ; u_int tmp___4 ; int tmp___5 ; size_t __len ; void *__ret ; unsigned char *tmp___7 ; size_t __len___0 ; void *__ret___0 ; unsigned char *tmp___9 ; size_t __len___1 ; void *__ret___1 ; unsigned char *tmp___11 ; u_int tmp___12 ; int tmp___13 ; { l2 = (struct layer2 *)fi->userdata; tmp = cansend(l2); if (tmp == 0U) { return; } else { } skb = skb_dequeue(& l2->i_queue); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return; } else { } tmp___0 = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); if (tmp___0 != 0) { p1 = (l2->vs - l2->va) & 127U; } else { p1 = (l2->vs - l2->va) & 7U; } p1 = (l2->sow + p1) % l2->window; if ((unsigned long )l2->windowar[p1] != (unsigned long )((struct sk_buff *)0)) { printk("<4>isdnl2 try overwrite ack queue entry %d\n", p1); kfree_skb(l2->windowar[p1]); } else { } l2->windowar[p1] = skb; tmp___1 = sethdraddr(l2, (u_char *)(& header), 0); i = (u_int )tmp___1; tmp___5 = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); if (tmp___5 != 0) { tmp___2 = i; i = i + (u_int )1; header[tmp___2] = (int )((u_char )l2->vs) << 1U; tmp___3 = i; i = i + (u_int )1; header[tmp___3] = (int )((u_char )l2->vr) << 1U; l2->vs = (l2->vs + 1U) & 127U; } else { tmp___4 = i; i = i + (u_int )1; header[tmp___4] = ((int )((u_char )l2->vr) << 5U) | ((int )((u_char )l2->vs) << 1U); l2->vs = (l2->vs + 1U) & 7U; } nskb = skb_clone(skb, 32U); p1 = skb_headroom((struct sk_buff const *)nskb); if (p1 >= i) { __len = (size_t )i; tmp___7 = skb_push(nskb, i); __ret = memcpy((void *)tmp___7, (void const *)(& header), __len); } else { printk("<4>isdnl2 pull_iqueue skb header(%d/%d) too short\n", i, p1); oskb = nskb; nskb = mI_alloc_skb(oskb->len + i, 32U); if ((unsigned long )nskb == (unsigned long )((struct sk_buff *)0)) { kfree_skb(oskb); printk("<4>%s: no skb mem\n", "l2_pull_iqueue"); return; } else { } __len___0 = (size_t )i; tmp___9 = skb_put(nskb, i); __ret___0 = memcpy((void *)tmp___9, (void const *)(& header), __len___0); __len___1 = (size_t )oskb->len; tmp___11 = skb_put(nskb, oskb->len); __ret___1 = memcpy((void *)tmp___11, (void const *)oskb->data, __len___1); kfree_skb(oskb); } tmp___12 = l2_newid(l2); l2down(l2, 8193U, tmp___12, nskb); test_and_clear_bit(7, (unsigned long volatile *)(& l2->flag)); tmp___13 = test_and_set_bit(6, (unsigned long volatile *)(& l2->flag)); if (tmp___13 == 0) { mISDN_FsmDelTimer(& l2->t203, 13); mISDN_FsmAddTimer(& l2->t200, l2->T200, 17, 0, 11); } else { } return; } } static void l2_st8_got_super(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int PollFlag ; int rsp ; int rnr ; unsigned int nr ; int tmp ; u_int tmp___0 ; int tmp___1 ; int tmp___2 ; __u32 tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; unsigned int tmp___6 ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; rnr = 0; rsp = (int )*(skb->data) & 2; tmp = constant_test_bit(2, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { rsp = rsp == 0; } else { } tmp___0 = l2addrsize(l2); skb_pull(skb, tmp___0); tmp___1 = IsRNR(skb->data, l2); if (tmp___1 != 0) { set_peer_busy(l2); rnr = 1; } else { clear_peer_busy(l2); } tmp___2 = constant_test_bit(3, (unsigned long const volatile *)(& l2->flag)); if (tmp___2 != 0) { PollFlag = (int )*(skb->data + 1UL) & 1; nr = (unsigned int )((int )*(skb->data + 1UL) >> 1); } else { PollFlag = (int )*(skb->data) & 16; nr = (unsigned int )((int )*(skb->data) >> 5) & 7U; } kfree_skb(skb); if (rsp != 0 && PollFlag != 0) { tmp___5 = legalnr(l2, nr); if (tmp___5 != 0U) { if (rnr != 0) { restart_t200(l2, 15); } else { stop_t200(l2, 16); mISDN_FsmAddTimer(& l2->t203, l2->T203, 18, 0, 5); setva(l2, nr); } invoke_retransmission(l2, nr); mISDN_FsmChangeState(fi, 6); tmp___3 = skb_queue_len((struct sk_buff_head const *)(& l2->i_queue)); if (tmp___3 != 0U) { tmp___4 = cansend(l2); if (tmp___4 != 0U) { mISDN_FsmEvent(fi, 9, 0); } else { } } else { } } else { nrerrorrecovery(fi); } } else { if (rsp == 0 && PollFlag != 0) { enquiry_response(l2); } else { } tmp___6 = legalnr(l2, nr); if (tmp___6 != 0U) { setva(l2, nr); } else { nrerrorrecovery(fi); } } return; } } static void l2_got_FRMR(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; u_int tmp ; int tmp___0 ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; tmp = l2addrsize(l2); skb_pull(skb, tmp + 1U); if (((int )*(skb->data) & 1) == 0 || ((int )*(skb->data) & 3) == 1) { l2mgr(l2, 7940U, 75); establishlink(fi); test_and_clear_bit(5, (unsigned long volatile *)(& l2->flag)); } else { tmp___0 = IsUA(skb->data); if (tmp___0 != 0 && fi->state == 6) { l2mgr(l2, 7940U, 75); establishlink(fi); test_and_clear_bit(5, (unsigned long volatile *)(& l2->flag)); } else { } } kfree_skb(skb); return; } } static void l2_st24_tei_remove(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; { l2 = (struct layer2 *)fi->userdata; skb_queue_purge(& l2->ui_queue); l2->tei = 127; mISDN_FsmChangeState(fi, 0); return; } } static void l2_st3_tei_remove(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; { l2 = (struct layer2 *)fi->userdata; skb_queue_purge(& l2->ui_queue); l2->tei = 127; l2up_create(l2, 4360U, 0, 0); mISDN_FsmChangeState(fi, 0); return; } } static void l2_st5_tei_remove(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; { l2 = (struct layer2 *)fi->userdata; skb_queue_purge(& l2->i_queue); skb_queue_purge(& l2->ui_queue); freewin(l2); l2->tei = 127; stop_t200(l2, 17); st5_dl_release_l2l3(l2); mISDN_FsmChangeState(fi, 0); return; } } static void l2_st6_tei_remove(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; { l2 = (struct layer2 *)fi->userdata; skb_queue_purge(& l2->ui_queue); l2->tei = 127; stop_t200(l2, 18); l2up_create(l2, 4360U, 0, 0); mISDN_FsmChangeState(fi, 0); return; } } static void l2_tei_remove(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; { l2 = (struct layer2 *)fi->userdata; skb_queue_purge(& l2->i_queue); skb_queue_purge(& l2->ui_queue); freewin(l2); l2->tei = 127; stop_t200(l2, 17); mISDN_FsmDelTimer(& l2->t203, 19); l2up_create(l2, 4360U, 0, 0); mISDN_FsmChangeState(fi, 0); return; } } static void l2_st14_persistant_da(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int tmp ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; skb_queue_purge(& l2->i_queue); skb_queue_purge(& l2->ui_queue); tmp = test_and_clear_bit(13, (unsigned long volatile *)(& l2->flag)); if (tmp != 0) { l2up(l2, 4360U, skb); } else { kfree_skb(skb); } return; } } static void l2_st5_persistant_da(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; skb_queue_purge(& l2->i_queue); skb_queue_purge(& l2->ui_queue); freewin(l2); stop_t200(l2, 19); st5_dl_release_l2l3(l2); mISDN_FsmChangeState(fi, 3); if ((unsigned long )l2->tm != (unsigned long )((struct teimgr *)0)) { l2_tei(l2, 7428U, 0UL); } else { } kfree_skb(skb); return; } } static void l2_st6_persistant_da(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; skb_queue_purge(& l2->ui_queue); stop_t200(l2, 20); l2up(l2, 20744U, skb); mISDN_FsmChangeState(fi, 3); if ((unsigned long )l2->tm != (unsigned long )((struct teimgr *)0)) { l2_tei(l2, 7428U, 0UL); } else { } return; } } static void l2_persistant_da(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; skb_queue_purge(& l2->i_queue); skb_queue_purge(& l2->ui_queue); freewin(l2); stop_t200(l2, 19); mISDN_FsmDelTimer(& l2->t203, 19); l2up(l2, 4360U, skb); mISDN_FsmChangeState(fi, 3); if ((unsigned long )l2->tm != (unsigned long )((struct teimgr *)0)) { l2_tei(l2, 7428U, 0UL); } else { } return; } } static void l2_set_own_busy(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int tmp ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; tmp = test_and_set_bit(9, (unsigned long volatile *)(& l2->flag)); if (tmp == 0) { enquiry_cr(l2, 5, 1, 0); test_and_clear_bit(7, (unsigned long volatile *)(& l2->flag)); } else { } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { kfree_skb(skb); } else { } return; } } static void l2_clear_own_busy(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; struct sk_buff *skb ; int tmp ; { l2 = (struct layer2 *)fi->userdata; skb = (struct sk_buff *)arg; tmp = test_and_clear_bit(9, (unsigned long volatile *)(& l2->flag)); if (tmp == 0) { enquiry_cr(l2, 1, 1, 0); test_and_clear_bit(7, (unsigned long volatile *)(& l2->flag)); } else { } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { kfree_skb(skb); } else { } return; } } static void l2_frame_error(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; { l2 = (struct layer2 *)fi->userdata; l2mgr(l2, 7940U, arg); return; } } static void l2_frame_error_reest(struct FsmInst *fi , int event , void *arg ) { struct layer2 *l2 ; { l2 = (struct layer2 *)fi->userdata; l2mgr(l2, 7940U, arg); establishlink(fi); test_and_clear_bit(5, (unsigned long volatile *)(& l2->flag)); return; } } static struct FsmNode L2FnList[88U] = { {0, 11, & l2_mdl_assign}, {1, 11, & l2_go_st3}, {3, 11, & l2_establish}, {4, 11, & l2_discard_i_setl3}, {6, 11, & l2_l3_reestablish}, {7, 11, & l2_l3_reestablish}, {3, 12, & l2_release}, {4, 12, & l2_pend_rel}, {6, 12, & l2_disconnect}, {7, 12, & l2_disconnect}, {4, 8, & l2_feed_i_if_reest}, {6, 8, & l2_feed_i_pull}, {7, 8, & l2_feed_iqueue}, {0, 10, & l2_queue_ui_assign}, {1, 10, & l2_queue_ui}, {2, 10, & l2_queue_ui}, {3, 10, & l2_send_ui}, {4, 10, & l2_send_ui}, {5, 10, & l2_send_ui}, {6, 10, & l2_send_ui}, {7, 10, & l2_send_ui}, {0, 13, & l2_got_tei}, {1, 13, & l2_got_tei}, {2, 13, & l2_got_tei}, {1, 15, & l2_st24_tei_remove}, {2, 15, & l2_st3_tei_remove}, {3, 14, & l2_st24_tei_remove}, {4, 14, & l2_st5_tei_remove}, {5, 14, & l2_st6_tei_remove}, {6, 14, & l2_tei_remove}, {7, 14, & l2_tei_remove}, {3, 1, & l2_start_multi}, {4, 1, & l2_send_UA}, {5, 1, & l2_send_DM}, {6, 1, & l2_restart_multi}, {7, 1, & l2_restart_multi}, {3, 2, & l2_send_DM}, {4, 2, & l2_send_DM}, {5, 2, & l2_send_UA}, {6, 2, & l2_stop_multi}, {7, 2, & l2_stop_multi}, {3, 4, & l2_mdl_error_ua}, {4, 4, & l2_connected}, {5, 4, & l2_released}, {6, 4, & l2_mdl_error_ua}, {7, 4, & l2_mdl_error_ua}, {3, 3, & l2_reestablish}, {4, 3, & l2_st5_dm_release}, {5, 3, & l2_st6_dm_release}, {6, 3, & l2_mdl_error_dm}, {7, 3, & l2_st8_mdl_error_dm}, {0, 0, & l2_got_ui}, {1, 0, & l2_got_ui}, {2, 0, & l2_got_ui}, {3, 0, & l2_got_ui}, {4, 0, & l2_got_ui}, {5, 0, & l2_got_ui}, {6, 0, & l2_got_ui}, {7, 0, & l2_got_ui}, {6, 5, & l2_got_FRMR}, {7, 5, & l2_got_FRMR}, {6, 6, & l2_st7_got_super}, {7, 6, & l2_st8_got_super}, {6, 7, & l2_got_iframe}, {7, 7, & l2_got_iframe}, {4, 17, & l2_st5_tout_200}, {5, 17, & l2_st6_tout_200}, {6, 17, & l2_st7_tout_200}, {7, 17, & l2_st8_tout_200}, {6, 18, & l2_st7_tout_203}, {6, 9, & l2_pull_iqueue}, {6, 19, & l2_set_own_busy}, {7, 19, & l2_set_own_busy}, {6, 20, & l2_clear_own_busy}, {7, 20, & l2_clear_own_busy}, {3, 21, & l2_frame_error}, {4, 21, & l2_frame_error}, {5, 21, & l2_frame_error}, {6, 21, & l2_frame_error_reest}, {7, 21, & l2_frame_error_reest}, {0, 16, & l2_st14_persistant_da}, {1, 16, & l2_st24_tei_remove}, {2, 16, & l2_st3_tei_remove}, {3, 16, & l2_st14_persistant_da}, {4, 16, & l2_st5_persistant_da}, {5, 16, & l2_st6_persistant_da}, {6, 16, & l2_persistant_da}, {7, 16, & l2_persistant_da}}; static int ph_data_indication(struct layer2 *l2 , struct mISDNhead *hh , struct sk_buff *skb ) { u_char *datap ; int ret ; int psapi ; int ptei ; u_int l ; int c ; u_char *tmp ; u_char *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; { datap = skb->data; ret = -22; c = 0; l = l2addrsize(l2); if (skb->len <= l) { mISDN_FsmEvent(& l2->l2m, 21, 78); return (ret); } else { } tmp___1 = constant_test_bit(1, (unsigned long const volatile *)(& l2->flag)); if (tmp___1 != 0) { tmp = datap; datap = datap + 1; psapi = (int )*tmp; tmp___0 = datap; datap = datap + 1; ptei = (int )*tmp___0; if (psapi & 1 || (ptei & 1) == 0) { printk("<4>l2 D-channel frame wrong EA0/EA1\n"); return (ret); } else { } psapi = psapi >> 2; ptei = ptei >> 1; if ((int )l2->sapi != psapi) { kfree_skb(skb); return (0); } else { } if ((int )l2->tei != ptei && ptei != 127) { kfree_skb(skb); return (0); } else { } } else { datap = datap + (unsigned long )l; } if (((int )*datap & 1) == 0) { c = iframe_error(l2, skb); if (c == 0) { ret = mISDN_FsmEvent(& l2->l2m, 7, (void *)skb); } else { } } else { tmp___8 = IsSFrame(datap, l2); if (tmp___8 != 0) { c = super_error(l2, skb); if (c == 0) { ret = mISDN_FsmEvent(& l2->l2m, 6, (void *)skb); } else { } } else { tmp___7 = IsUI(datap); if (tmp___7 != 0) { c = UI_error(l2, skb); if (c == 0) { ret = mISDN_FsmEvent(& l2->l2m, 0, (void *)skb); } else { } } else { tmp___6 = IsSABME(datap, l2); if (tmp___6 != 0) { c = unnum_error(l2, skb, 0); if (c == 0) { ret = mISDN_FsmEvent(& l2->l2m, 1, (void *)skb); } else { } } else { tmp___5 = IsUA(datap); if (tmp___5 != 0) { c = unnum_error(l2, skb, 1); if (c == 0) { ret = mISDN_FsmEvent(& l2->l2m, 4, (void *)skb); } else { } } else { tmp___4 = IsDISC(datap); if (tmp___4 != 0) { c = unnum_error(l2, skb, 0); if (c == 0) { ret = mISDN_FsmEvent(& l2->l2m, 2, (void *)skb); } else { } } else { tmp___3 = IsDM(datap); if (tmp___3 != 0) { c = unnum_error(l2, skb, 1); if (c == 0) { ret = mISDN_FsmEvent(& l2->l2m, 3, (void *)skb); } else { } } else { tmp___2 = IsFRMR(datap); if (tmp___2 != 0) { c = FRMR_error(l2, skb); if (c == 0) { ret = mISDN_FsmEvent(& l2->l2m, 5, (void *)skb); } else { } } else { c = 76; } } } } } } } } if (c != 0) { printk("<4>l2 D-channel frame error %c\n", c); mISDN_FsmEvent(& l2->l2m, 21, (void *)((long )c)); } else { } return (ret); } } static int l2_send(struct mISDNchannel *ch , struct sk_buff *skb ) { struct layer2 *l2 ; struct mISDNchannel const *__mptr ; struct mISDNhead *hh ; int ret ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; u_int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; u_int tmp___7 ; int tmp___8 ; { __mptr = (struct mISDNchannel const *)ch; l2 = (struct layer2 *)__mptr + 0xfffffffffffffff0UL; hh = (struct mISDNhead *)(& skb->cb); ret = -22; if ((*debug___3 & 524288U) != 0U) { printk("<7>%s: prim(%x) id(%x) tei(%d)\n", "l2_send", hh->prim, hh->id, (int )l2->tei); } else { } switch (hh->prim) { case 8194U: ret = ph_data_indication(l2, hh, skb); goto ldv_29771; case 24578U: ret = ph_data_confirm(l2, hh, skb); goto ldv_29771; case 258U: test_and_set_bit(12, (unsigned long volatile *)(& l2->flag)); l2up_create(l2, 1282U, 0, 0); tmp = test_and_clear_bit(13, (unsigned long volatile *)(& l2->flag)); if (tmp != 0) { ret = mISDN_FsmEvent(& l2->l2m, 11, (void *)skb); } else { } goto ldv_29771; case 514U: test_and_clear_bit(12, (unsigned long volatile *)(& l2->flag)); l2up_create(l2, 1538U, 0, 0); ret = mISDN_FsmEvent(& l2->l2m, 16, (void *)skb); goto ldv_29771; case 1794U: ; if ((unsigned long )l2->up == (unsigned long )((struct mISDNchannel *)0)) { goto ldv_29771; } else { } ret = (*((l2->up)->send))(l2->up, skb); goto ldv_29771; case 12292U: ret = mISDN_FsmEvent(& l2->l2m, 8, (void *)skb); goto ldv_29771; case 12548U: ret = mISDN_FsmEvent(& l2->l2m, 10, (void *)skb); goto ldv_29771; case 4100U: tmp___0 = constant_test_bit(0, (unsigned long const volatile *)(& l2->flag)); if (tmp___0 != 0) { test_and_set_bit(2, (unsigned long volatile *)(& l2->flag)); } else { } tmp___6 = constant_test_bit(12, (unsigned long const volatile *)(& l2->flag)); if (tmp___6 != 0) { tmp___4 = constant_test_bit(1, (unsigned long const volatile *)(& l2->flag)); if (tmp___4 != 0) { ret = mISDN_FsmEvent(& l2->l2m, 11, (void *)skb); } else { tmp___5 = constant_test_bit(2, (unsigned long const volatile *)(& l2->flag)); if (tmp___5 != 0) { ret = mISDN_FsmEvent(& l2->l2m, 11, (void *)skb); } else { tmp___1 = constant_test_bit(1, (unsigned long const volatile *)(& l2->flag)); if (tmp___1 != 0) { test_and_set_bit(13, (unsigned long volatile *)(& l2->flag)); } else { tmp___2 = constant_test_bit(2, (unsigned long const volatile *)(& l2->flag)); if (tmp___2 != 0) { test_and_set_bit(13, (unsigned long volatile *)(& l2->flag)); } else { } } tmp___3 = l2_newid(l2); ret = l2down(l2, 257U, tmp___3, skb); } } } else { } goto ldv_29771; case 4356U: tmp___8 = constant_test_bit(0, (unsigned long const volatile *)(& l2->flag)); if (tmp___8 != 0) { tmp___7 = l2_newid(l2); l2down_create(l2, 513U, tmp___7, 0, 0); } else { } ret = mISDN_FsmEvent(& l2->l2m, 12, (void *)skb); goto ldv_29771; default: ; if ((*debug___3 & 16711680U) != 0U) { l2m_debug(& l2->l2m, (char *)"l2 unknown pr %04x", hh->prim); } else { } } ldv_29771: ; if (ret != 0) { kfree_skb(skb); ret = 0; } else { } return (ret); } } int tei_l2(struct layer2 *l2 , u_int cmd , u_long arg ) { int ret ; { ret = -22; if ((*debug___3 & 1048576U) != 0U) { printk("<7>%s: cmd(%x)\n", "tei_l2", cmd); } else { } switch (cmd) { case (u_int )6148: ret = mISDN_FsmEvent(& l2->l2m, 13, (void *)arg); goto ldv_29789; case (u_int )6660: ret = mISDN_FsmEvent(& l2->l2m, 14, 0); goto ldv_29789; case (u_int )7940: ret = mISDN_FsmEvent(& l2->l2m, 15, 0); goto ldv_29789; case (u_int )24324: printk("<5>MDL_ERROR|REQ (tei_l2)\n"); ret = mISDN_FsmEvent(& l2->l2m, 15, 0); goto ldv_29789; } ldv_29789: ; return (ret); } } static void release_l2(struct layer2 *l2 ) { int tmp ; { mISDN_FsmDelTimer(& l2->t200, 21); mISDN_FsmDelTimer(& l2->t203, 16); skb_queue_purge(& l2->i_queue); skb_queue_purge(& l2->ui_queue); skb_queue_purge(& l2->down_queue); ReleaseWin(l2); tmp = constant_test_bit(1, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { TEIrelease(l2); if ((unsigned long )l2->ch.st != (unsigned long )((struct mISDNstack *)0)) { (*(((l2->ch.st)->dev)->D.ctrl))(& ((l2->ch.st)->dev)->D, 512U, 0); } else { } } else { } kfree((void const *)l2); return; } } static int l2_ctrl(struct mISDNchannel *ch , u_int cmd , void *arg ) { struct layer2 *l2 ; struct mISDNchannel const *__mptr ; u_int info ; int tmp ; { __mptr = (struct mISDNchannel const *)ch; l2 = (struct layer2 *)__mptr + 0xfffffffffffffff0UL; if ((*debug___3 & 262144U) != 0U) { printk("<7>%s:(%x)\n", "l2_ctrl", cmd); } else { } switch (cmd) { case (u_int )256: tmp = constant_test_bit(1, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { set_channel_address(& l2->ch, (u_int )l2->sapi, (u_int )l2->tei); info = 1U; l2up_create(l2, 8U, 4, (void *)(& info)); } else { } goto ldv_29807; case (u_int )512: ; if ((unsigned long )l2->ch.peer != (unsigned long )((struct mISDNchannel *)0)) { (*((l2->ch.peer)->ctrl))(l2->ch.peer, 512U, 0); } else { } release_l2(l2); goto ldv_29807; } ldv_29807: ; return (0); } } struct layer2 *create_l2(struct mISDNchannel *ch , u_int protocol , u_long options , u_long arg ) { struct layer2 *l2 ; struct channel_req rq ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; { tmp = kzalloc(816UL, 208U); l2 = (struct layer2 *)tmp; if ((unsigned long )l2 == (unsigned long )((struct layer2 *)0)) { printk("<3>kzalloc layer2 failed\n"); return (0); } else { } l2->next_id = 1U; l2->down_id = 65534U; l2->up = ch; l2->ch.st = ch->st; l2->ch.send = & l2_send; l2->ch.ctrl = & l2_ctrl; switch (protocol) { case (u_int )17: test_and_set_bit(1, (unsigned long volatile *)(& l2->flag)); test_and_set_bit(18, (unsigned long volatile *)(& l2->flag)); test_and_set_bit(3, (unsigned long volatile *)(& l2->flag)); l2->sapi = 0; l2->maxlen = 260U; tmp___0 = constant_test_bit(1, (unsigned long const volatile *)(& options)); if (tmp___0 != 0) { l2->window = 7U; } else { l2->window = 1U; } tmp___1 = constant_test_bit(2, (unsigned long const volatile *)(& options)); if (tmp___1 != 0) { test_and_set_bit(14, (unsigned long volatile *)(& l2->flag)); } else { } tmp___2 = constant_test_bit(3, (unsigned long const volatile *)(& options)); if (tmp___2 != 0) { test_and_set_bit(15, (unsigned long volatile *)(& l2->flag)); } else { } l2->tei = (signed char )arg; l2->T200 = 1000; l2->N200 = 3; l2->T203 = 10000; tmp___3 = constant_test_bit(1, (unsigned long const volatile *)(& options)); if (tmp___3 != 0) { rq.protocol = 4U; } else { rq.protocol = 2U; } rq.adr.channel = 0U; (*(((l2->ch.st)->dev)->D.ctrl))(& ((l2->ch.st)->dev)->D, 256U, (void *)(& rq)); goto ldv_29818; case (u_int )16: test_and_set_bit(1, (unsigned long volatile *)(& l2->flag)); test_and_set_bit(3, (unsigned long volatile *)(& l2->flag)); test_and_set_bit(2, (unsigned long volatile *)(& l2->flag)); l2->sapi = 0; l2->maxlen = 260U; tmp___4 = constant_test_bit(1, (unsigned long const volatile *)(& options)); if (tmp___4 != 0) { l2->window = 7U; } else { l2->window = 1U; } tmp___5 = constant_test_bit(2, (unsigned long const volatile *)(& options)); if (tmp___5 != 0) { test_and_set_bit(14, (unsigned long volatile *)(& l2->flag)); } else { } tmp___6 = constant_test_bit(3, (unsigned long const volatile *)(& options)); if (tmp___6 != 0) { test_and_set_bit(15, (unsigned long volatile *)(& l2->flag)); } else { } l2->tei = (signed char )arg; l2->T200 = 1000; l2->N200 = 3; l2->T203 = 10000; tmp___7 = constant_test_bit(1, (unsigned long const volatile *)(& options)); if (tmp___7 != 0) { rq.protocol = 3U; } else { rq.protocol = 1U; } rq.adr.channel = 0U; (*(((l2->ch.st)->dev)->D.ctrl))(& ((l2->ch.st)->dev)->D, 256U, (void *)(& rq)); goto ldv_29818; case (u_int )35: test_and_set_bit(0, (unsigned long volatile *)(& l2->flag)); l2->window = 7U; l2->maxlen = 2048U; l2->T200 = 1000; l2->N200 = 4; l2->T203 = 5000; l2->addr.A = 3U; l2->addr.B = 1U; goto ldv_29818; default: printk("<3>layer2 create failed prt %x\n", protocol); kfree((void const *)l2); return (0); } ldv_29818: skb_queue_head_init(& l2->i_queue); skb_queue_head_init(& l2->ui_queue); skb_queue_head_init(& l2->down_queue); skb_queue_head_init(& l2->tmp_queue); InitWin(l2); l2->l2m.fsm = & l2fsm; tmp___8 = constant_test_bit(0, (unsigned long const volatile *)(& l2->flag)); if (tmp___8 != 0) { l2->l2m.state = 3; } else { tmp___9 = constant_test_bit(14, (unsigned long const volatile *)(& l2->flag)); if (tmp___9 != 0) { l2->l2m.state = 3; } else { tmp___10 = constant_test_bit(18, (unsigned long const volatile *)(& l2->flag)); if (tmp___10 != 0) { l2->l2m.state = 3; } else { l2->l2m.state = 0; } } } l2->l2m.debug = (int )*debug___3; l2->l2m.userdata = (void *)l2; l2->l2m.userint = 0; l2->l2m.printdebug = & l2m_debug; mISDN_FsmInitTimer(& l2->l2m, & l2->t200); mISDN_FsmInitTimer(& l2->l2m, & l2->t203); return (l2); } } static int x75create(struct channel_req *crq ) { struct layer2 *l2 ; { if (crq->protocol != 35U) { return (-93); } else { } l2 = create_l2(crq->ch, crq->protocol, 0UL, 0UL); if ((unsigned long )l2 == (unsigned long )((struct layer2 *)0)) { return (-12); } else { } crq->ch = & l2->ch; crq->protocol = 34U; return (0); } } static struct Bprotocol X75SLP = {{0, 0}, (char *)"X75SLP", 8U, & x75create}; int Isdnl2_Init(u_int *deb ) { { debug___3 = deb; mISDN_register_Bprotocol(& X75SLP); l2fsm.state_count = 8; l2fsm.event_count = 22; l2fsm.strEvent = (char **)(& strL2Event); l2fsm.strState = (char **)(& strL2State); mISDN_FsmNew(& l2fsm, (struct FsmNode *)(& L2FnList), 88); TEIInit(deb); return (0); } } void Isdnl2_cleanup(void) { { mISDN_unregister_Bprotocol(& X75SLP); TEIFree(); mISDN_FsmFree(& l2fsm); return; } } void ldv_main6_sequence_infinite_withcheck_stateful(void) { struct channel_req *var_group1 ; int tmp ; int tmp___0 ; { LDV_IN_INTERRUPT = 1; ldv_initialize(); goto ldv_29854; ldv_29853: tmp = nondet_int(); switch (tmp) { case 0: ldv_handler_precall(); x75create(var_group1); goto ldv_29851; default: ; goto ldv_29851; } ldv_29851: ; ldv_29854: tmp___0 = nondet_int(); if (tmp___0 != 0) { goto ldv_29853; } else { } ldv_check_final_state(); return; } } void ldv___ldv_spin_lock_297(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_298(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_lock_of_NOT_ARG_SIGN(); __ldv_spin_unlock(ldv_func_arg1); return; } } int ldv___ldv_spin_trylock_299(spinlock_t *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = __ldv_spin_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock_lock_of_NOT_ARG_SIGN(); return (tmp___0); return (ldv_func_res); } } void ldv___ldv_spin_lock_300(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_dcache_lock(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_301(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_302(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_303(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_dcache_lock(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_304(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_305(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_306(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_i_lock_of_inode(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_307(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_i_lock_of_inode(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_308(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_309(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_310(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_siglock_of_sighand_struct(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_311(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_siglock_of_sighand_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_312(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_alloc_lock_of_task_struct(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_313(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_alloc_lock_of_task_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_314(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_siglock_of_sighand_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_315(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock__xmit_lock_of_netdev_queue(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_316(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock__xmit_lock_of_netdev_queue(); __ldv_spin_lock(ldv_func_arg1); return; } } int ldv___ldv_spin_trylock_317(spinlock_t *ldv_func_arg1 ) { ldv_func_ret_type___19 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = __ldv_spin_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock__xmit_lock_of_netdev_queue(); return (tmp___0); return (ldv_func_res); } } void ldv___ldv_spin_unlock_318(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_319(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_320(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_tx_global_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_321(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_tx_global_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_322(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_addr_list_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_323(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_addr_list_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_324(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_addr_list_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_325(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_addr_list_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } extern unsigned long _read_lock_irqsave(rwlock_t * ) ; extern void _read_unlock_irqrestore(rwlock_t * , unsigned long ) ; void ldv___ldv_spin_lock_355(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_358(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_359(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_362(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_364(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_366(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_368(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_370(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_373(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_374(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_378(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_380(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_381(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_356(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_360(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_361(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_363(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_365(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_367(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_369(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_371(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_372(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_376(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_377(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_379(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_382(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_383(spinlock_t *ldv_func_arg1 ) ; int ldv___ldv_spin_trylock_357(spinlock_t *ldv_func_arg1 ) ; int ldv___ldv_spin_trylock_375(spinlock_t *ldv_func_arg1 ) ; extern void get_random_bytes(void * , int ) ; static u_int *debug___4 ; static struct Fsm deactfsm = {0, 0, 0, 0, 0}; static struct Fsm teifsmu = {0, 0, 0, 0, 0}; static struct Fsm teifsmn = {0, 0, 0, 0, 0}; static char *strDeactState[3U] = { (char *)"ST_L1_DEACT", (char *)"ST_L1_DEACT_PENDING", (char *)"ST_L1_ACTIV"}; static char *strDeactEvent[6U] = { (char *)"EV_ACTIVATE", (char *)"EV_ACTIVATE_IND", (char *)"EV_DEACTIVATE", (char *)"EV_DEACTIVATE_IND", (char *)"EV_UI", (char *)"EV_DATIMER"}; static void da_debug(struct FsmInst *fi , char *fmt , ...) { struct manager *mgr ; va_list va ; { mgr = (struct manager *)fi->userdata; if ((*debug___4 & 2097152U) == 0U) { return; } else { } ldv__builtin_va_start((__va_list_tag *)(& va)); printk("<7>mgr(%d): ", ((mgr->ch.st)->dev)->id); vprintk((char const *)fmt, (__va_list_tag *)(& va)); printk("\n"); ldv__builtin_va_end((__va_list_tag *)(& va)); return; } } static void da_activate(struct FsmInst *fi , int event , void *arg ) { struct manager *mgr ; { mgr = (struct manager *)fi->userdata; if (fi->state == 1) { mISDN_FsmDelTimer(& mgr->datimer, 1); } else { } mISDN_FsmChangeState(fi, 2); return; } } static void da_deactivate_ind(struct FsmInst *fi , int event , void *arg ) { { mISDN_FsmChangeState(fi, 0); return; } } static void da_deactivate(struct FsmInst *fi , int event , void *arg ) { struct manager *mgr ; struct layer2 *l2 ; u_long flags ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { mgr = (struct manager *)fi->userdata; flags = _read_lock_irqsave(& mgr->lock); __mptr = (struct list_head const *)mgr->layer2.next; l2 = (struct layer2 *)__mptr; goto ldv_29095; ldv_29094: ; if (l2->l2m.state > 3) { _read_unlock_irqrestore(& mgr->lock, flags); return; } else { } __mptr___0 = (struct list_head const *)l2->list.next; l2 = (struct layer2 *)__mptr___0; ldv_29095: __builtin_prefetch((void const *)l2->list.next); if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { goto ldv_29094; } else { } _read_unlock_irqrestore(& mgr->lock, flags); mISDN_FsmAddTimer(& mgr->datimer, 10000, 5, 0, 1); mISDN_FsmChangeState(fi, 1); return; } } static void da_ui(struct FsmInst *fi , int event , void *arg ) { struct manager *mgr ; { mgr = (struct manager *)fi->userdata; mISDN_FsmDelTimer(& mgr->datimer, 2); mISDN_FsmAddTimer(& mgr->datimer, 10000, 5, 0, 2); return; } } static void da_timer(struct FsmInst *fi , int event , void *arg ) { struct manager *mgr ; struct layer2 *l2 ; u_long flags ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { mgr = (struct manager *)fi->userdata; flags = _read_lock_irqsave(& mgr->lock); __mptr = (struct list_head const *)mgr->layer2.next; l2 = (struct layer2 *)__mptr; goto ldv_29125; ldv_29124: ; if (l2->l2m.state > 3) { _read_unlock_irqrestore(& mgr->lock, flags); mISDN_FsmChangeState(fi, 2); return; } else { } __mptr___0 = (struct list_head const *)l2->list.next; l2 = (struct layer2 *)__mptr___0; ldv_29125: __builtin_prefetch((void const *)l2->list.next); if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { goto ldv_29124; } else { } _read_unlock_irqrestore(& mgr->lock, flags); mISDN_FsmChangeState(fi, 0); _queue_data(& mgr->ch, 513U, 65535U, 0U, 0, 32U); return; } } static struct FsmNode DeactFnList[6U] = { {0, 1, & da_activate}, {2, 3, & da_deactivate_ind}, {2, 2, & da_deactivate}, {1, 0, & da_activate}, {1, 4, & da_ui}, {1, 5, & da_timer}}; static char *strTeiState[3U] = { (char *)"ST_TEI_NOP", (char *)"ST_TEI_IDREQ", (char *)"ST_TEI_IDVERIFY"}; static char *strTeiEvent[9U] = { (char *)"EV_IDREQ", (char *)"EV_ASSIGN", (char *)"EV_ASSIGN_REQ", (char *)"EV_DENIED", (char *)"EV_CHKREQ", (char *)"EV_CHKRESP", (char *)"EV_REMOVE", (char *)"EV_VERIFY", (char *)"EV_TIMER"}; static void tei_debug(struct FsmInst *fi , char *fmt , ...) { struct teimgr *tm ; va_list va ; { tm = (struct teimgr *)fi->userdata; if ((*debug___4 & 2097152U) == 0U) { return; } else { } ldv__builtin_va_start((__va_list_tag *)(& va)); printk("<7>tei(%d): ", (int )(tm->l2)->tei); vprintk((char const *)fmt, (__va_list_tag *)(& va)); printk("\n"); ldv__builtin_va_end((__va_list_tag *)(& va)); return; } } static int get_free_id(struct manager *mgr ) { u64 ids ; int i ; struct layer2 *l2 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; int tmp ; { ids = 0ULL; __mptr = (struct list_head const *)mgr->layer2.next; l2 = (struct layer2 *)__mptr; goto ldv_29165; ldv_29164: ; if (l2->ch.nr > 63U) { printk("<4>%s: more as 63 layer2 for one device\n", "get_free_id"); return (-16); } else { } test_and_set_bit((int )l2->ch.nr, (unsigned long volatile *)(& ids)); __mptr___0 = (struct list_head const *)l2->list.next; l2 = (struct layer2 *)__mptr___0; ldv_29165: __builtin_prefetch((void const *)l2->list.next); if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { goto ldv_29164; } else { } i = 1; goto ldv_29168; ldv_29167: tmp = variable_test_bit(i, (unsigned long const volatile *)(& ids)); if (tmp == 0) { return (i); } else { } i = i + 1; ldv_29168: ; if (i <= 63) { goto ldv_29167; } else { } printk("<4>%s: more as 63 layer2 for one device\n", "get_free_id"); return (-16); } } static int get_free_tei(struct manager *mgr ) { u64 ids ; int i ; struct layer2 *l2 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; int tmp ; { ids = 0ULL; __mptr = (struct list_head const *)mgr->layer2.next; l2 = (struct layer2 *)__mptr; goto ldv_29182; ldv_29181: ; if (l2->ch.nr == 0U) { goto ldv_29180; } else { } if ((l2->ch.addr & 255U) != 0U) { goto ldv_29180; } else { } i = (int )(l2->ch.addr >> 8); if (i <= 63) { goto ldv_29180; } else { } i = i + -64; test_and_set_bit(i, (unsigned long volatile *)(& ids)); ldv_29180: __mptr___0 = (struct list_head const *)l2->list.next; l2 = (struct layer2 *)__mptr___0; ldv_29182: __builtin_prefetch((void const *)l2->list.next); if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { goto ldv_29181; } else { } i = 0; goto ldv_29185; ldv_29184: tmp = variable_test_bit(i, (unsigned long const volatile *)(& ids)); if (tmp == 0) { return (i + 64); } else { } i = i + 1; ldv_29185: ; if (i <= 63) { goto ldv_29184; } else { } printk("<4>%s: more as 63 dynamic tei for one device\n", "get_free_tei"); return (-1); } } static void teiup_create(struct manager *mgr , u_int prim , int len , void *arg ) { struct sk_buff *skb ; struct mISDNhead *hh ; int err ; size_t __len ; void *__ret ; unsigned char *tmp___0 ; { skb = mI_alloc_skb((unsigned int )len, 32U); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return; } else { } hh = (struct mISDNhead *)(& skb->cb); hh->prim = prim; hh->id = (mgr->ch.nr << 16) | mgr->ch.addr; if (len != 0) { __len = (size_t )len; tmp___0 = skb_put(skb, (unsigned int )len); __ret = memcpy((void *)tmp___0, (void const *)arg, __len); } else { } err = (*((mgr->up)->send))(mgr->up, skb); if (err != 0) { printk("<4>%s: err=%d\n", "teiup_create", err); kfree_skb(skb); } else { } return; } } static u_int new_id(struct manager *mgr ) { u_int id ; u_int tmp ; { tmp = mgr->nextid; mgr->nextid = mgr->nextid + (u_int )1; id = tmp; if (id == 32767U) { mgr->nextid = 1U; } else { } id = id << 16; id = id | 32512U; id = id | 63U; return (id); } } static void do_send(struct manager *mgr ) { int tmp ; struct sk_buff *skb ; struct sk_buff *tmp___0 ; int tmp___1 ; int tmp___2 ; { tmp = constant_test_bit(16, (unsigned long const volatile *)(& mgr->options)); if (tmp == 0) { return; } else { } tmp___2 = test_and_set_bit(17, (unsigned long volatile *)(& mgr->options)); if (tmp___2 == 0) { tmp___0 = skb_dequeue(& mgr->sendq); skb = tmp___0; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { test_and_clear_bit(17, (unsigned long volatile *)(& mgr->options)); return; } else { } mgr->lastid = ((struct mISDNhead *)(& skb->cb))->id; mISDN_FsmEvent(& mgr->deact, 4, 0); tmp___1 = (*(mgr->ch.recv))(mgr->ch.peer, skb); if (tmp___1 != 0) { kfree_skb(skb); test_and_clear_bit(17, (unsigned long volatile *)(& mgr->options)); mgr->lastid = 65534U; } else { } } else { } return; } } static void do_ack(struct manager *mgr , u_int id ) { struct sk_buff *skb ; int tmp ; int tmp___0 ; int tmp___1 ; { tmp___1 = constant_test_bit(17, (unsigned long const volatile *)(& mgr->options)); if (tmp___1 != 0) { if (mgr->lastid == id) { tmp___0 = constant_test_bit(16, (unsigned long const volatile *)(& mgr->options)); if (tmp___0 != 0) { skb = skb_dequeue(& mgr->sendq); if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { mgr->lastid = ((struct mISDNhead *)(& skb->cb))->id; tmp = (*(mgr->ch.recv))(mgr->ch.peer, skb); if (tmp == 0) { return; } else { } kfree_skb(skb); } else { } } else { } mgr->lastid = 65534U; test_and_clear_bit(17, (unsigned long volatile *)(& mgr->options)); } else { } } else { } return; } } static void mgr_send_down(struct manager *mgr , struct sk_buff *skb ) { int tmp ; { skb_queue_tail(& mgr->sendq, skb); tmp = constant_test_bit(16, (unsigned long const volatile *)(& mgr->options)); if (tmp == 0) { _queue_data(& mgr->ch, 257U, 65535U, 0U, 0, 208U); } else { do_send(mgr); } return; } } static int dl_unit_data(struct manager *mgr , struct sk_buff *skb ) { int tmp ; int tmp___0 ; { tmp = constant_test_bit(25, (unsigned long const volatile *)(& mgr->options)); if (tmp == 0) { return (-22); } else { } tmp___0 = constant_test_bit(16, (unsigned long const volatile *)(& mgr->options)); if (tmp___0 == 0) { _queue_data(& mgr->ch, 257U, 65535U, 0U, 0, 208U); } else { } skb_push(skb, 3U); *(skb->data) = 2U; *(skb->data + 1UL) = 255U; *(skb->data + 2UL) = 3U; ((struct mISDNhead *)(& skb->cb))->prim = 8193U; ((struct mISDNhead *)(& skb->cb))->id = new_id(mgr); skb_queue_tail(& mgr->sendq, skb); do_send(mgr); return (0); } } static unsigned int random_ri(void) { u16 x ; { get_random_bytes((void *)(& x), 2); return ((unsigned int )x); } } static struct layer2 *findtei(struct manager *mgr , int tei ) { struct layer2 *l2 ; u_long flags ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { flags = _read_lock_irqsave(& mgr->lock); __mptr = (struct list_head const *)mgr->layer2.next; l2 = (struct layer2 *)__mptr; goto ldv_29241; ldv_29240: ; if ((((int )l2->sapi == 0 && (int )l2->tei > 0) && (int )l2->tei != 127) && (int )l2->tei == tei) { goto done; } else { } __mptr___0 = (struct list_head const *)l2->list.next; l2 = (struct layer2 *)__mptr___0; ldv_29241: __builtin_prefetch((void const *)l2->list.next); if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { goto ldv_29240; } else { } l2 = 0; done: _read_unlock_irqrestore(& mgr->lock, flags); return (l2); } } static void put_tei_msg(struct manager *mgr , u_char m_id , unsigned int ri , u_char tei ) { struct sk_buff *skb ; u_char bp[8U] ; int tmp ; u_int tmp___0 ; { bp[0] = 252U; tmp = constant_test_bit(25, (unsigned long const volatile *)(& mgr->options)); if (tmp != 0) { bp[0] = (u_char )((unsigned int )bp[0] | 2U); } else { } bp[1] = 255U; bp[2] = 3U; bp[3] = 15U; bp[4] = (u_char )(ri >> 8); bp[5] = (u_char )ri; bp[6] = m_id; bp[7] = (u_char )((int )((signed char )((int )tei << 1)) | 1); tmp___0 = new_id(mgr); skb = _alloc_mISDN_skb(8193U, tmp___0, 8U, (void *)(& bp), 32U); if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { printk("<4>%s: no skb for tei msg\n", "put_tei_msg"); return; } else { } mgr_send_down(mgr, skb); return; } } static void tei_id_request(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; unsigned int tmp ; { tm = (struct teimgr *)fi->userdata; if ((int )(tm->l2)->tei != 127) { (*(tm->tei_m.printdebug))(& tm->tei_m, (char *)"assign request for allready assigned tei %d", (int )(tm->l2)->tei); return; } else { } tmp = random_ri(); tm->ri = (int )tmp; if ((*debug___4 & 1048576U) != 0U) { (*(tm->tei_m.printdebug))(& tm->tei_m, (char *)"assign request ri %d", tm->ri); } else { } put_tei_msg(tm->mgr, 1, (unsigned int )tm->ri, 127); mISDN_FsmChangeState(fi, 1); mISDN_FsmAddTimer(& tm->timer, tm->tval, 8, 0, 1); tm->nval = 3; return; } } static void tei_id_assign(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; struct layer2 *l2 ; u_char *dp ; int ri ; int tei ; u_char *tmp ; u_char *tmp___0 ; { tm = (struct teimgr *)fi->userdata; dp = (u_char *)arg; tmp = dp; dp = dp + 1; ri = (int )((unsigned int )*tmp << 8); tmp___0 = dp; dp = dp + 1; ri = (int )*tmp___0 + ri; dp = dp + 1; tei = (int )*dp >> 1; if ((*debug___4 & 1048576U) != 0U) { (*(tm->tei_m.printdebug))(fi, (char *)"identity assign ri %d tei %d", ri, tei); } else { } l2 = findtei(tm->mgr, tei); if ((unsigned long )l2 != (unsigned long )((struct layer2 *)0)) { if ((l2->tm)->ri != ri) { (*(tm->tei_m.printdebug))(fi, (char *)"possible duplicate assignment tei %d", tei); tei_l2(l2, 24324U, 0UL); } else if (tm->ri == ri) { mISDN_FsmDelTimer(& tm->timer, 1); mISDN_FsmChangeState(fi, 0); tei_l2(tm->l2, 6148U, (u_long )tei); } else { } } else { } return; } } static void tei_id_test_dup(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; struct layer2 *l2 ; u_char *dp ; int tei ; int ri ; u_char *tmp ; u_char *tmp___0 ; { tm = (struct teimgr *)fi->userdata; dp = (u_char *)arg; tmp = dp; dp = dp + 1; ri = (int )((unsigned int )*tmp << 8); tmp___0 = dp; dp = dp + 1; ri = (int )*tmp___0 + ri; dp = dp + 1; tei = (int )*dp >> 1; if ((*debug___4 & 1048576U) != 0U) { (*(tm->tei_m.printdebug))(fi, (char *)"foreign identity assign ri %d tei %d", ri, tei); } else { } l2 = findtei(tm->mgr, tei); if ((unsigned long )l2 != (unsigned long )((struct layer2 *)0)) { if ((l2->tm)->ri != ri) { (*(tm->tei_m.printdebug))(fi, (char *)"possible duplicate assignment tei %d", tei); mISDN_FsmEvent(& (l2->tm)->tei_m, 7, 0); } else { } } else { } return; } } static void tei_id_denied(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; u_char *dp ; int ri ; int tei ; u_char *tmp ; u_char *tmp___0 ; { tm = (struct teimgr *)fi->userdata; dp = (u_char *)arg; tmp = dp; dp = dp + 1; ri = (int )((unsigned int )*tmp << 8); tmp___0 = dp; dp = dp + 1; ri = (int )*tmp___0 + ri; dp = dp + 1; tei = (int )*dp >> 1; if ((*debug___4 & 1048576U) != 0U) { (*(tm->tei_m.printdebug))(fi, (char *)"identity denied ri %d tei %d", ri, tei); } else { } return; } } static void tei_id_chk_req(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; u_char *dp ; int tei ; unsigned int tmp ; { tm = (struct teimgr *)fi->userdata; dp = (u_char *)arg; tei = (int )*(dp + 3UL) >> 1; if ((*debug___4 & 1048576U) != 0U) { (*(tm->tei_m.printdebug))(fi, (char *)"identity check req tei %d", tei); } else { } if ((int )(tm->l2)->tei != 127 && (tei == 127 || (int )(tm->l2)->tei == tei)) { mISDN_FsmDelTimer(& tm->timer, 4); mISDN_FsmChangeState(& tm->tei_m, 0); tmp = random_ri(); put_tei_msg(tm->mgr, 5, tmp, (int )((u_char )(tm->l2)->tei)); } else { } return; } } static void tei_id_remove(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; u_char *dp ; int tei ; { tm = (struct teimgr *)fi->userdata; dp = (u_char *)arg; tei = (int )*(dp + 3UL) >> 1; if ((*debug___4 & 1048576U) != 0U) { (*(tm->tei_m.printdebug))(fi, (char *)"identity remove tei %d", tei); } else { } if ((int )(tm->l2)->tei != 127 && (tei == 127 || (int )(tm->l2)->tei == tei)) { mISDN_FsmDelTimer(& tm->timer, 5); mISDN_FsmChangeState(& tm->tei_m, 0); tei_l2(tm->l2, 6660U, 0UL); } else { } return; } } static void tei_id_verify(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; { tm = (struct teimgr *)fi->userdata; if ((*debug___4 & 1048576U) != 0U) { (*(tm->tei_m.printdebug))(fi, (char *)"id verify request for tei %d", (int )(tm->l2)->tei); } else { } put_tei_msg(tm->mgr, 7, 0U, (int )((u_char )(tm->l2)->tei)); mISDN_FsmChangeState(& tm->tei_m, 2); mISDN_FsmAddTimer(& tm->timer, tm->tval, 8, 0, 2); tm->nval = 2; return; } } static void tei_id_req_tout(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; unsigned int tmp ; { tm = (struct teimgr *)fi->userdata; tm->nval = tm->nval - 1; if (tm->nval != 0) { tmp = random_ri(); tm->ri = (int )tmp; if ((*debug___4 & 1048576U) != 0U) { (*(tm->tei_m.printdebug))(fi, (char *)"assign req(%d) ri %d", 4 - tm->nval, tm->ri); } else { } put_tei_msg(tm->mgr, 1, (unsigned int )tm->ri, 127); mISDN_FsmAddTimer(& tm->timer, tm->tval, 8, 0, 3); } else { (*(tm->tei_m.printdebug))(fi, (char *)"assign req failed"); tei_l2(tm->l2, 24324U, 0UL); mISDN_FsmChangeState(fi, 0); } return; } } static void tei_id_ver_tout(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; { tm = (struct teimgr *)fi->userdata; tm->nval = tm->nval - 1; if (tm->nval != 0) { if ((*debug___4 & 1048576U) != 0U) { (*(tm->tei_m.printdebug))(fi, (char *)"id verify req(%d) for tei %d", 3 - tm->nval, (int )(tm->l2)->tei); } else { } put_tei_msg(tm->mgr, 7, 0U, (int )((u_char )(tm->l2)->tei)); mISDN_FsmAddTimer(& tm->timer, tm->tval, 8, 0, 4); } else { (*(tm->tei_m.printdebug))(fi, (char *)"verify req for tei %d failed", (int )(tm->l2)->tei); tei_l2(tm->l2, 6660U, 0UL); mISDN_FsmChangeState(fi, 0); } return; } } static struct FsmNode TeiFnListUser[11U] = { {0, 0, & tei_id_request}, {0, 1, & tei_id_test_dup}, {0, 7, & tei_id_verify}, {0, 6, & tei_id_remove}, {0, 4, & tei_id_chk_req}, {1, 8, & tei_id_req_tout}, {1, 1, & tei_id_assign}, {1, 3, & tei_id_denied}, {2, 8, & tei_id_ver_tout}, {2, 6, & tei_id_remove}, {2, 4, & tei_id_chk_req}}; static void tei_l2remove(struct layer2 *l2 ) { { put_tei_msg((l2->tm)->mgr, 6, 0U, (int )((u_char )l2->tei)); tei_l2(l2, 6660U, 0UL); list_del(& l2->ch.list); (*(l2->ch.ctrl))(& l2->ch, 512U, 0); return; } } static void tei_assign_req(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; u_char *dp ; u_char *tmp ; u_char *tmp___0 ; { tm = (struct teimgr *)fi->userdata; dp = (u_char *)arg; if ((int )(tm->l2)->tei == 127) { (*(tm->tei_m.printdebug))(& tm->tei_m, (char *)"net tei assign request without tei"); return; } else { } tmp = dp; dp = dp + 1; tm->ri = (int )((unsigned int )*tmp << 8); tmp___0 = dp; dp = dp + 1; tm->ri = tm->ri + (int )*tmp___0; if ((*debug___4 & 1048576U) != 0U) { (*(tm->tei_m.printdebug))(& tm->tei_m, (char *)"net assign request ri %d teim %d", tm->ri, (int )*dp); } else { } put_tei_msg(tm->mgr, 2, (unsigned int )tm->ri, (int )((u_char )(tm->l2)->tei)); mISDN_FsmChangeState(fi, 0); return; } } static void tei_id_chk_req_net(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; { tm = (struct teimgr *)fi->userdata; if ((*debug___4 & 1048576U) != 0U) { (*(tm->tei_m.printdebug))(fi, (char *)"id check request for tei %d", (int )(tm->l2)->tei); } else { } tm->rcnt = 0; put_tei_msg(tm->mgr, 4, 0U, (int )((u_char )(tm->l2)->tei)); mISDN_FsmChangeState(& tm->tei_m, 2); mISDN_FsmAddTimer(& tm->timer, tm->tval, 8, 0, 2); tm->nval = 2; return; } } static void tei_id_chk_resp(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; u_char *dp ; int tei ; { tm = (struct teimgr *)fi->userdata; dp = (u_char *)arg; tei = (int )*(dp + 3UL) >> 1; if ((*debug___4 & 1048576U) != 0U) { (*(tm->tei_m.printdebug))(fi, (char *)"identity check resp tei %d", tei); } else { } if ((int )(tm->l2)->tei == tei) { tm->rcnt = tm->rcnt + 1; } else { } return; } } static void tei_id_verify_net(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; u_char *dp ; int tei ; { tm = (struct teimgr *)fi->userdata; dp = (u_char *)arg; tei = (int )*(dp + 3UL) >> 1; if ((*debug___4 & 1048576U) != 0U) { (*(tm->tei_m.printdebug))(fi, (char *)"identity verify req tei %d/%d", tei, (int )(tm->l2)->tei); } else { } if ((int )(tm->l2)->tei == tei) { tei_id_chk_req_net(fi, event, arg); } else { } return; } } static void tei_id_ver_tout_net(struct FsmInst *fi , int event , void *arg ) { struct teimgr *tm ; { tm = (struct teimgr *)fi->userdata; if (tm->rcnt == 1) { if ((*debug___4 & 1048576U) != 0U) { (*(tm->tei_m.printdebug))(fi, (char *)"check req for tei %d sucessful\n", (int )(tm->l2)->tei); } else { } mISDN_FsmChangeState(fi, 0); } else if (tm->rcnt > 1) { tei_l2remove(tm->l2); } else { tm->nval = tm->nval - 1; if (tm->nval != 0) { if ((*debug___4 & 1048576U) != 0U) { (*(tm->tei_m.printdebug))(fi, (char *)"id check req(%d) for tei %d", 3 - tm->nval, (int )(tm->l2)->tei); } else { } put_tei_msg(tm->mgr, 4, 0U, (int )((u_char )(tm->l2)->tei)); mISDN_FsmAddTimer(& tm->timer, tm->tval, 8, 0, 4); } else { (*(tm->tei_m.printdebug))(fi, (char *)"check req for tei %d failed", (int )(tm->l2)->tei); mISDN_FsmChangeState(fi, 0); tei_l2remove(tm->l2); } } return; } } static struct FsmNode TeiFnListNet[5U] = { {0, 2, & tei_assign_req}, {0, 7, & tei_id_verify_net}, {0, 4, & tei_id_chk_req_net}, {2, 8, & tei_id_ver_tout_net}, {2, 5, & tei_id_chk_resp}}; static void tei_ph_data_ind(struct teimgr *tm , u_int mt , u_char *dp , int len ) { int tmp ; { tmp = constant_test_bit(15, (unsigned long const volatile *)(& (tm->l2)->flag)); if (tmp != 0) { return; } else { } if ((*debug___4 & 1048576U) != 0U) { (*(tm->tei_m.printdebug))(& tm->tei_m, (char *)"tei handler mt %x", mt); } else { } if (mt == 2U) { mISDN_FsmEvent(& tm->tei_m, 1, (void *)dp); } else if (mt == 3U) { mISDN_FsmEvent(& tm->tei_m, 3, (void *)dp); } else if (mt == 4U) { mISDN_FsmEvent(& tm->tei_m, 4, (void *)dp); } else if (mt == 6U) { mISDN_FsmEvent(& tm->tei_m, 6, (void *)dp); } else if (mt == 7U) { mISDN_FsmEvent(& tm->tei_m, 7, (void *)dp); } else if (mt == 5U) { mISDN_FsmEvent(& tm->tei_m, 5, (void *)dp); } else { } return; } } static struct layer2 *create_new_tei(struct manager *mgr , int tei ) { u_long opt ; u_long flags ; int id ; struct layer2 *l2 ; void *tmp ; { opt = 0UL; if ((unsigned long )mgr->up == (unsigned long )((struct mISDNchannel *)0)) { return (0); } else { } if (tei <= 63) { test_and_set_bit(3, (unsigned long volatile *)(& opt)); } else { } if ((((mgr->ch.st)->dev)->Dprotocols & 24U) != 0U) { test_and_set_bit(1, (unsigned long volatile *)(& opt)); } else { } l2 = create_l2(mgr->up, 17U, (u_long )((unsigned int )opt), (unsigned long )tei); if ((unsigned long )l2 == (unsigned long )((struct layer2 *)0)) { printk("<4>%s:no memory for layer2\n", "create_new_tei"); return (0); } else { } tmp = kzalloc(176UL, 208U); l2->tm = (struct teimgr *)tmp; if ((unsigned long )l2->tm == (unsigned long )((struct teimgr *)0)) { kfree((void const *)l2); printk("<4>%s:no memory for teimgr\n", "create_new_tei"); return (0); } else { } (l2->tm)->mgr = mgr; (l2->tm)->l2 = l2; (l2->tm)->tei_m.debug = (int )*debug___4 & 2097152; (l2->tm)->tei_m.userdata = (void *)l2->tm; (l2->tm)->tei_m.printdebug = & tei_debug; (l2->tm)->tei_m.fsm = & teifsmn; (l2->tm)->tei_m.state = 0; (l2->tm)->tval = 2000; mISDN_FsmInitTimer(& (l2->tm)->tei_m, & (l2->tm)->timer); flags = _write_lock_irqsave(& mgr->lock); id = get_free_id(mgr); list_add_tail(& l2->list, & mgr->layer2); _write_unlock_irqrestore(& mgr->lock, flags); if (id < 0) { (*(l2->ch.ctrl))(& l2->ch, 512U, 0); printk("<4>%s:no free id\n", "create_new_tei"); return (0); } else { l2->ch.nr = (u_int )id; __add_layer2(& l2->ch, mgr->ch.st); l2->ch.recv = mgr->ch.recv; l2->ch.peer = mgr->ch.peer; (*(l2->ch.ctrl))(& l2->ch, 256U, 0); } return (l2); } } static void new_tei_req(struct manager *mgr , u_char *dp ) { int tei ; int ri ; struct layer2 *l2 ; { ri = (int )*dp << 8; ri = (int )*(dp + 1UL) + ri; if ((unsigned long )mgr->up == (unsigned long )((struct mISDNchannel *)0)) { goto denied; } else { } tei = get_free_tei(mgr); if (tei < 0) { printk("<4>%s:No free tei\n", "new_tei_req"); goto denied; } else { } l2 = create_new_tei(mgr, tei); if ((unsigned long )l2 == (unsigned long )((struct layer2 *)0)) { goto denied; } else { mISDN_FsmEvent(& (l2->tm)->tei_m, 2, (void *)dp); } return; denied: put_tei_msg(mgr, 3, (unsigned int )ri, 127); return; } } static int ph_data_ind(struct manager *mgr , struct sk_buff *skb ) { int ret ; struct layer2 *l2 ; u_long flags ; u_char mt ; int tmp ; int tmp___0 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { ret = -22; if (skb->len <= 7U) { if ((*debug___4 & 1048576U) != 0U) { printk("<7>%s: short mgr frame %d/8\n", "ph_data_ind", skb->len); } else { } goto done; } else { } if ((*debug___4 & 1048576U) != 0U) { if ((unsigned int )((int )*(skb->data) >> 2) != 63U) { goto done; } else { } } else { } if ((int )*(skb->data) & 1) { goto done; } else { } if (((int )*(skb->data + 1UL) & 1) == 0) { goto done; } else { } if ((unsigned int )((int )*(skb->data + 1UL) >> 1) != 127U) { goto done; } else { } if (((int )*(skb->data + 2UL) & 239) != 3) { goto done; } else { } if ((unsigned int )*(skb->data + 3UL) != 15U) { goto done; } else { } mt = *(skb->data + 6UL); switch ((int )mt) { case 1: ; case 5: ; case 7: tmp = constant_test_bit(25, (unsigned long const volatile *)(& mgr->options)); if (tmp == 0) { goto done; } else { } goto ldv_29407; case 2: ; case 3: ; case 4: ; case 6: tmp___0 = constant_test_bit(25, (unsigned long const volatile *)(& mgr->options)); if (tmp___0 != 0) { goto done; } else { } goto ldv_29407; default: ; goto done; } ldv_29407: ret = 0; if ((unsigned int )mt == 1U) { new_tei_req(mgr, skb->data + 4U); goto done; } else { } flags = _read_lock_irqsave(& mgr->lock); __mptr = (struct list_head const *)mgr->layer2.next; l2 = (struct layer2 *)__mptr; goto ldv_29421; ldv_29420: tei_ph_data_ind(l2->tm, (u_int )mt, skb->data + 4U, (int )(skb->len - 4U)); __mptr___0 = (struct list_head const *)l2->list.next; l2 = (struct layer2 *)__mptr___0; ldv_29421: __builtin_prefetch((void const *)l2->list.next); if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { goto ldv_29420; } else { } _read_unlock_irqrestore(& mgr->lock, flags); done: ; return (ret); } } int l2_tei(struct layer2 *l2 , u_int cmd , u_long arg ) { struct teimgr *tm ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { tm = l2->tm; tmp = constant_test_bit(15, (unsigned long const volatile *)(& l2->flag)); if (tmp != 0) { return (0); } else { } if ((*debug___4 & 1048576U) != 0U) { printk("<7>%s: cmd(%x)\n", "l2_tei", cmd); } else { } switch (cmd) { case (u_int )6404: mISDN_FsmEvent(& tm->tei_m, 0, 0); goto ldv_29434; case (u_int )7940: tmp___0 = constant_test_bit(25, (unsigned long const volatile *)(& (tm->mgr)->options)); if (tmp___0 != 0) { mISDN_FsmEvent(& tm->tei_m, 4, (void *)(& l2->tei)); } else { } tmp___1 = constant_test_bit(24, (unsigned long const volatile *)(& (tm->mgr)->options)); if (tmp___1 != 0) { mISDN_FsmEvent(& tm->tei_m, 7, 0); } else { } goto ldv_29434; case (u_int )7172: tmp___2 = constant_test_bit(25, (unsigned long const volatile *)(& (tm->mgr)->options)); if (tmp___2 != 0) { mISDN_FsmEvent(& (tm->mgr)->deact, 0, 0); } else { } goto ldv_29434; case (u_int )7428: tmp___3 = constant_test_bit(25, (unsigned long const volatile *)(& (tm->mgr)->options)); if (tmp___3 != 0) { mISDN_FsmEvent(& (tm->mgr)->deact, 2, 0); } else { } goto ldv_29434; case (u_int )7684: tmp___4 = constant_test_bit(25, (unsigned long const volatile *)(& (tm->mgr)->options)); if (tmp___4 != 0) { mISDN_FsmEvent(& (tm->mgr)->deact, 4, 0); } else { } goto ldv_29434; } ldv_29434: ; return (0); } } void TEIrelease(struct layer2 *l2 ) { struct teimgr *tm ; u_long flags ; { tm = l2->tm; mISDN_FsmDelTimer(& tm->timer, 1); flags = _write_lock_irqsave(& (tm->mgr)->lock); list_del(& l2->list); _write_unlock_irqrestore(& (tm->mgr)->lock, flags); l2->tm = 0; kfree((void const *)tm); return; } } static int create_teimgr(struct manager *mgr , struct channel_req *crq ) { struct layer2 *l2 ; u_long opt ; u_long flags ; int id ; int tmp ; int tmp___0 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; int tmp___1 ; void *tmp___2 ; { opt = 0UL; if ((*debug___4 & 1048576U) != 0U) { printk("<7>%s: %s proto(%x) adr(%d %d %d %d)\n", "create_teimgr", (char *)(& ((mgr->ch.st)->dev)->name), crq->protocol, (int )crq->adr.dev, (int )crq->adr.channel, (int )crq->adr.sapi, (int )crq->adr.tei); } else { } if ((unsigned int )crq->adr.sapi != 0U) { return (-22); } else { } if ((int )((signed char )crq->adr.tei) < 0) { return (-22); } else { } if ((unsigned int )crq->adr.tei <= 63U) { test_and_set_bit(3, (unsigned long volatile *)(& opt)); } else { } if ((unsigned int )crq->adr.tei == 0U) { test_and_set_bit(2, (unsigned long volatile *)(& opt)); } else { } tmp___0 = constant_test_bit(25, (unsigned long const volatile *)(& mgr->options)); if (tmp___0 != 0) { if (crq->protocol == 16U) { return (-93); } else { } if ((unsigned int )crq->adr.tei != 0U && (unsigned int )crq->adr.tei != 127U) { return (-22); } else { } if ((unsigned long )mgr->up != (unsigned long )((struct mISDNchannel *)0)) { printk("<4>%s: only one network manager is allowed\n", "create_teimgr"); return (-16); } else { } } else { tmp = constant_test_bit(24, (unsigned long const volatile *)(& mgr->options)); if (tmp != 0) { if (crq->protocol == 17U) { return (-93); } else { } if ((unsigned int )crq->adr.tei > 63U && (unsigned int )crq->adr.tei <= 126U) { return (-22); } else { } } else { if (crq->protocol == 17U) { test_and_set_bit(25, (unsigned long volatile *)(& mgr->options)); } else { } if (crq->protocol == 16U) { test_and_set_bit(24, (unsigned long volatile *)(& mgr->options)); } else { } } } if ((((mgr->ch.st)->dev)->Dprotocols & 24U) != 0U) { test_and_set_bit(1, (unsigned long volatile *)(& opt)); } else { } if (crq->protocol == 17U && (unsigned int )crq->adr.tei == 127U) { mgr->up = crq->ch; id = 1; teiup_create(mgr, 8U, 4, (void *)(& id)); crq->ch = 0; tmp___1 = list_empty((struct list_head const *)(& mgr->layer2)); if (tmp___1 == 0) { flags = _read_lock_irqsave(& mgr->lock); __mptr = (struct list_head const *)mgr->layer2.next; l2 = (struct layer2 *)__mptr; goto ldv_29467; ldv_29466: l2->up = mgr->up; (*(l2->ch.ctrl))(& l2->ch, 256U, 0); __mptr___0 = (struct list_head const *)l2->list.next; l2 = (struct layer2 *)__mptr___0; ldv_29467: __builtin_prefetch((void const *)l2->list.next); if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { goto ldv_29466; } else { } _read_unlock_irqrestore(& mgr->lock, flags); } else { } return (0); } else { } l2 = create_l2(crq->ch, crq->protocol, (u_long )((unsigned int )opt), (unsigned long )crq->adr.tei); if ((unsigned long )l2 == (unsigned long )((struct layer2 *)0)) { return (-12); } else { } tmp___2 = kzalloc(176UL, 208U); l2->tm = (struct teimgr *)tmp___2; if ((unsigned long )l2->tm == (unsigned long )((struct teimgr *)0)) { kfree((void const *)l2); printk("<3>kmalloc teimgr failed\n"); return (-12); } else { } (l2->tm)->mgr = mgr; (l2->tm)->l2 = l2; (l2->tm)->tei_m.debug = (int )*debug___4 & 2097152; (l2->tm)->tei_m.userdata = (void *)l2->tm; (l2->tm)->tei_m.printdebug = & tei_debug; if (crq->protocol == 16U) { (l2->tm)->tei_m.fsm = & teifsmu; (l2->tm)->tei_m.state = 0; (l2->tm)->tval = 1000; } else { (l2->tm)->tei_m.fsm = & teifsmn; (l2->tm)->tei_m.state = 0; (l2->tm)->tval = 2000; } mISDN_FsmInitTimer(& (l2->tm)->tei_m, & (l2->tm)->timer); flags = _write_lock_irqsave(& mgr->lock); id = get_free_id(mgr); list_add_tail(& l2->list, & mgr->layer2); _write_unlock_irqrestore(& mgr->lock, flags); if (id < 0) { (*(l2->ch.ctrl))(& l2->ch, 512U, 0); } else { l2->ch.nr = (u_int )id; (l2->up)->nr = (u_int )id; crq->ch = & l2->ch; id = 0; } return (id); } } static int mgr_send(struct mISDNchannel *ch , struct sk_buff *skb ) { struct manager *mgr ; struct mISDNhead *hh ; int ret ; struct mISDNchannel const *__mptr ; int tmp ; { hh = (struct mISDNhead *)(& skb->cb); ret = -22; __mptr = (struct mISDNchannel const *)ch; mgr = (struct manager *)__mptr; if ((*debug___4 & 524288U) != 0U) { printk("<7>%s: prim(%x) id(%x)\n", "mgr_send", hh->prim, hh->id); } else { } switch (hh->prim) { case 8194U: mISDN_FsmEvent(& mgr->deact, 4, 0); ret = ph_data_ind(mgr, skb); goto ldv_29489; case 24578U: do_ack(mgr, hh->id); ret = 0; goto ldv_29489; case 258U: test_and_set_bit(16, (unsigned long volatile *)(& mgr->options)); mISDN_FsmEvent(& mgr->deact, 1, 0); do_send(mgr); ret = 0; goto ldv_29489; case 514U: test_and_clear_bit(16, (unsigned long volatile *)(& mgr->options)); mISDN_FsmEvent(& mgr->deact, 3, 0); ret = 0; goto ldv_29489; case 12548U: tmp = dl_unit_data(mgr, skb); return (tmp); } ldv_29489: ; if (ret == 0) { kfree_skb(skb); } else { } return (ret); } } static int free_teimanager(struct manager *mgr ) { struct layer2 *l2 ; struct layer2 *nl2 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; struct list_head const *__mptr___3 ; struct list_head const *__mptr___4 ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { tmp___0 = constant_test_bit(25, (unsigned long const volatile *)(& mgr->options)); if (tmp___0 != 0) { mgr->up = 0; tmp = constant_test_bit(4, (unsigned long const volatile *)(& mgr->options)); if (tmp != 0) { __mptr = (struct list_head const *)mgr->layer2.next; l2 = (struct layer2 *)__mptr; __mptr___0 = (struct list_head const *)l2->list.next; nl2 = (struct layer2 *)__mptr___0; goto ldv_29506; ldv_29505: put_tei_msg(mgr, 6, 0U, (int )((u_char )l2->tei)); mutex_lock_nested(& (mgr->ch.st)->lmutex, 0U); list_del(& l2->ch.list); mutex_unlock(& (mgr->ch.st)->lmutex); (*(l2->ch.ctrl))(& l2->ch, 512U, 0); l2 = nl2; __mptr___1 = (struct list_head const *)nl2->list.next; nl2 = (struct layer2 *)__mptr___1; ldv_29506: ; if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { goto ldv_29505; } else { } test_and_clear_bit(25, (unsigned long volatile *)(& mgr->options)); } else { __mptr___2 = (struct list_head const *)mgr->layer2.next; l2 = (struct layer2 *)__mptr___2; __mptr___3 = (struct list_head const *)l2->list.next; nl2 = (struct layer2 *)__mptr___3; goto ldv_29515; ldv_29514: l2->up = 0; l2 = nl2; __mptr___4 = (struct list_head const *)nl2->list.next; nl2 = (struct layer2 *)__mptr___4; ldv_29515: ; if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { goto ldv_29514; } else { } } } else { } tmp___2 = constant_test_bit(24, (unsigned long const volatile *)(& mgr->options)); if (tmp___2 != 0) { tmp___1 = list_empty((struct list_head const *)(& mgr->layer2)); if (tmp___1 != 0) { test_and_clear_bit(24, (unsigned long volatile *)(& mgr->options)); } else { } } else { } (*(((mgr->ch.st)->dev)->D.ctrl))(& ((mgr->ch.st)->dev)->D, 512U, 0); return (0); } } static int ctrl_teimanager(struct manager *mgr , void *arg ) { int clean ; { clean = *((int *)arg); if (clean != 0) { test_and_set_bit(4, (unsigned long volatile *)(& mgr->options)); } else { test_and_clear_bit(4, (unsigned long volatile *)(& mgr->options)); } return (0); } } static int check_data(struct manager *mgr , struct sk_buff *skb ) { struct mISDNhead *hh ; int ret ; int tei ; struct layer2 *l2 ; int tmp ; { hh = (struct mISDNhead *)(& skb->cb); if ((*debug___4 & 262144U) != 0U) { printk("<7>%s: prim(%x) id(%x)\n", "check_data", hh->prim, hh->id); } else { } tmp = constant_test_bit(24, (unsigned long const volatile *)(& mgr->options)); if (tmp != 0) { return (-107); } else { } if (hh->prim != 8194U) { return (-107); } else { } if (skb->len != 3U) { return (-107); } else { } if ((unsigned int )*(skb->data) != 0U) { return (-107); } else { } if (((int )*(skb->data + 1UL) & 1) == 0) { return (-22); } else { } tei = (int )*(skb->data + 1UL); if (tei > 63) { return (-107); } else { } if (((int )*(skb->data + 2UL) & -17) != 111) { return (-107); } else { } l2 = create_new_tei(mgr, tei); if ((unsigned long )l2 == (unsigned long )((struct layer2 *)0)) { return (-12); } else { } ret = (*(l2->ch.send))(& l2->ch, skb); return (ret); } } void delete_teimanager(struct mISDNchannel *ch ) { struct manager *mgr ; struct layer2 *l2 ; struct layer2 *nl2 ; struct mISDNchannel const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; { __mptr = (struct mISDNchannel const *)ch; mgr = (struct manager *)__mptr; __mptr___0 = (struct list_head const *)mgr->layer2.next; l2 = (struct layer2 *)__mptr___0; __mptr___1 = (struct list_head const *)l2->list.next; nl2 = (struct layer2 *)__mptr___1; goto ldv_29546; ldv_29545: mutex_lock_nested(& (mgr->ch.st)->lmutex, 0U); list_del(& l2->ch.list); mutex_unlock(& (mgr->ch.st)->lmutex); (*(l2->ch.ctrl))(& l2->ch, 512U, 0); l2 = nl2; __mptr___2 = (struct list_head const *)nl2->list.next; nl2 = (struct layer2 *)__mptr___2; ldv_29546: ; if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { goto ldv_29545; } else { } list_del(& mgr->ch.list); list_del(& mgr->bcast.list); skb_queue_purge(& mgr->sendq); kfree((void const *)mgr); return; } } static int mgr_ctrl(struct mISDNchannel *ch , u_int cmd , void *arg ) { struct manager *mgr ; int ret ; struct mISDNchannel const *__mptr ; { ret = -22; __mptr = (struct mISDNchannel const *)ch; mgr = (struct manager *)__mptr; if ((*debug___4 & 262144U) != 0U) { printk("<7>%s(%x, %p)\n", "mgr_ctrl", cmd, arg); } else { } switch (cmd) { case (u_int )256: ret = create_teimgr(mgr, (struct channel_req *)arg); goto ldv_29559; case (u_int )512: ret = free_teimanager(mgr); goto ldv_29559; case (u_int )768: ret = ctrl_teimanager(mgr, arg); goto ldv_29559; case (u_int )1024: ret = check_data(mgr, (struct sk_buff *)arg); goto ldv_29559; } ldv_29559: ; return (ret); } } static int mgr_bcast(struct mISDNchannel *ch , struct sk_buff *skb ) { struct manager *mgr ; struct mISDNchannel const *__mptr ; struct mISDNhead *hh ; struct sk_buff *cskb ; struct layer2 *l2 ; u_long flags ; int ret ; struct list_head const *__mptr___0 ; int tmp ; struct list_head const *__mptr___1 ; { __mptr = (struct mISDNchannel const *)ch; mgr = (struct manager *)__mptr + 0xffffffffffffffb0UL; hh = (struct mISDNhead *)(& skb->cb); cskb = 0; flags = _read_lock_irqsave(& mgr->lock); __mptr___0 = (struct list_head const *)mgr->layer2.next; l2 = (struct layer2 *)__mptr___0; goto ldv_29585; ldv_29584: ; if (((hh->id ^ l2->ch.addr) & 255U) == 0U) { tmp = list_is_last((struct list_head const *)(& l2->list), (struct list_head const *)(& mgr->layer2)); if (tmp != 0) { cskb = skb; skb = 0; } else if ((unsigned long )cskb == (unsigned long )((struct sk_buff *)0)) { cskb = skb_copy((struct sk_buff const *)skb, 208U); } else { } if ((unsigned long )cskb != (unsigned long )((struct sk_buff *)0)) { ret = (*(l2->ch.send))(& l2->ch, cskb); if (ret != 0) { if ((*debug___4 & 16U) != 0U) { printk("<7>%s ch%d prim(%x) addr(%x) err %d\n", "mgr_bcast", l2->ch.nr, hh->prim, l2->ch.addr, ret); } else { cskb = 0; } } else { } } else { printk("<4>%s ch%d addr %x no mem\n", "mgr_bcast", ch->nr, ch->addr); goto out; } } else { } __mptr___1 = (struct list_head const *)l2->list.next; l2 = (struct layer2 *)__mptr___1; ldv_29585: __builtin_prefetch((void const *)l2->list.next); if ((unsigned long )(& l2->list) != (unsigned long )(& mgr->layer2)) { goto ldv_29584; } else { } out: _read_unlock_irqrestore(& mgr->lock, flags); if ((unsigned long )cskb != (unsigned long )((struct sk_buff *)0)) { kfree_skb(cskb); } else { } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { kfree_skb(skb); } else { } return (0); } } static int mgr_bcast_ctrl(struct mISDNchannel *ch , u_int cmd , void *arg ) { { return (-22); } } int create_teimanager(struct mISDNdevice *dev ) { struct manager *mgr ; void *tmp ; rwlock_t __constr_expr_0 ; { tmp = kzalloc(480UL, 208U); mgr = (struct manager *)tmp; if ((unsigned long )mgr == (unsigned long )((struct manager *)0)) { return (-12); } else { } INIT_LIST_HEAD(& mgr->layer2); __constr_expr_0.raw_lock.lock = 16777216U; __constr_expr_0.magic = 3736018669U; __constr_expr_0.owner_cpu = 4294967295U; __constr_expr_0.owner = 0xffffffffffffffffUL; __constr_expr_0.dep_map.key = 0; __constr_expr_0.dep_map.class_cache = 0; __constr_expr_0.dep_map.name = "mgr->lock"; __constr_expr_0.dep_map.cpu = 0; mgr->lock = __constr_expr_0; skb_queue_head_init(& mgr->sendq); mgr->nextid = 1U; mgr->lastid = 65534U; mgr->ch.send = & mgr_send; mgr->ch.ctrl = & mgr_ctrl; mgr->ch.st = dev->D.st; set_channel_address(& mgr->ch, 63U, 127U); add_layer2(& mgr->ch, dev->D.st); mgr->bcast.send = & mgr_bcast; mgr->bcast.ctrl = & mgr_bcast_ctrl; mgr->bcast.st = dev->D.st; set_channel_address(& mgr->bcast, 0U, 127U); add_layer2(& mgr->bcast, dev->D.st); mgr->deact.debug = (int )*debug___4 & 8; mgr->deact.userdata = (void *)mgr; mgr->deact.printdebug = & da_debug; mgr->deact.fsm = & deactfsm; mgr->deact.state = 0; mISDN_FsmInitTimer(& mgr->deact, & mgr->datimer); dev->teimgr = & mgr->ch; return (0); } } int TEIInit(u_int *deb ) { { debug___4 = deb; teifsmu.state_count = 3; teifsmu.event_count = 9; teifsmu.strEvent = (char **)(& strTeiEvent); teifsmu.strState = (char **)(& strTeiState); mISDN_FsmNew(& teifsmu, (struct FsmNode *)(& TeiFnListUser), 11); teifsmn.state_count = 3; teifsmn.event_count = 9; teifsmn.strEvent = (char **)(& strTeiEvent); teifsmn.strState = (char **)(& strTeiState); mISDN_FsmNew(& teifsmn, (struct FsmNode *)(& TeiFnListNet), 5); deactfsm.state_count = 3; deactfsm.event_count = 6; deactfsm.strEvent = (char **)(& strDeactEvent); deactfsm.strState = (char **)(& strDeactState); mISDN_FsmNew(& deactfsm, (struct FsmNode *)(& DeactFnList), 6); return (0); } } void TEIFree(void) { { mISDN_FsmFree(& teifsmu); mISDN_FsmFree(& teifsmn); mISDN_FsmFree(& deactfsm); return; } } void ldv___ldv_spin_lock_355(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_356(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_lock_of_NOT_ARG_SIGN(); __ldv_spin_unlock(ldv_func_arg1); return; } } int ldv___ldv_spin_trylock_357(spinlock_t *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = __ldv_spin_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock_lock_of_NOT_ARG_SIGN(); return (tmp___0); return (ldv_func_res); } } void ldv___ldv_spin_lock_358(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_dcache_lock(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_359(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_360(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_361(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_dcache_lock(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_362(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_363(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_364(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_i_lock_of_inode(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_365(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_i_lock_of_inode(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_366(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_367(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_368(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_siglock_of_sighand_struct(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_369(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_siglock_of_sighand_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_370(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_alloc_lock_of_task_struct(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_371(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_alloc_lock_of_task_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_372(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_siglock_of_sighand_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_373(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock__xmit_lock_of_netdev_queue(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_374(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock__xmit_lock_of_netdev_queue(); __ldv_spin_lock(ldv_func_arg1); return; } } int ldv___ldv_spin_trylock_375(spinlock_t *ldv_func_arg1 ) { ldv_func_ret_type___19 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = __ldv_spin_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock__xmit_lock_of_netdev_queue(); return (tmp___0); return (ldv_func_res); } } void ldv___ldv_spin_unlock_376(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_377(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_378(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_tx_global_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_379(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_tx_global_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_380(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_addr_list_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_381(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_addr_list_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_382(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_addr_list_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_383(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_addr_list_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } __inline static void __list_del(struct list_head *prev , struct list_head *next ) { { next->prev = prev; prev->next = next; return; } } __inline static void list_del_init(struct list_head *entry ) { { __list_del(entry->prev, entry->next); INIT_LIST_HEAD(entry); return; } } void ldv___ldv_spin_lock_413(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_416(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_417(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_420(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_422(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_424(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_426(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_428(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_431(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_432(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_436(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_438(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_439(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_442(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_444(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_446(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_448(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_414(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_418(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_419(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_421(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_423(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_425(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_427(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_429(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_430(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_434(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_435(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_437(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_440(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_441(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_443(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_445(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_447(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_unlock_449(spinlock_t *ldv_func_arg1 ) ; int ldv___ldv_spin_trylock_415(spinlock_t *ldv_func_arg1 ) ; int ldv___ldv_spin_trylock_433(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_lock_of_mISDNtimerdev(void) ; void ldv_spin_unlock_lock_of_mISDNtimerdev(void) ; __inline static void add_timer___0(struct timer_list *timer ) { int tmp ; long tmp___0 ; { tmp = timer_pending((struct timer_list const *)timer); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.quad 1b, %c0\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/timer.h"), "i" (165), "i" (24UL)); ldv_8746: ; goto ldv_8746; } else { } __mod_timer(timer, timer->expires); return; } } extern int nonseekable_open(struct inode * , struct file * ) ; __inline static void poll_wait(struct file *filp , wait_queue_head_t *wait_address , poll_table *p ) { { if ((unsigned long )p != (unsigned long )((poll_table *)0) && (unsigned long )wait_address != (unsigned long )((wait_queue_head_t *)0)) { (*(p->qproc))(filp, wait_address, p); } else { } return; } } __inline static void __module_get___0(struct module *module ) { unsigned int tmp ; long tmp___0 ; unsigned int ret__ ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { tmp = module_refcount(module); tmp___0 = ldv__builtin_expect(tmp == 0U, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.quad 1b, %c0\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/module.h"), "i" (394), "i" (24UL)); ldv_15836: ; goto ldv_15836; } else { } switch (4UL) { case 2UL: __asm__ ("movw %%gs:%c1,%0": "=r" (ret__): "i" (36UL), "m" (_proxy_pda.cpunumber)); goto ldv_15839; case 4UL: __asm__ ("movl %%gs:%c1,%0": "=r" (ret__): "i" (36UL), "m" (_proxy_pda.cpunumber)); goto ldv_15839; case 8UL: __asm__ ("movq %%gs:%c1,%0": "=r" (ret__): "i" (36UL), "m" (_proxy_pda.cpunumber)); goto ldv_15839; default: __bad_pda_field(); } ldv_15839: local_inc(& module->ref[ret__].count); } else { } return; } } extern int misc_register(struct miscdevice * ) ; extern int misc_deregister(struct miscdevice * ) ; static u_int *debug___5 ; static int mISDN_open(struct inode *ino , struct file *filep ) { struct mISDNtimerdev *dev ; void *tmp ; struct lock_class_key __key ; int tmp___0 ; { if ((*debug___5 & 16777216U) != 0U) { printk("<7>%s(%p,%p)\n", "mISDN_open", ino, filep); } else { } tmp = kmalloc(176UL, 208U); dev = (struct mISDNtimerdev *)tmp; if ((unsigned long )dev == (unsigned long )((struct mISDNtimerdev *)0)) { return (-12); } else { } dev->next_id = 1; INIT_LIST_HEAD(& dev->pending); INIT_LIST_HEAD(& dev->expired); __spin_lock_init(& dev->lock, "&dev->lock", & __key); dev->work = 0U; init_waitqueue_head(& dev->wait); filep->private_data = (void *)dev; __module_get___0(& __this_module); tmp___0 = nonseekable_open(ino, filep); return (tmp___0); } } static int mISDN_close(struct inode *ino , struct file *filep ) { struct mISDNtimerdev *dev ; struct mISDNtimer *timer ; struct mISDNtimer *next ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; struct list_head const *__mptr___3 ; struct list_head const *__mptr___4 ; { dev = (struct mISDNtimerdev *)filep->private_data; if ((*debug___5 & 16777216U) != 0U) { printk("<7>%s(%p,%p)\n", "mISDN_close", ino, filep); } else { } __mptr = (struct list_head const *)dev->pending.next; timer = (struct mISDNtimer *)__mptr; __mptr___0 = (struct list_head const *)timer->list.next; next = (struct mISDNtimer *)__mptr___0; goto ldv_29049; ldv_29048: del_timer(& timer->tl); kfree((void const *)timer); timer = next; __mptr___1 = (struct list_head const *)next->list.next; next = (struct mISDNtimer *)__mptr___1; ldv_29049: ; if ((unsigned long )(& timer->list) != (unsigned long )(& dev->pending)) { goto ldv_29048; } else { } __mptr___2 = (struct list_head const *)dev->expired.next; timer = (struct mISDNtimer *)__mptr___2; __mptr___3 = (struct list_head const *)timer->list.next; next = (struct mISDNtimer *)__mptr___3; goto ldv_29058; ldv_29057: kfree((void const *)timer); timer = next; __mptr___4 = (struct list_head const *)next->list.next; next = (struct mISDNtimer *)__mptr___4; ldv_29058: ; if ((unsigned long )(& timer->list) != (unsigned long )(& dev->expired)) { goto ldv_29057; } else { } kfree((void const *)dev); module_put(& __this_module); return (0); } } static ssize_t mISDN_read(struct file *filep , char *buf , size_t count , loff_t *off ) { struct mISDNtimerdev *dev ; struct mISDNtimer *timer ; int ret ; int __ret ; wait_queue_t __wait ; struct task_struct *tmp ; int tmp___0 ; struct task_struct *tmp___1 ; int tmp___2 ; int tmp___3 ; struct task_struct *tmp___4 ; int tmp___5 ; int tmp___6 ; int __ret_pu ; int __pu_val ; int tmp___7 ; { dev = (struct mISDNtimerdev *)filep->private_data; ret = 0; if ((*debug___5 & 16777216U) != 0U) { printk("<7>%s(%p, %p, %d, %p)\n", "mISDN_read", filep, buf, (int )count, off); } else { } if (*off != filep->f_pos) { return (-29L); } else { } tmp___6 = list_empty((struct list_head const *)(& dev->expired)); if (tmp___6 != 0 && dev->work == 0U) { if ((filep->f_flags & 2048U) != 0U) { return (-11L); } else { } __ret = 0; if (dev->work == 0U) { tmp___3 = list_empty((struct list_head const *)(& dev->expired)); if (tmp___3 != 0) { tmp = get_current(); __wait.flags = 0U; __wait.private = (void *)tmp; __wait.func = & autoremove_wake_function; __wait.task_list.next = & __wait.task_list; __wait.task_list.prev = & __wait.task_list; ldv_29075: prepare_to_wait(& dev->wait, & __wait, 1); if (dev->work != 0U) { goto ldv_29073; } else { tmp___0 = list_empty((struct list_head const *)(& dev->expired)); if (tmp___0 == 0) { goto ldv_29073; } else { } } tmp___1 = get_current(); tmp___2 = signal_pending(tmp___1); if (tmp___2 == 0) { schedule(); goto ldv_29074; } else { } __ret = -512; goto ldv_29073; ldv_29074: ; goto ldv_29075; ldv_29073: finish_wait(& dev->wait, & __wait); } else { } } else { } tmp___4 = get_current(); tmp___5 = signal_pending(tmp___4); if (tmp___5 != 0) { return (-512L); } else { } } else { } if (count <= 3UL) { return (-28L); } else { } if (dev->work != 0U) { dev->work = 0U; } else { } tmp___7 = list_empty((struct list_head const *)(& dev->expired)); if (tmp___7 == 0) { ldv___ldv_spin_lock_442(& dev->lock); timer = (struct mISDNtimer *)dev->expired.next; list_del(& timer->list); ldv___ldv_spin_unlock_443(& dev->lock); __pu_val = timer->id; switch (4UL) { case 1UL: __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)buf): "ebx"); goto ldv_29080; case 2UL: __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)buf): "ebx"); goto ldv_29080; case 4UL: __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)buf): "ebx"); goto ldv_29080; case 8UL: __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)buf): "ebx"); goto ldv_29080; default: __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)buf): "ebx"); goto ldv_29080; } ldv_29080: ; if (__ret_pu != 0) { ret = -14; } else { ret = 4; } kfree((void const *)timer); } else { } return ((ssize_t )ret); } } static unsigned int mISDN_poll(struct file *filep , poll_table *wait ) { struct mISDNtimerdev *dev ; unsigned int mask ; int tmp ; int tmp___0 ; { dev = (struct mISDNtimerdev *)filep->private_data; mask = 8U; if ((*debug___5 & 16777216U) != 0U) { printk("<7>%s(%p, %p)\n", "mISDN_poll", filep, wait); } else { } if ((unsigned long )dev != (unsigned long )((struct mISDNtimerdev *)0)) { poll_wait(filep, & dev->wait, wait); mask = 0U; if (dev->work != 0U) { mask = mask | 65U; } else { tmp = list_empty((struct list_head const *)(& dev->expired)); if (tmp == 0) { mask = mask | 65U; } else { } } if ((*debug___5 & 16777216U) != 0U) { tmp___0 = list_empty((struct list_head const *)(& dev->expired)); printk("<7>%s work(%d) empty(%d)\n", "mISDN_poll", dev->work, tmp___0); } else { } } else { } return (mask); } } static void dev_expire_timer(unsigned long data ) { struct mISDNtimer *timer ; { timer = (struct mISDNtimer *)data; ldv___ldv_spin_lock_444(& (timer->dev)->lock); list_del(& timer->list); list_add_tail(& timer->list, & (timer->dev)->expired); ldv___ldv_spin_unlock_445(& (timer->dev)->lock); __wake_up(& (timer->dev)->wait, 1U, 1, 0); return; } } static int misdn_add_timer(struct mISDNtimerdev *dev , int timeout ) { int id ; struct mISDNtimer *timer ; void *tmp ; int tmp___0 ; { if (timeout == 0) { dev->work = 1U; __wake_up(& dev->wait, 1U, 1, 0); id = 0; } else { tmp = kzalloc(112UL, 208U); timer = (struct mISDNtimer *)tmp; if ((unsigned long )timer == (unsigned long )((struct mISDNtimer *)0)) { return (-12); } else { } ldv___ldv_spin_lock_446(& dev->lock); tmp___0 = dev->next_id; dev->next_id = dev->next_id + 1; timer->id = tmp___0; if (dev->next_id < 0) { dev->next_id = 1; } else { } list_add_tail(& timer->list, & dev->pending); ldv___ldv_spin_unlock_447(& dev->lock); timer->dev = dev; timer->tl.data = (unsigned long )timer; timer->tl.function = & dev_expire_timer; init_timer(& timer->tl); timer->tl.expires = ((unsigned long )timeout * 250UL) / 1000UL + (unsigned long )jiffies; add_timer___0(& timer->tl); id = timer->id; } return (id); } } static int misdn_del_timer(struct mISDNtimerdev *dev , int id ) { struct mISDNtimer *timer ; int ret ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { ret = 0; ldv___ldv_spin_lock_448(& dev->lock); __mptr = (struct list_head const *)dev->pending.next; timer = (struct mISDNtimer *)__mptr; goto ldv_29118; ldv_29117: ; if (timer->id == id) { list_del_init(& timer->list); del_timer(& timer->tl); ret = timer->id; kfree((void const *)timer); goto unlock; } else { } __mptr___0 = (struct list_head const *)timer->list.next; timer = (struct mISDNtimer *)__mptr___0; ldv_29118: __builtin_prefetch((void const *)timer->list.next); if ((unsigned long )(& timer->list) != (unsigned long )(& dev->pending)) { goto ldv_29117; } else { } unlock: ldv___ldv_spin_unlock_449(& dev->lock); return (ret); } } static int mISDN_ioctl(struct inode *inode , struct file *filep , unsigned int cmd , unsigned long arg ) { struct mISDNtimerdev *dev ; int id ; int tout ; int ret ; int __ret_gu ; unsigned long __val_gu ; int __ret_pu ; int __pu_val ; int __ret_gu___0 ; unsigned long __val_gu___0 ; int __ret_pu___0 ; int __pu_val___0 ; { dev = (struct mISDNtimerdev *)filep->private_data; ret = 0; if ((*debug___5 & 16777216U) != 0U) { printk("<7>%s(%p, %x, %lx)\n", "mISDN_ioctl", filep, cmd, arg); } else { } switch (cmd) { case 2147764544U: ; switch (4UL) { case 1UL: __asm__ volatile ("call __get_user_1": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); goto ldv_29135; case 2UL: __asm__ volatile ("call __get_user_2": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); goto ldv_29135; case 4UL: __asm__ volatile ("call __get_user_4": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); goto ldv_29135; case 8UL: __asm__ volatile ("call __get_user_8": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); goto ldv_29135; default: __asm__ volatile ("call __get_user_X": "=a" (__ret_gu), "=d" (__val_gu): "0" ((int *)arg)); goto ldv_29135; } ldv_29135: tout = (int )__val_gu; if (__ret_gu != 0) { ret = -14; goto ldv_29141; } else { } id = misdn_add_timer(dev, tout); if ((*debug___5 & 16777216U) != 0U) { printk("<7>%s add %d id %d\n", "mISDN_ioctl", tout, id); } else { } if (id < 0) { ret = id; goto ldv_29141; } else { } __pu_val = id; switch (4UL) { case 1UL: __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_29145; case 2UL: __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_29145; case 4UL: __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_29145; case 8UL: __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_29145; default: __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" ((int *)arg): "ebx"); goto ldv_29145; } ldv_29145: ; if (__ret_pu != 0) { ret = -14; } else { } goto ldv_29141; case 2147764545U: ; switch (4UL) { case 1UL: __asm__ volatile ("call __get_user_1": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)arg)); goto ldv_29155; case 2UL: __asm__ volatile ("call __get_user_2": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)arg)); goto ldv_29155; case 4UL: __asm__ volatile ("call __get_user_4": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)arg)); goto ldv_29155; case 8UL: __asm__ volatile ("call __get_user_8": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)arg)); goto ldv_29155; default: __asm__ volatile ("call __get_user_X": "=a" (__ret_gu___0), "=d" (__val_gu___0): "0" ((int *)arg)); goto ldv_29155; } ldv_29155: id = (int )__val_gu___0; if (__ret_gu___0 != 0) { ret = -14; goto ldv_29141; } else { } if ((*debug___5 & 16777216U) != 0U) { printk("<7>%s del id %d\n", "mISDN_ioctl", id); } else { } id = misdn_del_timer(dev, id); __pu_val___0 = id; switch (4UL) { case 1UL: __asm__ volatile ("call __put_user_1": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); goto ldv_29164; case 2UL: __asm__ volatile ("call __put_user_2": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); goto ldv_29164; case 4UL: __asm__ volatile ("call __put_user_4": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); goto ldv_29164; case 8UL: __asm__ volatile ("call __put_user_8": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); goto ldv_29164; default: __asm__ volatile ("call __put_user_X": "=a" (__ret_pu___0): "0" (__pu_val___0), "c" ((int *)arg): "ebx"); goto ldv_29164; } ldv_29164: ; if (__ret_pu___0 != 0) { ret = -14; } else { } goto ldv_29141; default: ret = -22; } ldv_29141: ; return (ret); } } static struct file_operations mISDN_fops = {0, 0, & mISDN_read, 0, 0, 0, 0, & mISDN_poll, & mISDN_ioctl, 0, 0, 0, & mISDN_open, 0, & mISDN_close, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct miscdevice mISDNtimer = {255, "mISDNtimer", (struct file_operations const *)(& mISDN_fops), {0, 0}, 0, 0}; int mISDN_inittimer(u_int *deb ) { int err ; { debug___5 = deb; err = misc_register(& mISDNtimer); if (err != 0) { printk("<4>mISDN: Could not register timer device\n"); } else { } return (err); } } void mISDN_timer_cleanup(void) { { misc_deregister(& mISDNtimer); return; } } extern void ldv_check_return_value(int ) ; void ldv_main8_sequence_infinite_withcheck_stateful(void) { struct file *var_group1 ; char *var_mISDN_read_2_p1 ; size_t var_mISDN_read_2_p2 ; loff_t *var_mISDN_read_2_p3 ; ssize_t res_mISDN_read_2 ; poll_table *var_mISDN_poll_3_p1 ; struct inode *var_group2 ; unsigned int var_mISDN_ioctl_7_p2 ; unsigned long var_mISDN_ioctl_7_p3 ; int res_mISDN_open_0 ; unsigned long var_dev_expire_timer_4_p0 ; int ldv_s_mISDN_fops_file_operations ; int tmp ; int tmp___0 ; { ldv_s_mISDN_fops_file_operations = 0; LDV_IN_INTERRUPT = 1; ldv_initialize(); goto ldv_29218; ldv_29217: tmp = nondet_int(); switch (tmp) { case 0: ; if (ldv_s_mISDN_fops_file_operations == 0) { ldv_handler_precall(); res_mISDN_open_0 = mISDN_open(var_group2, var_group1); ldv_check_return_value(res_mISDN_open_0); if (res_mISDN_open_0 != 0) { goto ldv_module_exit; } else { } ldv_s_mISDN_fops_file_operations = ldv_s_mISDN_fops_file_operations + 1; } else { } goto ldv_29210; case 1: ; if (ldv_s_mISDN_fops_file_operations == 1) { ldv_handler_precall(); res_mISDN_read_2 = mISDN_read(var_group1, var_mISDN_read_2_p1, var_mISDN_read_2_p2, var_mISDN_read_2_p3); ldv_check_return_value((int )res_mISDN_read_2); if (res_mISDN_read_2 < 0L) { goto ldv_module_exit; } else { } ldv_s_mISDN_fops_file_operations = ldv_s_mISDN_fops_file_operations + 1; } else { } goto ldv_29210; case 2: ; if (ldv_s_mISDN_fops_file_operations == 2) { ldv_handler_precall(); mISDN_close(var_group2, var_group1); ldv_s_mISDN_fops_file_operations = 0; } else { } goto ldv_29210; case 3: ldv_handler_precall(); mISDN_poll(var_group1, var_mISDN_poll_3_p1); goto ldv_29210; case 4: ldv_handler_precall(); mISDN_ioctl(var_group2, var_group1, var_mISDN_ioctl_7_p2, var_mISDN_ioctl_7_p3); goto ldv_29210; case 5: ldv_handler_precall(); dev_expire_timer(var_dev_expire_timer_4_p0); goto ldv_29210; default: ; goto ldv_29210; } ldv_29210: ; ldv_29218: tmp___0 = nondet_int(); if (tmp___0 != 0 || ldv_s_mISDN_fops_file_operations != 0) { goto ldv_29217; } else { } ldv_module_exit: ; ldv_check_final_state(); return; } } void ldv___ldv_spin_lock_413(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_414(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_lock_of_NOT_ARG_SIGN(); __ldv_spin_unlock(ldv_func_arg1); return; } } int ldv___ldv_spin_trylock_415(spinlock_t *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = __ldv_spin_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock_lock_of_NOT_ARG_SIGN(); return (tmp___0); return (ldv_func_res); } } void ldv___ldv_spin_lock_416(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_dcache_lock(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_417(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_418(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_419(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_dcache_lock(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_420(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_421(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_422(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_i_lock_of_inode(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_423(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_i_lock_of_inode(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_424(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_d_lock_of_dentry(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_425(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_d_lock_of_dentry(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_426(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_siglock_of_sighand_struct(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_427(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_siglock_of_sighand_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_428(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_alloc_lock_of_task_struct(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_429(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_alloc_lock_of_task_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_430(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_siglock_of_sighand_struct(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_431(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock__xmit_lock_of_netdev_queue(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_432(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock__xmit_lock_of_netdev_queue(); __ldv_spin_lock(ldv_func_arg1); return; } } int ldv___ldv_spin_trylock_433(spinlock_t *ldv_func_arg1 ) { ldv_func_ret_type___19 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = __ldv_spin_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock__xmit_lock_of_netdev_queue(); return (tmp___0); return (ldv_func_res); } } void ldv___ldv_spin_unlock_434(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_435(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_436(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_tx_global_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_437(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_tx_global_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_438(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_addr_list_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_439(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_addr_list_lock_of_net_device(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_440(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_addr_list_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_441(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_addr_list_lock_of_net_device(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_442(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_lock_of_mISDNtimerdev(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_443(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_lock_of_mISDNtimerdev(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_444(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_lock_of_mISDNtimerdev(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_445(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_lock_of_mISDNtimerdev(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_446(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_lock_of_mISDNtimerdev(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_447(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_lock_of_mISDNtimerdev(); __ldv_spin_unlock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_448(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_lock_of_mISDNtimerdev(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_unlock_449(spinlock_t *ldv_func_arg1 ) { { ldv_spin_unlock_lock_of_mISDNtimerdev(); __ldv_spin_unlock(ldv_func_arg1); return; } } __inline static void ldv_error(void) { { LDV_ERROR: {reach_error();abort();} } } extern int ldv_undef_int(void) ; long ldv__builtin_expect(long exp , long c ) { { return (exp); } } static int ldv_spin__xmit_lock_of_netdev_queue ; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 1) { } else { ldv_error(); } ldv_spin__xmit_lock_of_netdev_queue = 2; return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { } else { ldv_error(); } ldv_spin__xmit_lock_of_netdev_queue = 1; return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { if (ldv_spin__xmit_lock_of_netdev_queue == 1) { } else { ldv_error(); } is_spin_held_by_another_thread = ldv_undef_int(); if (is_spin_held_by_another_thread) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 1) { } else { ldv_error(); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { is_spin_held_by_another_thread = ldv_undef_int(); if (ldv_spin__xmit_lock_of_netdev_queue == 1 && ! is_spin_held_by_another_thread) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; int tmp___0 ; { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } return (tmp___0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { is_spin_contended = ldv_undef_int(); if (is_spin_contended) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { if (ldv_spin__xmit_lock_of_netdev_queue == 1) { } else { ldv_error(); } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device ; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { if (ldv_spin_addr_list_lock_of_net_device == 1) { } else { ldv_error(); } ldv_spin_addr_list_lock_of_net_device = 2; return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { if (ldv_spin_addr_list_lock_of_net_device == 2) { } else { ldv_error(); } ldv_spin_addr_list_lock_of_net_device = 1; return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { if (ldv_spin_addr_list_lock_of_net_device == 1) { } else { ldv_error(); } is_spin_held_by_another_thread = ldv_undef_int(); if (is_spin_held_by_another_thread) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { if (ldv_spin_addr_list_lock_of_net_device == 1) { } else { ldv_error(); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { is_spin_held_by_another_thread = ldv_undef_int(); if (ldv_spin_addr_list_lock_of_net_device == 1 && ! is_spin_held_by_another_thread) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; int tmp___0 ; { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } return (tmp___0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { is_spin_contended = ldv_undef_int(); if (is_spin_contended) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { if (ldv_spin_addr_list_lock_of_net_device == 1) { } else { ldv_error(); } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct ; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { if (ldv_spin_alloc_lock_of_task_struct == 1) { } else { ldv_error(); } ldv_spin_alloc_lock_of_task_struct = 2; return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { if (ldv_spin_alloc_lock_of_task_struct == 2) { } else { ldv_error(); } ldv_spin_alloc_lock_of_task_struct = 1; return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { if (ldv_spin_alloc_lock_of_task_struct == 1) { } else { ldv_error(); } is_spin_held_by_another_thread = ldv_undef_int(); if (is_spin_held_by_another_thread) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { if (ldv_spin_alloc_lock_of_task_struct == 1) { } else { ldv_error(); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { is_spin_held_by_another_thread = ldv_undef_int(); if (ldv_spin_alloc_lock_of_task_struct == 1 && ! is_spin_held_by_another_thread) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; int tmp___0 ; { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } return (tmp___0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { is_spin_contended = ldv_undef_int(); if (is_spin_contended) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { if (ldv_spin_alloc_lock_of_task_struct == 1) { } else { ldv_error(); } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_d_lock_of_dentry ; void ldv_spin_lock_d_lock_of_dentry(void) { { if (ldv_spin_d_lock_of_dentry == 1) { } else { ldv_error(); } ldv_spin_d_lock_of_dentry = 2; return; } } void ldv_spin_unlock_d_lock_of_dentry(void) { { if (ldv_spin_d_lock_of_dentry == 2) { } else { ldv_error(); } ldv_spin_d_lock_of_dentry = 1; return; } } int ldv_spin_trylock_d_lock_of_dentry(void) { int is_spin_held_by_another_thread ; { if (ldv_spin_d_lock_of_dentry == 1) { } else { ldv_error(); } is_spin_held_by_another_thread = ldv_undef_int(); if (is_spin_held_by_another_thread) { return (0); } else { ldv_spin_d_lock_of_dentry = 2; return (1); } } } void ldv_spin_unlock_wait_d_lock_of_dentry(void) { { if (ldv_spin_d_lock_of_dentry == 1) { } else { ldv_error(); } return; } } int ldv_spin_is_locked_d_lock_of_dentry(void) { int is_spin_held_by_another_thread ; { is_spin_held_by_another_thread = ldv_undef_int(); if (ldv_spin_d_lock_of_dentry == 1 && ! is_spin_held_by_another_thread) { return (0); } else { return (1); } } } int ldv_spin_can_lock_d_lock_of_dentry(void) { int tmp ; int tmp___0 ; { tmp = ldv_spin_is_locked_d_lock_of_dentry(); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } return (tmp___0); } } int ldv_spin_is_contended_d_lock_of_dentry(void) { int is_spin_contended ; { is_spin_contended = ldv_undef_int(); if (is_spin_contended) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_d_lock_of_dentry(void) { int atomic_value_after_dec ; { if (ldv_spin_d_lock_of_dentry == 1) { } else { ldv_error(); } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_spin_d_lock_of_dentry = 2; return (1); } else { } return (0); } } static int ldv_spin_dcache_lock ; void ldv_spin_lock_dcache_lock(void) { { if (ldv_spin_dcache_lock == 1) { } else { ldv_error(); } ldv_spin_dcache_lock = 2; return; } } void ldv_spin_unlock_dcache_lock(void) { { if (ldv_spin_dcache_lock == 2) { } else { ldv_error(); } ldv_spin_dcache_lock = 1; return; } } int ldv_spin_trylock_dcache_lock(void) { int is_spin_held_by_another_thread ; { if (ldv_spin_dcache_lock == 1) { } else { ldv_error(); } is_spin_held_by_another_thread = ldv_undef_int(); if (is_spin_held_by_another_thread) { return (0); } else { ldv_spin_dcache_lock = 2; return (1); } } } void ldv_spin_unlock_wait_dcache_lock(void) { { if (ldv_spin_dcache_lock == 1) { } else { ldv_error(); } return; } } int ldv_spin_is_locked_dcache_lock(void) { int is_spin_held_by_another_thread ; { is_spin_held_by_another_thread = ldv_undef_int(); if (ldv_spin_dcache_lock == 1 && ! is_spin_held_by_another_thread) { return (0); } else { return (1); } } } int ldv_spin_can_lock_dcache_lock(void) { int tmp ; int tmp___0 ; { tmp = ldv_spin_is_locked_dcache_lock(); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } return (tmp___0); } } int ldv_spin_is_contended_dcache_lock(void) { int is_spin_contended ; { is_spin_contended = ldv_undef_int(); if (is_spin_contended) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_dcache_lock(void) { int atomic_value_after_dec ; { if (ldv_spin_dcache_lock == 1) { } else { ldv_error(); } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_spin_dcache_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode ; void ldv_spin_lock_i_lock_of_inode(void) { { if (ldv_spin_i_lock_of_inode == 1) { } else { ldv_error(); } ldv_spin_i_lock_of_inode = 2; return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { if (ldv_spin_i_lock_of_inode == 2) { } else { ldv_error(); } ldv_spin_i_lock_of_inode = 1; return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { if (ldv_spin_i_lock_of_inode == 1) { } else { ldv_error(); } is_spin_held_by_another_thread = ldv_undef_int(); if (is_spin_held_by_another_thread) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { if (ldv_spin_i_lock_of_inode == 1) { } else { ldv_error(); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { is_spin_held_by_another_thread = ldv_undef_int(); if (ldv_spin_i_lock_of_inode == 1 && ! is_spin_held_by_another_thread) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; int tmp___0 ; { tmp = ldv_spin_is_locked_i_lock_of_inode(); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } return (tmp___0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { is_spin_contended = ldv_undef_int(); if (is_spin_contended) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { if (ldv_spin_i_lock_of_inode == 1) { } else { ldv_error(); } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN ; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { if (ldv_spin_lock_of_NOT_ARG_SIGN == 1) { } else { ldv_error(); } ldv_spin_lock_of_NOT_ARG_SIGN = 2; return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { } else { ldv_error(); } ldv_spin_lock_of_NOT_ARG_SIGN = 1; return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { if (ldv_spin_lock_of_NOT_ARG_SIGN == 1) { } else { ldv_error(); } is_spin_held_by_another_thread = ldv_undef_int(); if (is_spin_held_by_another_thread) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { if (ldv_spin_lock_of_NOT_ARG_SIGN == 1) { } else { ldv_error(); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { is_spin_held_by_another_thread = ldv_undef_int(); if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && ! is_spin_held_by_another_thread) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; int tmp___0 ; { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } return (tmp___0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { is_spin_contended = ldv_undef_int(); if (is_spin_contended) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { if (ldv_spin_lock_of_NOT_ARG_SIGN == 1) { } else { ldv_error(); } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_mISDNtimerdev ; void ldv_spin_lock_lock_of_mISDNtimerdev(void) { { if (ldv_spin_lock_of_mISDNtimerdev == 1) { } else { ldv_error(); } ldv_spin_lock_of_mISDNtimerdev = 2; return; } } void ldv_spin_unlock_lock_of_mISDNtimerdev(void) { { if (ldv_spin_lock_of_mISDNtimerdev == 2) { } else { ldv_error(); } ldv_spin_lock_of_mISDNtimerdev = 1; return; } } int ldv_spin_trylock_lock_of_mISDNtimerdev(void) { int is_spin_held_by_another_thread ; { if (ldv_spin_lock_of_mISDNtimerdev == 1) { } else { ldv_error(); } is_spin_held_by_another_thread = ldv_undef_int(); if (is_spin_held_by_another_thread) { return (0); } else { ldv_spin_lock_of_mISDNtimerdev = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_mISDNtimerdev(void) { { if (ldv_spin_lock_of_mISDNtimerdev == 1) { } else { ldv_error(); } return; } } int ldv_spin_is_locked_lock_of_mISDNtimerdev(void) { int is_spin_held_by_another_thread ; { is_spin_held_by_another_thread = ldv_undef_int(); if (ldv_spin_lock_of_mISDNtimerdev == 1 && ! is_spin_held_by_another_thread) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_mISDNtimerdev(void) { int tmp ; int tmp___0 ; { tmp = ldv_spin_is_locked_lock_of_mISDNtimerdev(); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } return (tmp___0); } } int ldv_spin_is_contended_lock_of_mISDNtimerdev(void) { int is_spin_contended ; { is_spin_contended = ldv_undef_int(); if (is_spin_contended) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_mISDNtimerdev(void) { int atomic_value_after_dec ; { if (ldv_spin_lock_of_mISDNtimerdev == 1) { } else { ldv_error(); } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_spin_lock_of_mISDNtimerdev = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct ; void ldv_spin_lock_siglock_of_sighand_struct(void) { { if (ldv_spin_siglock_of_sighand_struct == 1) { } else { ldv_error(); } ldv_spin_siglock_of_sighand_struct = 2; return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { if (ldv_spin_siglock_of_sighand_struct == 2) { } else { ldv_error(); } ldv_spin_siglock_of_sighand_struct = 1; return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { if (ldv_spin_siglock_of_sighand_struct == 1) { } else { ldv_error(); } is_spin_held_by_another_thread = ldv_undef_int(); if (is_spin_held_by_another_thread) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { if (ldv_spin_siglock_of_sighand_struct == 1) { } else { ldv_error(); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { is_spin_held_by_another_thread = ldv_undef_int(); if (ldv_spin_siglock_of_sighand_struct == 1 && ! is_spin_held_by_another_thread) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; int tmp___0 ; { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } return (tmp___0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { is_spin_contended = ldv_undef_int(); if (is_spin_contended) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { if (ldv_spin_siglock_of_sighand_struct == 1) { } else { ldv_error(); } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device ; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { if (ldv_spin_tx_global_lock_of_net_device == 1) { } else { ldv_error(); } ldv_spin_tx_global_lock_of_net_device = 2; return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { if (ldv_spin_tx_global_lock_of_net_device == 2) { } else { ldv_error(); } ldv_spin_tx_global_lock_of_net_device = 1; return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { if (ldv_spin_tx_global_lock_of_net_device == 1) { } else { ldv_error(); } is_spin_held_by_another_thread = ldv_undef_int(); if (is_spin_held_by_another_thread) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { if (ldv_spin_tx_global_lock_of_net_device == 1) { } else { ldv_error(); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { is_spin_held_by_another_thread = ldv_undef_int(); if (ldv_spin_tx_global_lock_of_net_device == 1 && ! is_spin_held_by_another_thread) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; int tmp___0 ; { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } return (tmp___0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { is_spin_contended = ldv_undef_int(); if (is_spin_contended) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { if (ldv_spin_tx_global_lock_of_net_device == 1) { } else { ldv_error(); } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_initialize(void) { { ldv_spin__xmit_lock_of_netdev_queue = 1; ldv_spin_addr_list_lock_of_net_device = 1; ldv_spin_alloc_lock_of_task_struct = 1; ldv_spin_d_lock_of_dentry = 1; ldv_spin_dcache_lock = 1; ldv_spin_i_lock_of_inode = 1; ldv_spin_lock_of_NOT_ARG_SIGN = 1; ldv_spin_lock_of_mISDNtimerdev = 1; ldv_spin_siglock_of_sighand_struct = 1; ldv_spin_tx_global_lock_of_net_device = 1; return; } } void ldv_check_final_state(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 1) { } else { ldv_error(); } if (ldv_spin_addr_list_lock_of_net_device == 1) { } else { ldv_error(); } if (ldv_spin_alloc_lock_of_task_struct == 1) { } else { ldv_error(); } if (ldv_spin_d_lock_of_dentry == 1) { } else { ldv_error(); } if (ldv_spin_dcache_lock == 1) { } else { ldv_error(); } if (ldv_spin_i_lock_of_inode == 1) { } else { ldv_error(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1) { } else { ldv_error(); } if (ldv_spin_lock_of_mISDNtimerdev == 1) { } else { ldv_error(); } if (ldv_spin_siglock_of_sighand_struct == 1) { } else { ldv_error(); } if (ldv_spin_tx_global_lock_of_net_device == 1) { } else { ldv_error(); } return; } }