extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); void reach_error() { __assert_fail("0", "drivers--leds--leds-bd2802.ko_000.0b56129.32_1.cil_true-unreach-call.i", 3, "reach_error"); } /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef unsigned int __kernel_mode_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid_t; typedef unsigned int __kernel_gid_t; typedef unsigned long __kernel_size_t; typedef long __kernel_ssize_t; typedef long __kernel_time_t; typedef long __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __kernel_uid_t __kernel_uid32_t; typedef __kernel_gid_t __kernel_gid32_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef __kernel_mode_t mode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned int gfp_t; struct __anonstruct_atomic_t_7 { int volatile counter ; }; typedef struct __anonstruct_atomic_t_7 atomic_t; struct __anonstruct_atomic64_t_8 { long volatile counter ; }; typedef struct __anonstruct_atomic64_t_8 atomic64_t; struct task_struct; struct mm_struct; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_9 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_9 __annonCompField4 ; }; struct module; typedef __builtin_va_list __gnuc_va_list; typedef __gnuc_va_list va_list; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct completion; struct pid; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_13 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_13 pgd_t; struct page; struct file; struct __anonstruct____missing_field_name_18 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_19 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_17 { struct __anonstruct____missing_field_name_18 __annonCompField6 ; struct __anonstruct____missing_field_name_19 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_17 __annonCompField8 ; } __attribute__((__packed__)) ; struct cpumask { unsigned long bits[((4096UL + 8UL * sizeof(long )) - 1UL) / (8UL * sizeof(long ))] ; }; typedef struct cpumask cpumask_t; struct thread_struct; struct raw_spinlock; struct ds_context; struct bts_tracer; struct exec_domain; struct map_segment; struct exec_domain { char const *name ; void (*handler)(int , struct pt_regs * ) ; unsigned char pers_low ; unsigned char pers_high ; unsigned long *signal_map ; unsigned long *signal_invmap ; struct map_segment *err_map ; struct map_segment *socktype_map ; struct map_segment *sockopt_map ; struct map_segment *af_map ; struct module *module ; struct exec_domain *next ; }; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20] ; u32 status ; }; struct __anonstruct____missing_field_name_28 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_29 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_27 { struct __anonstruct____missing_field_name_28 __annonCompField9 ; struct __anonstruct____missing_field_name_29 __annonCompField10 ; }; union __anonunion____missing_field_name_30 { u32 padding1[12] ; u32 sw_reserved[12] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_27 __annonCompField11 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32] ; u32 xmm_space[64] ; u32 padding[12] ; union __anonunion____missing_field_name_30 __annonCompField12 ; } __attribute__((__aligned__(16))) ; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2] ; u64 reserved2[5] ; } __attribute__((__packed__)) ; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; } __attribute__((__packed__, __aligned__(64))) ; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct kmem_cache; struct thread_struct { struct desc_struct tls_array[3] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long ip ; unsigned long fs ; unsigned long gs ; unsigned long debugreg0 ; unsigned long debugreg1 ; unsigned long debugreg2 ; unsigned long debugreg3 ; unsigned long debugreg6 ; unsigned long debugreg7 ; unsigned long cr2 ; unsigned long trap_no ; unsigned long error_code ; union thread_xstate *xstate ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned long debugctlmsr ; struct ds_context *ds_ctx ; unsigned int bts_ovfl_signal ; }; struct __anonstruct_mm_segment_t_32 { unsigned long seg ; }; typedef struct __anonstruct_mm_segment_t_32 mm_segment_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct timespec; struct compat_timespec; struct __anonstruct____missing_field_name_34 { unsigned long arg0 ; unsigned long arg1 ; unsigned long arg2 ; unsigned long arg3 ; }; struct __anonstruct_futex_35 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; }; struct __anonstruct_nanosleep_36 { clockid_t index ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_37 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_33 { struct __anonstruct____missing_field_name_34 __annonCompField14 ; struct __anonstruct_futex_35 futex ; struct __anonstruct_nanosleep_36 nanosleep ; struct __anonstruct_poll_37 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_33 __annonCompField15 ; }; typedef atomic64_t atomic_long_t; struct thread_info { struct task_struct *task ; struct exec_domain *exec_domain ; __u32 flags ; __u32 status ; __u32 cpu ; int preempt_count ; mm_segment_t addr_limit ; struct restart_block restart_block ; void *sysenter_return ; int uaccess_err ; }; struct raw_spinlock { unsigned int slock ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct_raw_rwlock_t_38 { unsigned int lock ; }; typedef struct __anonstruct_raw_rwlock_t_38 raw_rwlock_t; struct lock_class_key { }; struct __anonstruct_spinlock_t_39 { raw_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; }; typedef struct __anonstruct_spinlock_t_39 spinlock_t; struct __anonstruct_rwlock_t_40 { raw_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; }; typedef struct __anonstruct_rwlock_t_40 rwlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct __anonstruct_nodemask_t_42 { unsigned long bits[(((unsigned long )(1 << 9) + 8UL * sizeof(long )) - 1UL) / (8UL * sizeof(long ))] ; }; typedef struct __anonstruct_nodemask_t_42 nodemask_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct thread_info *owner ; char const *name ; void *magic ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct rw_semaphore; struct rw_semaphore { __s32 activity ; spinlock_t wait_lock ; struct list_head wait_list ; }; struct device; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device *dev ) ; void (*complete)(struct device *dev ) ; int (*suspend)(struct device *dev ) ; int (*resume)(struct device *dev ) ; int (*freeze)(struct device *dev ) ; int (*thaw)(struct device *dev ) ; int (*poweroff)(struct device *dev ) ; int (*restore)(struct device *dev ) ; int (*suspend_noirq)(struct device *dev ) ; int (*resume_noirq)(struct device *dev ) ; int (*freeze_noirq)(struct device *dev ) ; int (*thaw_noirq)(struct device *dev ) ; int (*poweroff_noirq)(struct device *dev ) ; int (*restore_noirq)(struct device *dev ) ; }; enum dpm_state { DPM_INVALID = 0, DPM_ON = 1, DPM_PREPARING = 2, DPM_RESUMING = 3, DPM_SUSPENDING = 4, DPM_OFF = 5, DPM_OFF_IRQ = 6 } ; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int should_wakeup : 1 ; enum dpm_state status ; struct list_head entry ; }; struct __anonstruct_mm_context_t_91 { void *ldt ; int size ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_91 mm_context_t; struct vm_area_struct; struct key; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kobject; struct attribute { char const *name ; struct module *owner ; mode_t mode ; }; struct attribute_group { char const *name ; mode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct sysfs_dirent; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct sysfs_dirent *sd ; struct kref kref ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject *kobj ) ; struct sysfs_ops *sysfs_ops ; struct attribute **default_attrs ; }; struct kobj_uevent_env { char *envp[32] ; int envp_idx ; char buf[2048] ; int buflen ; }; struct kset_uevent_ops { int (*filter)(struct kset *kset , struct kobject *kobj ) ; char const *(*name)(struct kset *kset , struct kobject *kobj ) ; int (*uevent)(struct kset *kset , struct kobject *kobj , struct kobj_uevent_env *env ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops *uevent_ops ; }; struct kernel_param; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_101 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; unsigned int perm ; int (*set)(char const *val , struct kernel_param *kp ) ; int (*get)(char *buffer , struct kernel_param *kp ) ; union __anonunion____missing_field_name_101 __annonCompField16 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int *num ; int (*set)(char const *val , struct kernel_param *kp ) ; int (*get)(char *buffer , struct kernel_param *kp ) ; unsigned int elemsize ; void *elem ; }; struct marker; typedef void marker_probe_func(void *probe_private , void *call_private , char const *fmt , va_list *args ); struct marker_probe_closure { marker_probe_func *func ; void *probe_private ; }; struct marker { char const *name ; char const *format ; char state ; char ptype ; void (*call)(struct marker const *mdata , void *call_private , ...) ; struct marker_probe_closure single ; struct marker_probe_closure *multi ; char const *tp_name ; void *tp_cb ; } __attribute__((__aligned__(8))) ; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct hrtimer; enum hrtimer_restart; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct *work ) ; }; enum kmemtrace_type_id { KMEMTRACE_TYPE_KMALLOC = 0, KMEMTRACE_TYPE_CACHE = 1, KMEMTRACE_TYPE_PAGES = 2 } ; enum stat_item { ALLOC_FASTPATH = 0, ALLOC_SLOWPATH = 1, FREE_FASTPATH = 2, FREE_SLOWPATH = 3, FREE_FROZEN = 4, FREE_ADD_PARTIAL = 5, FREE_REMOVE_PARTIAL = 6, ALLOC_FROM_PARTIAL = 7, ALLOC_SLAB = 8, ALLOC_REFILL = 9, FREE_SLAB = 10, CPUSLAB_FLUSH = 11, DEACTIVATE_FULL = 12, DEACTIVATE_EMPTY = 13, DEACTIVATE_TO_HEAD = 14, DEACTIVATE_TO_TAIL = 15, DEACTIVATE_REMOTE_FREES = 16, ORDER_FALLBACK = 17, NR_SLUB_STAT_ITEMS = 18 } ; struct kmem_cache_cpu { void **freelist ; struct page *page ; int node ; unsigned int offset ; unsigned int objsize ; unsigned int stat[NR_SLUB_STAT_ITEMS] ; }; struct kmem_cache_node { spinlock_t list_lock ; unsigned long nr_partial ; struct list_head partial ; atomic_long_t nr_slabs ; atomic_long_t total_objects ; struct list_head full ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct kmem_cache { unsigned long flags ; int size ; int objsize ; int offset ; struct kmem_cache_order_objects oo ; struct kmem_cache_node local_node ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; unsigned long min_partial ; char const *name ; struct list_head list ; struct kobject kobj ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1 << 9] ; struct kmem_cache_cpu *cpu_slab[4096] ; }; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct rcu_head { struct rcu_head *next ; void (*func)(struct rcu_head *head ) ; }; struct tracepoint; struct tracepoint { char const *name ; int state ; void **funcs ; } __attribute__((__aligned__(32))) ; struct mod_arch_specific { }; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module * , char const * , size_t count ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2 } ; struct module_sect_attrs; struct module_notes_attrs; struct module { enum module_state state ; struct list_head list ; char name[64UL - sizeof(unsigned long )] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; unsigned int num_symtab ; char *strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; void *percpu ; char *args ; struct marker *markers ; unsigned int num_markers ; struct tracepoint *tracepoints ; unsigned int num_tracepoints ; char const **trace_bprintk_fmt_start ; unsigned int num_trace_bprintk_fmt ; struct list_head modules_which_use_me ; struct task_struct *waiter ; void (*exit)(void) ; char *refptr ; }; struct device_driver; typedef unsigned long kernel_ulong_t; struct i2c_device_id { char name[20] ; kernel_ulong_t driver_data __attribute__((__aligned__(sizeof(kernel_ulong_t )))) ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct semaphore { spinlock_t lock ; unsigned int count ; struct list_head wait_list ; }; struct dma_map_ops; struct dev_archdata { void *acpi_handle ; struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct driver_private; struct class; struct class_private; struct bus_type; struct bus_type_private; struct bus_attribute { struct attribute attr ; ssize_t (*show)(struct bus_type *bus , char *buf ) ; ssize_t (*store)(struct bus_type *bus , char const *buf , size_t count ) ; }; struct device_attribute; struct driver_attribute; struct bus_type { char const *name ; struct bus_attribute *bus_attrs ; struct device_attribute *dev_attrs ; struct driver_attribute *drv_attrs ; int (*match)(struct device *dev , struct device_driver *drv ) ; int (*uevent)(struct device *dev , struct kobj_uevent_env *env ) ; int (*probe)(struct device *dev ) ; int (*remove)(struct device *dev ) ; void (*shutdown)(struct device *dev ) ; int (*suspend)(struct device *dev , pm_message_t state ) ; int (*suspend_late)(struct device *dev , pm_message_t state ) ; int (*resume_early)(struct device *dev ) ; int (*resume)(struct device *dev ) ; struct dev_pm_ops *pm ; struct bus_type_private *p ; }; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; int (*probe)(struct device *dev ) ; int (*remove)(struct device *dev ) ; void (*shutdown)(struct device *dev ) ; int (*suspend)(struct device *dev , pm_message_t state ) ; int (*resume)(struct device *dev ) ; struct attribute_group **groups ; struct dev_pm_ops *pm ; struct driver_private *p ; }; struct driver_attribute { struct attribute attr ; ssize_t (*show)(struct device_driver *driver , char *buf ) ; ssize_t (*store)(struct device_driver *driver , char const *buf , size_t count ) ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct device_attribute *dev_attrs ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device *dev , struct kobj_uevent_env *env ) ; void (*class_release)(struct class *class ) ; void (*dev_release)(struct device *dev ) ; int (*suspend)(struct device *dev , pm_message_t state ) ; int (*resume)(struct device *dev ) ; struct dev_pm_ops *pm ; struct class_private *p ; }; struct device_type; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class *class , char *buf ) ; ssize_t (*store)(struct class *class , char const *buf , size_t count ) ; }; struct device_type { char const *name ; struct attribute_group **groups ; int (*uevent)(struct device *dev , struct kobj_uevent_env *env ) ; void (*release)(struct device *dev ) ; int (*suspend)(struct device *dev , pm_message_t state ) ; int (*resume)(struct device *dev ) ; struct dev_pm_ops *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device *dev , struct device_attribute *attr , char *buf ) ; ssize_t (*store)(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type *type ; struct semaphore sem ; struct bus_type *bus ; struct device_driver *driver ; void *driver_data ; void *platform_data ; struct dev_pm_info power ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; dev_t devt ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group **groups ; void (*release)(struct device *dev ) ; }; struct kernel_cap_struct { __u32 cap[2] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct rb_node { unsigned long rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; } __attribute__((__aligned__(sizeof(long )))) ; struct rb_root { struct rb_node *rb_node ; }; struct prio_tree_node; struct raw_prio_tree_node { struct prio_tree_node *left ; struct prio_tree_node *right ; struct prio_tree_node *parent ; }; struct prio_tree_node { struct prio_tree_node *left ; struct prio_tree_node *right ; struct prio_tree_node *parent ; unsigned long start ; unsigned long last ; }; struct address_space; typedef atomic_long_t mm_counter_t; struct __anonstruct____missing_field_name_107 { u16 inuse ; u16 objects ; }; union __anonunion____missing_field_name_106 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_107 __annonCompField17 ; }; struct __anonstruct____missing_field_name_109 { unsigned long private ; struct address_space *mapping ; }; union __anonunion____missing_field_name_108 { struct __anonstruct____missing_field_name_109 __annonCompField19 ; spinlock_t ptl ; struct kmem_cache *slab ; struct page *first_page ; }; union __anonunion____missing_field_name_110 { unsigned long index ; void *freelist ; }; struct page { unsigned long flags ; atomic_t _count ; union __anonunion____missing_field_name_106 __annonCompField18 ; union __anonunion____missing_field_name_108 __annonCompField20 ; union __anonunion____missing_field_name_110 __annonCompField21 ; struct list_head lru ; }; struct __anonstruct_vm_set_112 { struct list_head list ; void *parent ; struct vm_area_struct *head ; }; union __anonunion_shared_111 { struct __anonstruct_vm_set_112 vm_set ; struct raw_prio_tree_node prio_tree_node ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { struct mm_struct *vm_mm ; unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct rb_node vm_rb ; union __anonunion_shared_111 shared ; struct list_head anon_vma_node ; struct anon_vma *anon_vma ; struct vm_operations_struct *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; unsigned long vm_truncate_count ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file *filp , unsigned long addr , unsigned long len , unsigned long pgoff , unsigned long flags ) ; void (*unmap_area)(struct mm_struct *mm , unsigned long addr ) ; unsigned long mmap_base ; unsigned long task_size ; unsigned long cached_hole_size ; unsigned long free_area_cache ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; int map_count ; struct rw_semaphore mmap_sem ; spinlock_t page_table_lock ; struct list_head mmlist ; mm_counter_t _file_rss ; mm_counter_t _anon_rss ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long reserved_vm ; unsigned long def_flags ; unsigned long nr_ptes ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[2 * ((2 + 19) + 1)] ; cpumask_t cpu_vm_mask ; mm_context_t context ; unsigned int faultstamp ; unsigned int token_priority ; unsigned int last_interval ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct hlist_head ioctx_list ; struct task_struct *owner ; struct file *exe_file ; unsigned long num_exe_file_vmas ; struct mmu_notifier_mm *mmu_notifier_mm ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sem_undo_list { atomic_t refcnt ; spinlock_t lock ; struct list_head list_proc ; }; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct siginfo; struct __anonstruct_sigset_t_113 { unsigned long sig[64 / 64] ; }; typedef struct __anonstruct_sigset_t_113 sigset_t; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_115 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_116 { __kernel_timer_t _tid ; int _overrun ; char _pad[sizeof(__kernel_uid32_t ) - sizeof(int )] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_117 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_118 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_119 { void *_addr ; }; struct __anonstruct__sigpoll_120 { long _band ; int _fd ; }; union __anonunion__sifields_114 { int _pad[(128UL - 4UL * sizeof(int )) / sizeof(int )] ; struct __anonstruct__kill_115 _kill ; struct __anonstruct__timer_116 _timer ; struct __anonstruct__rt_117 _rt ; struct __anonstruct__sigchld_118 _sigchld ; struct __anonstruct__sigfault_119 _sigfault ; struct __anonstruct__sigpoll_120 _sigpoll ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_114 _sifields ; }; typedef struct siginfo siginfo_t; struct user_struct; struct sigpending { struct list_head list ; sigset_t signal ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[PIDTYPE_MAX] ; struct rcu_head rcu ; struct upid numbers[1] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct prop_local_single { unsigned long events ; unsigned long period ; int shift ; spinlock_t lock ; }; struct __anonstruct_seccomp_t_123 { int mode ; }; typedef struct __anonstruct_seccomp_t_123 seccomp_t; struct plist_head { struct list_head prio_list ; struct list_head node_list ; spinlock_t *lock ; }; struct plist_node { int prio ; struct plist_head plist ; }; struct rt_mutex_waiter; struct rlimit { unsigned long rlim_cur ; unsigned long rlim_max ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct rb_node node ; ktime_t _expires ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; struct list_head cb_entry ; int start_pid ; void *start_site ; char start_comm[16] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; clockid_t index ; struct rb_root active ; struct rb_node *first ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { spinlock_t lock ; struct hrtimer_clock_base clock_base[2] ; ktime_t expires_next ; int hres_active ; unsigned long nr_events ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct signal_struct; struct cred; struct key_type; struct keyring_list; struct key_user; union __anonunion_type_data_178 { struct list_head link ; unsigned long x[2] ; void *p[2] ; }; union __anonunion_payload_179 { unsigned long value ; void *data ; struct keyring_list *subscriptions ; }; struct key { atomic_t usage ; key_serial_t serial ; struct rb_node serial_node ; struct key_type *type ; struct rw_semaphore sem ; struct key_user *user ; void *security ; time_t expiry ; uid_t uid ; gid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; char *description ; union __anonunion_type_data_178 type_data ; union __anonunion_payload_179 payload ; }; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; gid_t small_block[32] ; gid_t *blocks[0] ; }; struct thread_group_cred { atomic_t usage ; pid_t tgid ; spinlock_t lock ; struct key *session_keyring ; struct key *process_keyring ; struct rcu_head rcu ; }; struct cred { atomic_t usage ; uid_t uid ; gid_t gid ; uid_t suid ; gid_t sgid ; uid_t euid ; gid_t egid ; uid_t fsuid ; gid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; struct thread_group_cred *tgcred ; void *security ; struct user_struct *user ; struct group_info *group_info ; struct rcu_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio; struct fs_struct; struct cfs_rq; struct task_group; struct user_namespace; struct sighand_struct { atomic_t count ; struct k_sigaction action[64] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; spinlock_t lock ; }; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t count ; atomic_t live ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; cputime_t it_prof_expires ; cputime_t it_virt_expires ; cputime_t it_prof_incr ; cputime_t it_virt_incr ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; struct tty_audit_buf *tty_audit_buf ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; uid_t uid ; struct user_namespace *user_ns ; struct task_group *tg ; struct kobject kobj ; struct work_struct work ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; unsigned int bkl_count ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; enum cpu_idle_type { CPU_IDLE = 0, CPU_NOT_IDLE = 1, CPU_NEWLY_IDLE = 2, CPU_MAX_IDLE_TYPES = 3 } ; struct sched_group { struct sched_group *next ; unsigned int __cpu_power ; u32 reciprocal_cpu_power ; unsigned long cpumask[] ; }; enum sched_domain_level { SD_LV_NONE = 0, SD_LV_SIBLING = 1, SD_LV_MC = 2, SD_LV_CPU = 3, SD_LV_NODE = 4, SD_LV_ALLNODES = 5, SD_LV_MAX = 6 } ; struct sched_domain { struct sched_domain *parent ; struct sched_domain *child ; struct sched_group *groups ; unsigned long min_interval ; unsigned long max_interval ; unsigned int busy_factor ; unsigned int imbalance_pct ; unsigned int cache_nice_tries ; unsigned int busy_idx ; unsigned int idle_idx ; unsigned int newidle_idx ; unsigned int wake_idx ; unsigned int forkexec_idx ; int flags ; enum sched_domain_level level ; unsigned long last_balance ; unsigned int balance_interval ; unsigned int nr_balance_failed ; u64 last_update ; unsigned int lb_count[CPU_MAX_IDLE_TYPES] ; unsigned int lb_failed[CPU_MAX_IDLE_TYPES] ; unsigned int lb_balanced[CPU_MAX_IDLE_TYPES] ; unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES] ; unsigned int lb_gained[CPU_MAX_IDLE_TYPES] ; unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES] ; unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES] ; unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES] ; unsigned int alb_count ; unsigned int alb_failed ; unsigned int alb_pushed ; unsigned int sbe_count ; unsigned int sbe_balanced ; unsigned int sbe_pushed ; unsigned int sbf_count ; unsigned int sbf_balanced ; unsigned int sbf_pushed ; unsigned int ttwu_wake_remote ; unsigned int ttwu_move_affine ; unsigned int ttwu_move_balance ; char *name ; unsigned long span[] ; }; struct io_context; struct audit_context; struct pipe_inode_info; struct rq; struct sched_class { struct sched_class const *next ; void (*enqueue_task)(struct rq *rq , struct task_struct *p , int wakeup ) ; void (*dequeue_task)(struct rq *rq , struct task_struct *p , int sleep ) ; void (*yield_task)(struct rq *rq ) ; void (*check_preempt_curr)(struct rq *rq , struct task_struct *p , int sync ) ; struct task_struct *(*pick_next_task)(struct rq *rq ) ; void (*put_prev_task)(struct rq *rq , struct task_struct *p ) ; int (*select_task_rq)(struct task_struct *p , int sync ) ; unsigned long (*load_balance)(struct rq *this_rq , int this_cpu , struct rq *busiest , unsigned long max_load_move , struct sched_domain *sd , enum cpu_idle_type idle , int *all_pinned , int *this_best_prio ) ; int (*move_one_task)(struct rq *this_rq , int this_cpu , struct rq *busiest , struct sched_domain *sd , enum cpu_idle_type idle ) ; void (*pre_schedule)(struct rq *this_rq , struct task_struct *task ) ; int (*needs_post_schedule)(struct rq *this_rq ) ; void (*post_schedule)(struct rq *this_rq ) ; void (*task_wake_up)(struct rq *this_rq , struct task_struct *task ) ; void (*set_cpus_allowed)(struct task_struct *p , struct cpumask const *newmask ) ; void (*rq_online)(struct rq *rq ) ; void (*rq_offline)(struct rq *rq ) ; void (*set_curr_task)(struct rq *rq ) ; void (*task_tick)(struct rq *rq , struct task_struct *p , int queued ) ; void (*task_new)(struct rq *rq , struct task_struct *p ) ; void (*switched_from)(struct rq *this_rq , struct task_struct *task , int running ) ; void (*switched_to)(struct rq *this_rq , struct task_struct *task , int running ) ; void (*prio_changed)(struct rq *this_rq , struct task_struct *task , int oldprio , int running ) ; void (*moved_group)(struct task_struct *p ) ; }; struct load_weight { unsigned long weight ; unsigned long inv_weight ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 last_wakeup ; u64 avg_overlap ; u64 start_runtime ; u64 avg_wakeup ; u64 nr_migrations ; u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_forced2_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned int time_slice ; int nr_cpus_allowed ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct linux_binfmt; struct files_struct; struct css_set; struct compat_robust_list_head; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; int lock_depth ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct hlist_head preempt_notifiers ; unsigned char fpu_counter ; s8 oomkilladj ; unsigned int policy ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; struct linux_binfmt *binfmt ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int personality ; unsigned int did_exec : 1 ; unsigned int in_execve : 1 ; pid_t pid ; pid_t tgid ; unsigned long stack_canary ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct bts_tracer *bts ; void *bts_buffer ; size_t bts_size ; struct pid_link pids[PIDTYPE_MAX] ; struct list_head thread_group ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; cputime_t prev_utime ; cputime_t prev_stime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3] ; struct cred const *real_cred ; struct cred const *cred ; struct mutex cred_exec_mutex ; char comm[16] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_timestamp ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void *priv ) ; void *notifier_data ; sigset_t *notifier_mask ; struct audit_context *audit_context ; uid_t loginuid ; unsigned int sessionid ; seccomp_t seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; spinlock_t pi_lock ; struct plist_head pi_waiters ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; int hardirqs_enabled ; unsigned long hardirq_enable_ip ; unsigned int hardirq_enable_event ; unsigned long hardirq_disable_ip ; unsigned int hardirq_disable_event ; int softirqs_enabled ; unsigned long softirq_disable_ip ; unsigned int softirq_disable_event ; unsigned long softirq_enable_ip ; unsigned int softirq_enable_event ; int hardirq_context ; int softirq_context ; void *journal_info ; struct bio *bio_list ; struct bio **bio_tail ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; int cpuset_mems_generation ; int cpuset_mem_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct mempolicy *mempolicy ; short il_next ; atomic_t fs_excl ; struct rcu_head rcu ; struct pipe_inode_info *splice_pipe ; struct task_delay_info *delays ; int make_it_fail ; struct prop_local_single dirties ; int latency_record_count ; struct latency_record latency_record[32] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; struct list_head *scm_work_list ; unsigned long trace ; }; struct i2c_msg; struct i2c_algorithm; struct i2c_adapter; struct i2c_client; struct i2c_driver; union i2c_smbus_data; struct i2c_board_info; struct i2c_client_address_data; struct i2c_driver { int id ; unsigned int class ; int (*attach_adapter)(struct i2c_adapter * ) ; int (*detach_adapter)(struct i2c_adapter * ) ; int (*detach_client)(struct i2c_client * ) __attribute__((__deprecated__)) ; int (*probe)(struct i2c_client * , struct i2c_device_id const * ) ; int (*remove)(struct i2c_client * ) ; void (*shutdown)(struct i2c_client * ) ; int (*suspend)(struct i2c_client * , pm_message_t mesg ) ; int (*resume)(struct i2c_client * ) ; int (*command)(struct i2c_client *client , unsigned int cmd , void *arg ) ; struct device_driver driver ; struct i2c_device_id const *id_table ; int (*detect)(struct i2c_client * , int kind , struct i2c_board_info * ) ; struct i2c_client_address_data const *address_data ; struct list_head clients ; }; struct i2c_client { unsigned short flags ; unsigned short addr ; char name[20] ; struct i2c_adapter *adapter ; struct i2c_driver *driver ; struct device dev ; int irq ; struct list_head list ; struct list_head detected ; struct completion released ; }; struct i2c_board_info { char type[20] ; unsigned short flags ; unsigned short addr ; void *platform_data ; struct dev_archdata *archdata ; int irq ; }; struct i2c_algorithm { int (*master_xfer)(struct i2c_adapter *adap , struct i2c_msg *msgs , int num ) ; int (*smbus_xfer)(struct i2c_adapter *adap , u16 addr , unsigned short flags , char read_write , u8 command , int size , union i2c_smbus_data *data ) ; u32 (*functionality)(struct i2c_adapter * ) ; }; struct i2c_adapter { struct module *owner ; unsigned int id ; unsigned int class ; struct i2c_algorithm const *algo ; void *algo_data ; int (*client_register)(struct i2c_client * ) ; int (*client_unregister)(struct i2c_client * ) ; u8 level ; struct mutex bus_lock ; struct mutex clist_lock ; int timeout ; int retries ; struct device dev ; int nr ; struct list_head clients ; char name[48] ; struct completion dev_released ; }; struct i2c_client_address_data { unsigned short const *normal_i2c ; unsigned short const *probe ; unsigned short const *ignore ; unsigned short const * const *forces ; }; struct i2c_msg { __u16 addr ; __u16 flags ; __u16 len ; __u8 *buf ; }; union i2c_smbus_data { __u8 byte ; __u16 word ; __u8 block[32 + 2] ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; int brightness ; int max_brightness ; int flags ; void (*brightness_set)(struct led_classdev *led_cdev , enum led_brightness brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev *led_cdev ) ; int (*blink_set)(struct led_classdev *led_cdev , unsigned long *delay_on , unsigned long *delay_off ) ; struct device *dev ; struct list_head node ; char const *default_trigger ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev *led_cdev ) ; void (*deactivate)(struct led_classdev *led_cdev ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct bd2802_led_platform_data { int reset_gpio ; u8 rgb_time ; }; enum led_ids { LED1 = 0, LED2 = 1, LED_NUM = 2 } ; enum led_colors { RED = 0, GREEN = 1, BLUE = 2 } ; enum led_bits { BD2802_OFF = 0, BD2802_BLINK = 1, BD2802_ON = 2 } ; struct led_state { unsigned int r : 2 ; unsigned int g : 2 ; unsigned int b : 2 ; }; struct bd2802_led { struct bd2802_led_platform_data *pdata ; struct i2c_client *client ; struct rw_semaphore rwsem ; struct work_struct work ; struct led_state led[2] ; struct led_classdev cdev_led1r ; struct led_classdev cdev_led1g ; struct led_classdev cdev_led1b ; struct led_classdev cdev_led2r ; struct led_classdev cdev_led2g ; struct led_classdev cdev_led2b ; int adf_on ; enum led_ids led_id ; enum led_colors color ; enum led_bits state ; }; extern __attribute__((__noreturn__)) int ____ilog2_NaN(void) __attribute__((__const__)) ; extern int strict_strtoul(char const * , unsigned int , unsigned long * ) ; extern int ( /* format attribute */ sprintf)(char *buf , char const *fmt , ...) ; extern int ( /* format attribute */ printk)(char const *fmt , ...) ; extern int strncmp(char const * , char const * , __kernel_size_t ) ; __inline static int get_order(unsigned long size ) __attribute__((__const__)) ; __inline static int get_order(unsigned long size ) { int order ; { size = (size - 1UL) >> (12 - 1); order = -1; while (1) { size = size >> 1; order = order + 1; if (size) { } else { break; } } return (order); } } __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __init_rwsem(struct rw_semaphore *sem , char const *name , struct lock_class_key *key ) ; extern void down_read(struct rw_semaphore *sem ) ; extern void down_write(struct rw_semaphore *sem ) ; extern void up_read(struct rw_semaphore *sem ) ; extern void up_write(struct rw_semaphore *sem ) ; extern void __bad_udelay(void) ; extern void __const_udelay(unsigned long xloops ) ; extern unsigned long __get_free_pages(gfp_t gfp_mask , unsigned int order ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return (kobj->name); } } extern void kfree(void const * ) ; extern int schedule_work(struct work_struct *work ) ; extern int cancel_work_sync(struct work_struct *work ) ; __inline static void kmemtrace_mark_alloc_node(enum kmemtrace_type_id type_id , unsigned long call_site , void const *ptr , size_t bytes_req , size_t bytes_alloc , gfp_t gfp_flags , int node ) { { return; } } __inline static void kmemtrace_mark_alloc(enum kmemtrace_type_id type_id , unsigned long call_site , void const *ptr , size_t bytes_req , size_t bytes_alloc , gfp_t gfp_flags ) { { kmemtrace_mark_alloc_node(type_id, call_site, ptr, bytes_req, bytes_alloc, gfp_flags, -1); return; } } extern struct kmem_cache kmalloc_caches[12 + 2] ; __inline static int ( __attribute__((__always_inline__)) kmalloc_index)(size_t size ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; int tmp___24 ; int tmp___25 ; int tmp___26 ; int tmp___27 ; int tmp___28 ; int tmp___29 ; int tmp___30 ; int tmp___31 ; int tmp___32 ; int tmp___33 ; int tmp___34 ; int tmp___35 ; int tmp___36 ; int tmp___37 ; int tmp___38 ; int tmp___39 ; int tmp___40 ; int tmp___41 ; int tmp___42 ; int tmp___43 ; int tmp___44 ; int tmp___45 ; int tmp___46 ; int tmp___47 ; int tmp___48 ; int tmp___49 ; int tmp___50 ; int tmp___51 ; int tmp___52 ; int tmp___53 ; int tmp___54 ; int tmp___55 ; int tmp___56 ; int tmp___57 ; int tmp___58 ; int tmp___59 ; int tmp___60 ; int tmp___61 ; int tmp___62 ; int tmp___63 ; int tmp___64 ; int tmp___65 ; { if (! size) { return (0); } else { } if (size <= (size_t )8) { if (8 < 1) { tmp = ____ilog2_NaN(); tmp___65 = tmp; } else { if (8ULL & (1ULL << 63)) { tmp___64 = 63; } else { if (8ULL & (1ULL << 62)) { tmp___63 = 62; } else { if (8ULL & (1ULL << 61)) { tmp___62 = 61; } else { if (8ULL & (1ULL << 60)) { tmp___61 = 60; } else { if (8ULL & (1ULL << 59)) { tmp___60 = 59; } else { if (8ULL & (1ULL << 58)) { tmp___59 = 58; } else { if (8ULL & (1ULL << 57)) { tmp___58 = 57; } else { if (8ULL & (1ULL << 56)) { tmp___57 = 56; } else { if (8ULL & (1ULL << 55)) { tmp___56 = 55; } else { if (8ULL & (1ULL << 54)) { tmp___55 = 54; } else { if (8ULL & (1ULL << 53)) { tmp___54 = 53; } else { if (8ULL & (1ULL << 52)) { tmp___53 = 52; } else { if (8ULL & (1ULL << 51)) { tmp___52 = 51; } else { if (8ULL & (1ULL << 50)) { tmp___51 = 50; } else { if (8ULL & (1ULL << 49)) { tmp___50 = 49; } else { if (8ULL & (1ULL << 48)) { tmp___49 = 48; } else { if (8ULL & (1ULL << 47)) { tmp___48 = 47; } else { if (8ULL & (1ULL << 46)) { tmp___47 = 46; } else { if (8ULL & (1ULL << 45)) { tmp___46 = 45; } else { if (8ULL & (1ULL << 44)) { tmp___45 = 44; } else { if (8ULL & (1ULL << 43)) { tmp___44 = 43; } else { if (8ULL & (1ULL << 42)) { tmp___43 = 42; } else { if (8ULL & (1ULL << 41)) { tmp___42 = 41; } else { if (8ULL & (1ULL << 40)) { tmp___41 = 40; } else { if (8ULL & (1ULL << 39)) { tmp___40 = 39; } else { if (8ULL & (1ULL << 38)) { tmp___39 = 38; } else { if (8ULL & (1ULL << 37)) { tmp___38 = 37; } else { if (8ULL & (1ULL << 36)) { tmp___37 = 36; } else { if (8ULL & (1ULL << 35)) { tmp___36 = 35; } else { if (8ULL & (1ULL << 34)) { tmp___35 = 34; } else { if (8ULL & (1ULL << 33)) { tmp___34 = 33; } else { if (8ULL & (1ULL << 32)) { tmp___33 = 32; } else { if (8ULL & (1ULL << 31)) { tmp___32 = 31; } else { if (8ULL & (1ULL << 30)) { tmp___31 = 30; } else { if (8ULL & (1ULL << 29)) { tmp___30 = 29; } else { if (8ULL & (1ULL << 28)) { tmp___29 = 28; } else { if (8ULL & (1ULL << 27)) { tmp___28 = 27; } else { if (8ULL & (1ULL << 26)) { tmp___27 = 26; } else { if (8ULL & (1ULL << 25)) { tmp___26 = 25; } else { if (8ULL & (1ULL << 24)) { tmp___25 = 24; } else { if (8ULL & (1ULL << 23)) { tmp___24 = 23; } else { if (8ULL & (1ULL << 22)) { tmp___23 = 22; } else { if (8ULL & (1ULL << 21)) { tmp___22 = 21; } else { if (8ULL & (1ULL << 20)) { tmp___21 = 20; } else { if (8ULL & (1ULL << 19)) { tmp___20 = 19; } else { if (8ULL & (1ULL << 18)) { tmp___19 = 18; } else { if (8ULL & (1ULL << 17)) { tmp___18 = 17; } else { if (8ULL & (1ULL << 16)) { tmp___17 = 16; } else { if (8ULL & (1ULL << 15)) { tmp___16 = 15; } else { if (8ULL & (1ULL << 14)) { tmp___15 = 14; } else { if (8ULL & (1ULL << 13)) { tmp___14 = 13; } else { if (8ULL & (1ULL << 12)) { tmp___13 = 12; } else { if (8ULL & (1ULL << 11)) { tmp___12 = 11; } else { if (8ULL & (1ULL << 10)) { tmp___11 = 10; } else { if (8ULL & (1ULL << 9)) { tmp___10 = 9; } else { if (8ULL & (1ULL << 8)) { tmp___9 = 8; } else { if (8ULL & (1ULL << 7)) { tmp___8 = 7; } else { if (8ULL & (1ULL << 6)) { tmp___7 = 6; } else { if (8ULL & (1ULL << 5)) { tmp___6 = 5; } else { if (8ULL & (1ULL << 4)) { tmp___5 = 4; } else { if (8ULL & (1ULL << 3)) { tmp___4 = 3; } else { if (8ULL & (1ULL << 2)) { tmp___3 = 2; } else { if (8ULL & (1ULL << 1)) { tmp___2 = 1; } else { if (8ULL & (1ULL << 0)) { tmp___1 = 0; } else { tmp___0 = ____ilog2_NaN(); tmp___1 = tmp___0; } tmp___2 = tmp___1; } tmp___3 = tmp___2; } tmp___4 = tmp___3; } tmp___5 = tmp___4; } tmp___6 = tmp___5; } tmp___7 = tmp___6; } tmp___8 = tmp___7; } tmp___9 = tmp___8; } tmp___10 = tmp___9; } tmp___11 = tmp___10; } tmp___12 = tmp___11; } tmp___13 = tmp___12; } tmp___14 = tmp___13; } tmp___15 = tmp___14; } tmp___16 = tmp___15; } tmp___17 = tmp___16; } tmp___18 = tmp___17; } tmp___19 = tmp___18; } tmp___20 = tmp___19; } tmp___21 = tmp___20; } tmp___22 = tmp___21; } tmp___23 = tmp___22; } tmp___24 = tmp___23; } tmp___25 = tmp___24; } tmp___26 = tmp___25; } tmp___27 = tmp___26; } tmp___28 = tmp___27; } tmp___29 = tmp___28; } tmp___30 = tmp___29; } tmp___31 = tmp___30; } tmp___32 = tmp___31; } tmp___33 = tmp___32; } tmp___34 = tmp___33; } tmp___35 = tmp___34; } tmp___36 = tmp___35; } tmp___37 = tmp___36; } tmp___38 = tmp___37; } tmp___39 = tmp___38; } tmp___40 = tmp___39; } tmp___41 = tmp___40; } tmp___42 = tmp___41; } tmp___43 = tmp___42; } tmp___44 = tmp___43; } tmp___45 = tmp___44; } tmp___46 = tmp___45; } tmp___47 = tmp___46; } tmp___48 = tmp___47; } tmp___49 = tmp___48; } tmp___50 = tmp___49; } tmp___51 = tmp___50; } tmp___52 = tmp___51; } tmp___53 = tmp___52; } tmp___54 = tmp___53; } tmp___55 = tmp___54; } tmp___56 = tmp___55; } tmp___57 = tmp___56; } tmp___58 = tmp___57; } tmp___59 = tmp___58; } tmp___60 = tmp___59; } tmp___61 = tmp___60; } tmp___62 = tmp___61; } tmp___63 = tmp___62; } tmp___64 = tmp___63; } tmp___65 = tmp___64; } return (tmp___65); } else { } if (size > (size_t )64 && size <= (size_t )96) { return (1); } else { } if (size > (size_t )128 && size <= (size_t )192) { return (2); } else { } if (size <= (size_t )8) { return (3); } else { } if (size <= (size_t )16) { return (4); } else { } if (size <= (size_t )32) { return (5); } else { } if (size <= (size_t )64) { return (6); } else { } if (size <= (size_t )128) { return (7); } else { } if (size <= (size_t )256) { return (8); } else { } if (size <= (size_t )512) { return (9); } else { } if (size <= (size_t )1024) { return (10); } else { } if (size <= (size_t )(2 * 1024)) { return (11); } else { } if (size <= (size_t )(4 * 1024)) { return (12); } else { } if (size <= (size_t )(8 * 1024)) { return (13); } else { } if (size <= (size_t )(16 * 1024)) { return (14); } else { } if (size <= (size_t )(32 * 1024)) { return (15); } else { } if (size <= (size_t )(64 * 1024)) { return (16); } else { } if (size <= (size_t )(128 * 1024)) { return (17); } else { } if (size <= (size_t )(256 * 1024)) { return (18); } else { } if (size <= (size_t )(512 * 1024)) { return (19); } else { } if (size <= (size_t )(1024 * 1024)) { return (20); } else { } if (size <= (size_t )((2 * 1024) * 1024)) { return (21); } else { } return (-1); } } __inline static struct kmem_cache *( __attribute__((__always_inline__)) kmalloc_slab)(size_t size ) { int index ; int tmp ; { tmp = kmalloc_index(size); index = tmp; if (index == 0) { return ((void *)0); } else { } return (& kmalloc_caches[index]); } } extern void *kmem_cache_alloc(struct kmem_cache * , gfp_t ) ; extern void *__kmalloc(size_t size , gfp_t flags ) ; __inline static void *( __attribute__((__always_inline__)) kmem_cache_alloc_notrace)(struct kmem_cache *s , gfp_t gfpflags ) { void *tmp ; { tmp = kmem_cache_alloc(s, gfpflags); return (tmp); } } __inline static void *( __attribute__((__always_inline__)) kmalloc_large)(size_t size , gfp_t flags ) { unsigned int order ; int tmp ; void *ret ; unsigned long tmp___0 ; { tmp = get_order(size); order = tmp; tmp___0 = __get_free_pages(flags | 16384U, order); ret = (void *)tmp___0; kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC, (unsigned long )((void *)0), ret, size, (1UL << 12) << order, flags); return (ret); } } __inline static void *( __attribute__((__always_inline__)) kmalloc)(size_t size , gfp_t flags ) { void *ret ; void *tmp ; struct kmem_cache *s ; struct kmem_cache *tmp___0 ; void *tmp___1 ; { if (0) { if (size > 2UL * (1UL << 12)) { tmp = kmalloc_large(size, flags); return (tmp); } else { } if (! (flags & 1U)) { tmp___0 = kmalloc_slab(size); s = tmp___0; if (! s) { return ((void *)16); } else { } ret = kmem_cache_alloc_notrace(s, flags); kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC, (unsigned long )((void *)0), ret, size, s->size, flags); return (ret); } else { } } else { } tmp___1 = __kmalloc(size, flags); return (tmp___1); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } int init_module(void) ; void cleanup_module(void) ; extern struct module __this_module ; extern int ( __attribute__((__warn_unused_result__)) device_create_file)(struct device *device , struct device_attribute *entry ) ; extern void device_remove_file(struct device *dev , struct device_attribute *attr ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { tmp = kobject_name(& dev->kobj); return (tmp); } } __inline static void *dev_get_drvdata(struct device const *dev ) { { return (dev->driver_data); } } __inline static void dev_set_drvdata(struct device *dev , void *data ) { { dev->driver_data = data; return; } } extern char const *dev_driver_string(struct device const *dev ) ; extern s32 i2c_smbus_write_byte_data(struct i2c_client *client , u8 command , u8 value ) ; __inline static void *i2c_get_clientdata(struct i2c_client const *dev ) { void *tmp ; { tmp = dev_get_drvdata(& dev->dev); return (tmp); } } __inline static void i2c_set_clientdata(struct i2c_client *dev , void *data ) { { dev_set_drvdata(& dev->dev, data); return; } } extern int i2c_register_driver(struct module * , struct i2c_driver * ) ; extern void i2c_del_driver(struct i2c_driver * ) ; __inline static int i2c_add_driver(struct i2c_driver *driver ) { int tmp ; { tmp = i2c_register_driver(& __this_module, driver); return (tmp); } } extern int gpio_request(unsigned int gpio , char const *label ) ; extern int gpio_direction_output(unsigned int gpio , int value ) ; extern void __gpio_set_value(unsigned int gpio , int value ) ; __inline static void gpio_set_value(unsigned int gpio , int value ) { { __gpio_set_value(gpio, value); return; } } extern int led_classdev_register(struct device *parent , struct led_classdev *led_cdev ) ; extern void led_classdev_unregister(struct led_classdev *led_cdev ) ; __inline static int bd2802_is_rgb_off(struct bd2802_led *led , enum led_ids id , enum led_colors color ) { char const *tmp ; char const *tmp___0 ; { switch ((unsigned int )color) { case (unsigned int )RED: return (! led->led[id].r); case (unsigned int )GREEN: return (! led->led[id].g); case (unsigned int )BLUE: return (! led->led[id].b); default: tmp = dev_name(& (led->client)->dev); tmp___0 = dev_driver_string(& (led->client)->dev); printk("<3>%s %s: %s: Invalid color\n", tmp___0, tmp, "bd2802_is_rgb_off"); return (-22); } } } __inline static int bd2802_is_led_off(struct bd2802_led *led , enum led_ids id ) { { if ((led->led[id].r || led->led[id].g) || led->led[id].b) { return (0); } else { } return (1); } } __inline static int bd2802_is_all_off(struct bd2802_led *led ) { int i ; int tmp ; { i = 0; while (1) { if (i < LED_NUM) { } else { break; } tmp = bd2802_is_led_off(led, i); if (tmp) { } else { return (0); } i = i + 1; } return (1); } } __inline static u8 bd2802_get_base_offset(enum led_ids id , enum led_colors color ) { { return ((unsigned int )id * 10U + (unsigned int )color * 3U); } } __inline static u8 bd2802_get_reg_addr(enum led_ids id , enum led_colors color , u8 reg_offset ) { u8 tmp ; { tmp = bd2802_get_base_offset(id, color); return ((int )reg_offset + (int )tmp); } } static int bd2802_write_byte(struct i2c_client *client , u8 reg , u8 val ) { int ret ; s32 tmp ; char const *tmp___0 ; char const *tmp___1 ; { tmp = i2c_smbus_write_byte_data(client, reg, val); ret = tmp; if (ret >= 0) { return (0); } else { } tmp___0 = dev_name(& client->dev); tmp___1 = dev_driver_string(& client->dev); printk("<3>%s %s: %s: reg 0x%x, val 0x%x, err %d\n", tmp___1, tmp___0, "bd2802_write_byte", reg, val, ret); return (ret); } } static void bd2802_update_state(struct bd2802_led *led , enum led_ids id , enum led_colors color , enum led_bits led_bit ) { int i ; u8 value ; char const *tmp ; char const *tmp___0 ; int tmp___1 ; int tmp___2 ; { i = 0; while (1) { if (i < LED_NUM) { } else { break; } if ((unsigned int )i == (unsigned int )id) { switch ((unsigned int )color) { case (unsigned int )RED: led->led[i].r = led_bit; break; case (unsigned int )GREEN: led->led[i].g = led_bit; break; case (unsigned int )BLUE: led->led[i].b = led_bit; break; default: tmp = dev_name(& (led->client)->dev); tmp___0 = dev_driver_string(& (led->client)->dev); printk("<3>%s %s: %s: Invalid color\n", tmp___0, tmp, "bd2802_update_state"); return; } } else { } i = i + 1; } if ((unsigned int )led_bit == (unsigned int )BD2802_BLINK || (unsigned int )led_bit == (unsigned int )BD2802_ON) { return; } else { } tmp___1 = bd2802_is_led_off(led, id); if (tmp___1) { } else { return; } tmp___2 = bd2802_is_all_off(led); if (tmp___2 && ! led->adf_on) { gpio_set_value((led->pdata)->reset_gpio, 0); return; } else { } value = (unsigned int )id == (unsigned int )LED1 ? (1 << 4) | (0 << 0) : (0 << 4) | (1 << 0); bd2802_write_byte(led->client, 1, value); return; } } static void bd2802_configure(struct bd2802_led *led ) { struct bd2802_led_platform_data *pdata ; u8 reg ; { pdata = led->pdata; reg = bd2802_get_reg_addr(LED1, RED, 2); bd2802_write_byte(led->client, reg, pdata->rgb_time); reg = bd2802_get_reg_addr(LED2, RED, 2); bd2802_write_byte(led->client, reg, pdata->rgb_time); return; } } static void bd2802_reset_cancel(struct bd2802_led *led ) { { gpio_set_value((led->pdata)->reset_gpio, 1); if (100 > 20000) { __bad_udelay(); } else { __const_udelay(100UL * 4295UL); } bd2802_configure(led); return; } } static void bd2802_enable(struct bd2802_led *led , enum led_ids id ) { enum led_ids other_led ; u8 value ; u8 other_led_on ; int tmp ; int tmp___0 ; { other_led = (unsigned int )id == (unsigned int )LED1 ? LED2 : LED1; tmp = bd2802_is_led_off(led, other_led); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } other_led_on = tmp___0; if ((unsigned int )id == (unsigned int )LED1) { value = ((int )other_led_on << 4) | (1 << 0); } else { value = (1 << 4) | ((int )other_led_on << 0); } bd2802_write_byte(led->client, 1, value); return; } } static void bd2802_set_on(struct bd2802_led *led , enum led_ids id , enum led_colors color ) { u8 reg ; int tmp ; { tmp = bd2802_is_all_off(led); if (tmp && ! led->adf_on) { bd2802_reset_cancel(led); } else { } reg = bd2802_get_reg_addr(id, color, 3); bd2802_write_byte(led->client, reg, 16); reg = bd2802_get_reg_addr(id, color, 4); bd2802_write_byte(led->client, reg, 0); reg = bd2802_get_reg_addr(id, color, 5); bd2802_write_byte(led->client, reg, 7); bd2802_enable(led, id); bd2802_update_state(led, id, color, BD2802_ON); return; } } static void bd2802_set_blink(struct bd2802_led *led , enum led_ids id , enum led_colors color ) { u8 reg ; int tmp ; { tmp = bd2802_is_all_off(led); if (tmp && ! led->adf_on) { bd2802_reset_cancel(led); } else { } reg = bd2802_get_reg_addr(id, color, 3); bd2802_write_byte(led->client, reg, 0); reg = bd2802_get_reg_addr(id, color, 4); bd2802_write_byte(led->client, reg, 16); reg = bd2802_get_reg_addr(id, color, 5); bd2802_write_byte(led->client, reg, 3); bd2802_enable(led, id); bd2802_update_state(led, id, color, BD2802_BLINK); return; } } static void bd2802_turn_on(struct bd2802_led *led , enum led_ids id , enum led_colors color , enum led_bits led_bit ) { char const *tmp ; char const *tmp___0 ; { if ((unsigned int )led_bit == (unsigned int )BD2802_OFF) { tmp = dev_name(& (led->client)->dev); tmp___0 = dev_driver_string(& (led->client)->dev); printk("<3>%s %s: Only \'blink\' and \'on\' are allowed\n", tmp___0, tmp); return; } else { } if ((unsigned int )led_bit == (unsigned int )BD2802_BLINK) { bd2802_set_blink(led, id, color); } else { bd2802_set_on(led, id, color); } return; } } static void bd2802_turn_off(struct bd2802_led *led , enum led_ids id , enum led_colors color ) { u8 reg ; int tmp ; { tmp = bd2802_is_rgb_off(led, id, color); if (tmp) { return; } else { } reg = bd2802_get_reg_addr(id, color, 3); bd2802_write_byte(led->client, reg, 0); reg = bd2802_get_reg_addr(id, color, 4); bd2802_write_byte(led->client, reg, 0); bd2802_update_state(led, id, color, BD2802_OFF); return; } } static void bd2802_restore_state(struct bd2802_led *led ) { int i ; { i = 0; while (1) { if (i < LED_NUM) { } else { break; } if (led->led[i].r) { bd2802_turn_on(led, i, RED, led->led[i].r); } else { } if (led->led[i].g) { bd2802_turn_on(led, i, GREEN, led->led[i].g); } else { } if (led->led[i].b) { bd2802_turn_on(led, i, BLUE, led->led[i].b); } else { } i = i + 1; } return; } } static ssize_t bd2802_store_reg0x00(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 0, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x00_attr = {{"0x00", & __this_module, 420}, 0, & bd2802_store_reg0x00}; static ssize_t bd2802_store_reg0x01(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 1, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x01_attr = {{"0x01", & __this_module, 420}, 0, & bd2802_store_reg0x01}; static ssize_t bd2802_store_reg0x02(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 2, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x02_attr = {{"0x02", & __this_module, 420}, 0, & bd2802_store_reg0x02}; static ssize_t bd2802_store_reg0x03(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 3, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x03_attr = {{"0x03", & __this_module, 420}, 0, & bd2802_store_reg0x03}; static ssize_t bd2802_store_reg0x04(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 4, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x04_attr = {{"0x04", & __this_module, 420}, 0, & bd2802_store_reg0x04}; static ssize_t bd2802_store_reg0x05(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 5, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x05_attr = {{"0x05", & __this_module, 420}, 0, & bd2802_store_reg0x05}; static ssize_t bd2802_store_reg0x06(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 6, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x06_attr = {{"0x06", & __this_module, 420}, 0, & bd2802_store_reg0x06}; static ssize_t bd2802_store_reg0x07(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 7, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x07_attr = {{"0x07", & __this_module, 420}, 0, & bd2802_store_reg0x07}; static ssize_t bd2802_store_reg0x08(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 8, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x08_attr = {{"0x08", & __this_module, 420}, 0, & bd2802_store_reg0x08}; static ssize_t bd2802_store_reg0x09(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 9, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x09_attr = {{"0x09", & __this_module, 420}, 0, & bd2802_store_reg0x09}; static ssize_t bd2802_store_reg0x0a(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 10, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x0a_attr = {{"0x0a", & __this_module, 420}, 0, & bd2802_store_reg0x0a}; static ssize_t bd2802_store_reg0x0b(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 11, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x0b_attr = {{"0x0b", & __this_module, 420}, 0, & bd2802_store_reg0x0b}; static ssize_t bd2802_store_reg0x0c(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 12, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x0c_attr = {{"0x0c", & __this_module, 420}, 0, & bd2802_store_reg0x0c}; static ssize_t bd2802_store_reg0x0d(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 13, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x0d_attr = {{"0x0d", & __this_module, 420}, 0, & bd2802_store_reg0x0d}; static ssize_t bd2802_store_reg0x0e(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 14, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x0e_attr = {{"0x0e", & __this_module, 420}, 0, & bd2802_store_reg0x0e}; static ssize_t bd2802_store_reg0x0f(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 15, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x0f_attr = {{"0x0f", & __this_module, 420}, 0, & bd2802_store_reg0x0f}; static ssize_t bd2802_store_reg0x10(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 16, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x10_attr = {{"0x10", & __this_module, 420}, 0, & bd2802_store_reg0x10}; static ssize_t bd2802_store_reg0x11(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 17, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x11_attr = {{"0x11", & __this_module, 420}, 0, & bd2802_store_reg0x11}; static ssize_t bd2802_store_reg0x12(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 18, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x12_attr = {{"0x12", & __this_module, 420}, 0, & bd2802_store_reg0x12}; static ssize_t bd2802_store_reg0x13(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 19, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x13_attr = {{"0x13", & __this_module, 420}, 0, & bd2802_store_reg0x13}; static ssize_t bd2802_store_reg0x14(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 20, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x14_attr = {{"0x14", & __this_module, 420}, 0, & bd2802_store_reg0x14}; static ssize_t bd2802_store_reg0x15(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } ret = strict_strtoul(buf, 16, & val); if (ret) { return (ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 21, (u8 )val); up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_reg0x15_attr = {{"0x15", & __this_module, 420}, 0, & bd2802_store_reg0x15}; static struct device_attribute *bd2802_addr_attributes[22] = { & bd2802_reg0x00_attr, & bd2802_reg0x01_attr, & bd2802_reg0x02_attr, & bd2802_reg0x03_attr, & bd2802_reg0x04_attr, & bd2802_reg0x05_attr, & bd2802_reg0x06_attr, & bd2802_reg0x07_attr, & bd2802_reg0x08_attr, & bd2802_reg0x09_attr, & bd2802_reg0x0a_attr, & bd2802_reg0x0b_attr, & bd2802_reg0x0c_attr, & bd2802_reg0x0d_attr, & bd2802_reg0x0e_attr, & bd2802_reg0x0f_attr, & bd2802_reg0x10_attr, & bd2802_reg0x11_attr, & bd2802_reg0x12_attr, & bd2802_reg0x13_attr, & bd2802_reg0x14_attr, & bd2802_reg0x15_attr}; static void bd2802_enable_adv_conf(struct bd2802_led *led ) { int i ; int ret ; char const *tmp ; char const *tmp___0 ; int tmp___1 ; { i = 0; while (1) { if ((unsigned long )i < sizeof(bd2802_addr_attributes) / sizeof(bd2802_addr_attributes[0]) + (sizeof(char [1 - 2 * 0]) - 1UL)) { } else { break; } ret = device_create_file(& (led->client)->dev, bd2802_addr_attributes[i]); if (ret) { tmp = dev_name(& (led->client)->dev); tmp___0 = dev_driver_string(& (led->client)->dev); printk("<3>%s %s: failed to sysfs file %s\n", tmp___0, tmp, (bd2802_addr_attributes[i])->attr.name); goto failed_remove_files; } else { } i = i + 1; } tmp___1 = bd2802_is_all_off(led); if (tmp___1) { bd2802_reset_cancel(led); } else { } led->adf_on = 1; return; failed_remove_files: i = i - 1; while (1) { if (i >= 0) { } else { break; } device_remove_file(& (led->client)->dev, bd2802_addr_attributes[i]); i = i - 1; } return; } } static void bd2802_disable_adv_conf(struct bd2802_led *led ) { int i ; int tmp ; { i = 0; while (1) { if ((unsigned long )i < sizeof(bd2802_addr_attributes) / sizeof(bd2802_addr_attributes[0]) + (sizeof(char [1 - 2 * 0]) - 1UL)) { } else { break; } device_remove_file(& (led->client)->dev, bd2802_addr_attributes[i]); i = i + 1; } tmp = bd2802_is_all_off(led); if (tmp) { gpio_set_value((led->pdata)->reset_gpio, 0); } else { } led->adf_on = 0; return; } } static ssize_t bd2802_show_adv_conf(struct device *dev , struct device_attribute *attr , char *buf ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; ssize_t ret ; int tmp___0 ; int tmp___1 ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; down_read(& led->rwsem); if (led->adf_on) { tmp___0 = sprintf(buf, "on\n"); ret = tmp___0; } else { tmp___1 = sprintf(buf, "off\n"); ret = tmp___1; } up_read(& led->rwsem); return (ret); } } static ssize_t bd2802_store_adv_conf(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; int tmp___0 ; int tmp___1 ; { __mptr = dev; tmp = i2c_get_clientdata((struct i2c_client *)((char *)__mptr - (unsigned int )(& ((struct i2c_client *)0)->dev))); led = tmp; if (! count) { return (-22); } else { } down_write(& led->rwsem); if (! led->adf_on) { tmp___1 = strncmp(buf, "on", 2); if (tmp___1) { goto _L; } else { bd2802_enable_adv_conf(led); } } else _L: /* CIL Label */ if (led->adf_on) { tmp___0 = strncmp(buf, "off", 3); if (tmp___0) { } else { bd2802_disable_adv_conf(led); } } else { } up_write(& led->rwsem); return (count); } } static struct device_attribute bd2802_adv_conf_attr = {{"advanced_configuration", & __this_module, 420}, & bd2802_show_adv_conf, & bd2802_store_adv_conf}; static void bd2802_led_work(struct work_struct *work ) { struct bd2802_led *led ; struct work_struct const *__mptr ; { __mptr = work; led = (struct bd2802_led *)((char *)__mptr - (unsigned int )(& ((struct bd2802_led *)0)->work)); if (led->state) { bd2802_turn_on(led, led->led_id, led->color, led->state); } else { bd2802_turn_off(led, led->led_id, led->color); } return; } } static void bd2802_set_led1r_brightness(struct led_classdev *led_cdev , enum led_brightness value ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = led_cdev; led = (struct bd2802_led *)((char *)__mptr - (unsigned int )(& ((struct bd2802_led *)0)->cdev_led1r)); led->led_id = LED1; led->color = RED; if ((unsigned int )value == (unsigned int )LED_OFF) { led->state = BD2802_OFF; } else { led->state = BD2802_ON; } schedule_work(& led->work); return; } } static int bd2802_set_led1r_blink(struct led_classdev *led_cdev , unsigned long *delay_on , unsigned long *delay_off ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = led_cdev; led = (struct bd2802_led *)((char *)__mptr - (unsigned int )(& ((struct bd2802_led *)0)->cdev_led1r)); if (*delay_on == 0UL || *delay_off == 0UL) { return (-22); } else { } led->led_id = LED1; led->color = RED; led->state = BD2802_BLINK; schedule_work(& led->work); return (0); } } static void bd2802_set_led1g_brightness(struct led_classdev *led_cdev , enum led_brightness value ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = led_cdev; led = (struct bd2802_led *)((char *)__mptr - (unsigned int )(& ((struct bd2802_led *)0)->cdev_led1g)); led->led_id = LED1; led->color = GREEN; if ((unsigned int )value == (unsigned int )LED_OFF) { led->state = BD2802_OFF; } else { led->state = BD2802_ON; } schedule_work(& led->work); return; } } static int bd2802_set_led1g_blink(struct led_classdev *led_cdev , unsigned long *delay_on , unsigned long *delay_off ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = led_cdev; led = (struct bd2802_led *)((char *)__mptr - (unsigned int )(& ((struct bd2802_led *)0)->cdev_led1g)); if (*delay_on == 0UL || *delay_off == 0UL) { return (-22); } else { } led->led_id = LED1; led->color = GREEN; led->state = BD2802_BLINK; schedule_work(& led->work); return (0); } } static void bd2802_set_led1b_brightness(struct led_classdev *led_cdev , enum led_brightness value ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = led_cdev; led = (struct bd2802_led *)((char *)__mptr - (unsigned int )(& ((struct bd2802_led *)0)->cdev_led1b)); led->led_id = LED1; led->color = BLUE; if ((unsigned int )value == (unsigned int )LED_OFF) { led->state = BD2802_OFF; } else { led->state = BD2802_ON; } schedule_work(& led->work); return; } } static int bd2802_set_led1b_blink(struct led_classdev *led_cdev , unsigned long *delay_on , unsigned long *delay_off ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = led_cdev; led = (struct bd2802_led *)((char *)__mptr - (unsigned int )(& ((struct bd2802_led *)0)->cdev_led1b)); if (*delay_on == 0UL || *delay_off == 0UL) { return (-22); } else { } led->led_id = LED1; led->color = BLUE; led->state = BD2802_BLINK; schedule_work(& led->work); return (0); } } static void bd2802_set_led2r_brightness(struct led_classdev *led_cdev , enum led_brightness value ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = led_cdev; led = (struct bd2802_led *)((char *)__mptr - (unsigned int )(& ((struct bd2802_led *)0)->cdev_led2r)); led->led_id = LED2; led->color = RED; if ((unsigned int )value == (unsigned int )LED_OFF) { led->state = BD2802_OFF; } else { led->state = BD2802_ON; } schedule_work(& led->work); return; } } static int bd2802_set_led2r_blink(struct led_classdev *led_cdev , unsigned long *delay_on , unsigned long *delay_off ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = led_cdev; led = (struct bd2802_led *)((char *)__mptr - (unsigned int )(& ((struct bd2802_led *)0)->cdev_led2r)); if (*delay_on == 0UL || *delay_off == 0UL) { return (-22); } else { } led->led_id = LED2; led->color = RED; led->state = BD2802_BLINK; schedule_work(& led->work); return (0); } } static void bd2802_set_led2g_brightness(struct led_classdev *led_cdev , enum led_brightness value ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = led_cdev; led = (struct bd2802_led *)((char *)__mptr - (unsigned int )(& ((struct bd2802_led *)0)->cdev_led2g)); led->led_id = LED2; led->color = GREEN; if ((unsigned int )value == (unsigned int )LED_OFF) { led->state = BD2802_OFF; } else { led->state = BD2802_ON; } schedule_work(& led->work); return; } } static int bd2802_set_led2g_blink(struct led_classdev *led_cdev , unsigned long *delay_on , unsigned long *delay_off ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = led_cdev; led = (struct bd2802_led *)((char *)__mptr - (unsigned int )(& ((struct bd2802_led *)0)->cdev_led2g)); if (*delay_on == 0UL || *delay_off == 0UL) { return (-22); } else { } led->led_id = LED2; led->color = GREEN; led->state = BD2802_BLINK; schedule_work(& led->work); return (0); } } static void bd2802_set_led2b_brightness(struct led_classdev *led_cdev , enum led_brightness value ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = led_cdev; led = (struct bd2802_led *)((char *)__mptr - (unsigned int )(& ((struct bd2802_led *)0)->cdev_led2b)); led->led_id = LED2; led->color = BLUE; if ((unsigned int )value == (unsigned int )LED_OFF) { led->state = BD2802_OFF; } else { led->state = BD2802_ON; } schedule_work(& led->work); return; } } static int bd2802_set_led2b_blink(struct led_classdev *led_cdev , unsigned long *delay_on , unsigned long *delay_off ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = led_cdev; led = (struct bd2802_led *)((char *)__mptr - (unsigned int )(& ((struct bd2802_led *)0)->cdev_led2b)); if (*delay_on == 0UL || *delay_off == 0UL) { return (-22); } else { } led->led_id = LED2; led->color = BLUE; led->state = BD2802_BLINK; schedule_work(& led->work); return (0); } } static int bd2802_register_led_classdev(struct bd2802_led *led ) { int ret ; atomic_long_t __constr_expr_0 ; char const *tmp ; char const *tmp___0 ; char const *tmp___1 ; char const *tmp___2 ; char const *tmp___3 ; char const *tmp___4 ; char const *tmp___5 ; char const *tmp___6 ; char const *tmp___7 ; char const *tmp___8 ; char const *tmp___9 ; char const *tmp___10 ; { while (1) { __constr_expr_0.counter = 0; led->work.data = __constr_expr_0; INIT_LIST_HEAD(& led->work.entry); while (1) { led->work.func = & bd2802_led_work; break; } break; } led->cdev_led1r.name = "led1_R"; led->cdev_led1r.brightness = LED_OFF; led->cdev_led1r.brightness_set = & bd2802_set_led1r_brightness; led->cdev_led1r.blink_set = & bd2802_set_led1r_blink; led->cdev_led1r.flags = led->cdev_led1r.flags | (1 << 16); ret = led_classdev_register(& (led->client)->dev, & led->cdev_led1r); if (ret < 0) { tmp = dev_name(& (led->client)->dev); tmp___0 = dev_driver_string(& (led->client)->dev); printk("<3>%s %s: couldn\'t register LED %s\n", tmp___0, tmp, led->cdev_led1r.name); goto failed_unregister_led1_R; } else { } led->cdev_led1g.name = "led1_G"; led->cdev_led1g.brightness = LED_OFF; led->cdev_led1g.brightness_set = & bd2802_set_led1g_brightness; led->cdev_led1g.blink_set = & bd2802_set_led1g_blink; led->cdev_led1g.flags = led->cdev_led1g.flags | (1 << 16); ret = led_classdev_register(& (led->client)->dev, & led->cdev_led1g); if (ret < 0) { tmp___1 = dev_name(& (led->client)->dev); tmp___2 = dev_driver_string(& (led->client)->dev); printk("<3>%s %s: couldn\'t register LED %s\n", tmp___2, tmp___1, led->cdev_led1g.name); goto failed_unregister_led1_G; } else { } led->cdev_led1b.name = "led1_B"; led->cdev_led1b.brightness = LED_OFF; led->cdev_led1b.brightness_set = & bd2802_set_led1b_brightness; led->cdev_led1b.blink_set = & bd2802_set_led1b_blink; led->cdev_led1b.flags = led->cdev_led1b.flags | (1 << 16); ret = led_classdev_register(& (led->client)->dev, & led->cdev_led1b); if (ret < 0) { tmp___3 = dev_name(& (led->client)->dev); tmp___4 = dev_driver_string(& (led->client)->dev); printk("<3>%s %s: couldn\'t register LED %s\n", tmp___4, tmp___3, led->cdev_led1b.name); goto failed_unregister_led1_B; } else { } led->cdev_led2r.name = "led2_R"; led->cdev_led2r.brightness = LED_OFF; led->cdev_led2r.brightness_set = & bd2802_set_led2r_brightness; led->cdev_led2r.blink_set = & bd2802_set_led2r_blink; led->cdev_led2r.flags = led->cdev_led2r.flags | (1 << 16); ret = led_classdev_register(& (led->client)->dev, & led->cdev_led2r); if (ret < 0) { tmp___5 = dev_name(& (led->client)->dev); tmp___6 = dev_driver_string(& (led->client)->dev); printk("<3>%s %s: couldn\'t register LED %s\n", tmp___6, tmp___5, led->cdev_led2r.name); goto failed_unregister_led2_R; } else { } led->cdev_led2g.name = "led2_G"; led->cdev_led2g.brightness = LED_OFF; led->cdev_led2g.brightness_set = & bd2802_set_led2g_brightness; led->cdev_led2g.blink_set = & bd2802_set_led2g_blink; led->cdev_led2g.flags = led->cdev_led2g.flags | (1 << 16); ret = led_classdev_register(& (led->client)->dev, & led->cdev_led2g); if (ret < 0) { tmp___7 = dev_name(& (led->client)->dev); tmp___8 = dev_driver_string(& (led->client)->dev); printk("<3>%s %s: couldn\'t register LED %s\n", tmp___8, tmp___7, led->cdev_led2g.name); goto failed_unregister_led2_G; } else { } led->cdev_led2b.name = "led2_B"; led->cdev_led2b.brightness = LED_OFF; led->cdev_led2b.brightness_set = & bd2802_set_led2b_brightness; led->cdev_led2b.blink_set = & bd2802_set_led2b_blink; led->cdev_led2b.flags = led->cdev_led2b.flags | (1 << 16); ret = led_classdev_register(& (led->client)->dev, & led->cdev_led2b); if (ret < 0) { tmp___9 = dev_name(& (led->client)->dev); tmp___10 = dev_driver_string(& (led->client)->dev); printk("<3>%s %s: couldn\'t register LED %s\n", tmp___10, tmp___9, led->cdev_led2b.name); goto failed_unregister_led2_B; } else { } return (0); failed_unregister_led2_B: led_classdev_unregister(& led->cdev_led2g); failed_unregister_led2_G: led_classdev_unregister(& led->cdev_led2r); failed_unregister_led2_R: led_classdev_unregister(& led->cdev_led1b); failed_unregister_led1_B: led_classdev_unregister(& led->cdev_led1g); failed_unregister_led1_G: led_classdev_unregister(& led->cdev_led1r); failed_unregister_led1_R: return (ret); } } static void bd2802_unregister_led_classdev(struct bd2802_led *led ) { { cancel_work_sync(& led->work); led_classdev_unregister(& led->cdev_led1r); return; } } static struct lock_class_key __key___1 ; static int bd2802_probe(struct i2c_client *client , struct i2c_device_id const *id ) __attribute__((__section__(".devinit.text"))) ; static int bd2802_probe(struct i2c_client *client , struct i2c_device_id const *id ) { struct bd2802_led *led ; struct bd2802_led_platform_data *pdata ; int ret ; void *tmp ; char const *tmp___0 ; char const *tmp___1 ; struct bd2802_led_platform_data *tmp___2 ; char const *tmp___3 ; char const *tmp___4 ; char const *tmp___5 ; char const *tmp___6 ; char const *tmp___7 ; char const *tmp___8 ; { tmp = kzalloc(sizeof(struct bd2802_led ), (16U | 64U) | 128U); led = tmp; if (! led) { tmp___0 = dev_name(& client->dev); tmp___1 = dev_driver_string(& client->dev); printk("<3>%s %s: failed to allocate driver data\n", tmp___1, tmp___0); return (-12); } else { } led->client = client; tmp___2 = client->dev.platform_data; led->pdata = tmp___2; pdata = tmp___2; i2c_set_clientdata(client, led); gpio_request(pdata->reset_gpio, "RGB_RESETB"); gpio_direction_output(pdata->reset_gpio, 1); if (100 > 20000) { __bad_udelay(); } else { __const_udelay(100UL * 4295UL); } ret = bd2802_write_byte(client, 0, 0); if (ret < 0) { tmp___3 = dev_name(& client->dev); tmp___4 = dev_driver_string(& client->dev); printk("<3>%s %s: failed to detect device\n", tmp___4, tmp___3); goto failed_free; } else { tmp___5 = dev_name(& client->dev); tmp___6 = dev_driver_string(& client->dev); printk("<6>%s %s: return 0x%02x\n", tmp___6, tmp___5, ret); } gpio_set_value((led->pdata)->reset_gpio, 0); while (1) { __init_rwsem(& led->rwsem, "&led->rwsem", & __key___1); break; } ret = device_create_file(& client->dev, & bd2802_adv_conf_attr); if (ret) { tmp___7 = dev_name(& client->dev); tmp___8 = dev_driver_string(& client->dev); printk("<3>%s %s: failed to create sysfs file %s\n", tmp___8, tmp___7, bd2802_adv_conf_attr.attr.name); goto failed_free; } else { } ret = bd2802_register_led_classdev(led); if (ret < 0) { goto failed_unregister_dev_file; } else { } return (0); failed_unregister_dev_file: device_remove_file(& client->dev, & bd2802_adv_conf_attr); failed_free: i2c_set_clientdata(client, (void *)0); kfree(led); return (ret); } } static int bd2802_remove(struct i2c_client *client ) __attribute__((__section__(".exit.text"))) ; static int bd2802_remove(struct i2c_client *client ) { struct bd2802_led *led ; void *tmp ; { tmp = i2c_get_clientdata(client); led = tmp; bd2802_unregister_led_classdev(led); gpio_set_value((led->pdata)->reset_gpio, 0); if (led->adf_on) { bd2802_disable_adv_conf(led); } else { } device_remove_file(& client->dev, & bd2802_adv_conf_attr); i2c_set_clientdata(client, (void *)0); kfree(led); return (0); } } static int bd2802_suspend(struct i2c_client *client , pm_message_t mesg ) { struct bd2802_led *led ; void *tmp ; { tmp = i2c_get_clientdata(client); led = tmp; gpio_set_value((led->pdata)->reset_gpio, 0); return (0); } } static int bd2802_resume(struct i2c_client *client ) { struct bd2802_led *led ; void *tmp ; int tmp___0 ; { tmp = i2c_get_clientdata(client); led = tmp; tmp___0 = bd2802_is_all_off(led); if (tmp___0) { if (led->adf_on) { _L: /* CIL Label */ gpio_set_value((led->pdata)->reset_gpio, 1); if (100 > 20000) { __bad_udelay(); } else { __const_udelay(100UL * 4295UL); } bd2802_restore_state(led); } else { } } else { goto _L; } return (0); } } static struct i2c_device_id const bd2802_id[1] = { {{'B', 'D', '2', '8', '0', '2', '\000'}, 0}}; extern struct i2c_device_id const __mod_i2c_device_table __attribute__((__unused__, __alias__("bd2802_id"))) ; static struct i2c_driver bd2802_i2c_driver = {0, 0U, 0, 0, 0, & bd2802_probe, & bd2802_remove, 0, & bd2802_suspend, & bd2802_resume, 0, {"BD2802", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, bd2802_id, 0, 0, {0, 0}}; static int bd2802_init(void) __attribute__((__section__(".init.text"), __no_instrument_function__)) ; static int bd2802_init(void) { int tmp ; { tmp = i2c_add_driver(& bd2802_i2c_driver); return (tmp); } } int init_module(void) { int tmp ; { tmp = bd2802_init(); return (tmp); } } static void bd2802_exit(void) __attribute__((__section__(".exit.text"))) ; static void bd2802_exit(void) { { i2c_del_driver(& bd2802_i2c_driver); return; } } void cleanup_module(void) { { bd2802_exit(); return; } } static char const __mod_author764[39] __attribute__((__used__, __unused__, __section__(".modinfo"))) = { 'a', 'u', 't', 'h', 'o', 'r', '=', 'K', 'i', 'm', ' ', 'K', 'y', 'u', 'w', 'o', 'n', ' ', '<', 'q', '1', '.', 'k', 'i', 'm', '@', 's', 'a', 'm', 's', 'u', 'n', 'g', '.', 'c', 'o', 'm', '>', '\000'}; static char const __mod_description765[30] __attribute__((__used__, __unused__, __section__(".modinfo"))) = { 'd', 'e', 's', 'c', 'r', 'i', 'p', 't', 'i', 'o', 'n', '=', 'B', 'D', '2', '8', '0', '2', ' ', 'L', 'E', 'D', ' ', 'd', 'r', 'i', 'v', 'e', 'r', '\000'}; static char const __mod_license766[12] __attribute__((__used__, __unused__, __section__(".modinfo"))) = { 'l', 'i', 'c', 'e', 'n', 's', 'e', '=', 'G', 'P', 'L', '\000'}; void ldv_check_final_state(void) ; extern void ldv_check_return_value(int res ) ; extern void ldv_check_return_value_probe(int res ) ; extern void ldv_initialize(void) ; extern void ldv_handler_precall(void) ; extern int nondet_int(void) ; int LDV_IN_INTERRUPT ; static int res_bd2802_probe_22 ; static int res_bd2802_remove_23 ; int main(void) { struct device *var_group1 ; struct device_attribute *var_group2 ; char *var_bd2802_show_adv_conf_17_p2 ; char const *var_bd2802_store_adv_conf_18_p2 ; size_t var_bd2802_store_adv_conf_18_p3 ; struct i2c_client *var_group3 ; struct i2c_device_id const *var_bd2802_probe_22_p1 ; pm_message_t var_bd2802_suspend_24_p1 ; int tmp ; int ldv_s_bd2802_i2c_driver_i2c_driver ; int tmp___0 ; int tmp___1 ; { LDV_IN_INTERRUPT = 1; ldv_initialize(); ldv_handler_precall(); tmp = bd2802_init(); if (tmp) { goto ldv_final; } else { } ldv_s_bd2802_i2c_driver_i2c_driver = 0; while (1) { tmp___1 = nondet_int(); if (tmp___1 || ! (ldv_s_bd2802_i2c_driver_i2c_driver == 0)) { } else { break; } tmp___0 = nondet_int(); switch (tmp___0) { case 0: ldv_handler_precall(); bd2802_show_adv_conf(var_group1, var_group2, var_bd2802_show_adv_conf_17_p2); break; case 1: ldv_handler_precall(); bd2802_store_adv_conf(var_group1, var_group2, var_bd2802_store_adv_conf_18_p2, var_bd2802_store_adv_conf_18_p3); break; case 2: if (ldv_s_bd2802_i2c_driver_i2c_driver == 0) { res_bd2802_probe_22 = bd2802_probe(var_group3, var_bd2802_probe_22_p1); ldv_check_return_value(res_bd2802_probe_22); ldv_check_return_value_probe(res_bd2802_probe_22); if (res_bd2802_probe_22) { goto ldv_module_exit; } else { } ldv_s_bd2802_i2c_driver_i2c_driver = ldv_s_bd2802_i2c_driver_i2c_driver + 1; } else { } break; case 3: if (ldv_s_bd2802_i2c_driver_i2c_driver == 1) { ldv_handler_precall(); res_bd2802_remove_23 = bd2802_remove(var_group3); ldv_check_return_value(res_bd2802_remove_23); if (res_bd2802_remove_23) { goto ldv_module_exit; } else { } ldv_s_bd2802_i2c_driver_i2c_driver = 0; } else { } break; case 4: ldv_handler_precall(); bd2802_suspend(var_group3, var_bd2802_suspend_24_p1); break; case 5: ldv_handler_precall(); bd2802_resume(var_group3); break; default: break; } } ldv_module_exit: ldv_handler_precall(); bd2802_exit(); ldv_final: ldv_check_final_state(); return 0; } } long ldv__builtin_expect(long exp , long c ) ; void mutex_lock(struct mutex *lock ) ; int ( __attribute__((__warn_unused_result__)) mutex_lock_interruptible)(struct mutex *lock ) ; int ( __attribute__((__warn_unused_result__)) mutex_lock_killable)(struct mutex *lock ) ; int mutex_trylock(struct mutex *lock ) ; void mutex_unlock(struct mutex *lock ) ; __inline static void ldv_error(void) { { LDV_ERROR: {reach_error();abort();} } } extern int ldv_undef_int(void) ; long ldv__builtin_expect(long exp , long c ) { { return (exp); } } int ldv_mutex = 1; int ( __attribute__((__warn_unused_result__)) mutex_lock_interruptible)(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex == 1) { } else { ldv_error(); } nondetermined = ldv_undef_int(); if (nondetermined) { ldv_mutex = 2; return (0); } else { return (-4); } } } int ( __attribute__((__warn_unused_result__)) mutex_lock_killable)(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex == 1) { } else { ldv_error(); } nondetermined = ldv_undef_int(); if (nondetermined) { ldv_mutex = 2; return (0); } else { return (-4); } } } int atomic_dec_and_mutex_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex == 1) { } else { ldv_error(); } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex = 2; return (1); } else { } return (0); } } void mutex_lock(struct mutex *lock ) { { if (ldv_mutex == 1) { } else { ldv_error(); } ldv_mutex = 2; return; } } int mutex_trylock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex == 1) { } else { ldv_error(); } nondetermined = ldv_undef_int(); if (nondetermined) { ldv_mutex = 2; return (1); } else { return (0); } } } void mutex_unlock(struct mutex *lock ) { { if (ldv_mutex == 2) { } else { ldv_error(); } ldv_mutex = 1; return; } } void ldv_check_final_state(void) { { if (ldv_mutex == 1) { } else { ldv_error(); } return; } }