extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); void reach_error() { __assert_fail("0", "drivers--leds--leds-bd2802.ko_004.5a0e3ad.39_7a.cil_true-unreach-call.i", 3, "reach_error"); } /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef unsigned int __kernel_mode_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid_t; typedef unsigned int __kernel_gid_t; typedef unsigned long __kernel_size_t; typedef long __kernel_ssize_t; typedef long __kernel_time_t; typedef long __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __kernel_uid_t __kernel_uid32_t; typedef __kernel_gid_t __kernel_gid32_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef __kernel_mode_t mode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned int gfp_t; struct __anonstruct_atomic_t_6 { int volatile counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long volatile counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct module; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct completion; struct pt_regs; struct pid; struct timespec; struct compat_timespec; struct __anonstruct_ldv_1609_9 { unsigned long arg0 ; unsigned long arg1 ; unsigned long arg2 ; unsigned long arg3 ; }; struct __anonstruct_futex_10 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_11 { clockid_t index ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_12 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion_ldv_1632_8 { struct __anonstruct_ldv_1609_9 ldv_1609 ; struct __anonstruct_futex_10 futex ; struct __anonstruct_nanosleep_11 nanosleep ; struct __anonstruct_poll_12 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion_ldv_1632_8 ldv_1632 ; }; struct page; struct task_struct; struct exec_domain; struct mm_struct; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; typedef void (*ctor_fn_t)(void); struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion_ldv_1887_13 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion_ldv_1887_13 ldv_1887 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_16 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_16 pgd_t; struct file; struct __anonstruct_ldv_2105_20 { unsigned int a ; unsigned int b ; }; struct __anonstruct_ldv_2120_21 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion_ldv_2121_19 { struct __anonstruct_ldv_2105_20 ldv_2105 ; struct __anonstruct_ldv_2120_21 ldv_2120 ; }; struct desc_struct { union __anonunion_ldv_2121_19 ldv_2121 ; }; struct thread_struct; struct cpumask; struct arch_spinlock; struct cpumask { unsigned long bits[64U] ; }; typedef struct cpumask cpumask_t; struct map_segment; struct exec_domain { char const *name ; void (*handler)(int , struct pt_regs * ) ; unsigned char pers_low ; unsigned char pers_high ; unsigned long *signal_map ; unsigned long *signal_invmap ; struct map_segment *err_map ; struct map_segment *socktype_map ; struct map_segment *sockopt_map ; struct map_segment *af_map ; struct module *module ; struct exec_domain *next ; }; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct_ldv_4695_25 { u64 rip ; u64 rdp ; }; struct __anonstruct_ldv_4701_26 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion_ldv_4702_24 { struct __anonstruct_ldv_4695_25 ldv_4695 ; struct __anonstruct_ldv_4701_26 ldv_4701 ; }; union __anonunion_ldv_4711_27 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion_ldv_4702_24 ldv_4702 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion_ldv_4711_27 ldv_4711 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct kmem_cache; struct perf_event; struct ds_context; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_no ; unsigned long error_code ; union thread_xstate *xstate ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned long debugctlmsr ; struct ds_context *ds_ctx ; }; struct __anonstruct_mm_segment_t_29 { unsigned long seg ; }; typedef struct __anonstruct_mm_segment_t_29 mm_segment_t; typedef atomic64_t atomic_long_t; struct thread_info { struct task_struct *task ; struct exec_domain *exec_domain ; __u32 flags ; __u32 status ; __u32 cpu ; int preempt_count ; mm_segment_t addr_limit ; struct restart_block restart_block ; void *sysenter_return ; int uaccess_err ; }; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct arch_spinlock { unsigned int slock ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct_arch_rwlock_t_30 { unsigned int lock ; }; typedef struct __anonstruct_arch_rwlock_t_30 arch_rwlock_t; struct lockdep_map; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 2 ; unsigned char hardirqs_off : 1 ; unsigned short references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct_ldv_5693_32 { u8 __padding[1U] ; struct lockdep_map dep_map ; }; union __anonunion_ldv_5694_31 { struct raw_spinlock rlock ; struct __anonstruct_ldv_5693_32 ldv_5693 ; }; struct spinlock { union __anonunion_ldv_5694_31 ldv_5694 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_33 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_33 rwlock_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct __anonstruct_nodemask_t_35 { unsigned long bits[8U] ; }; typedef struct __anonstruct_nodemask_t_35 nodemask_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct thread_info *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct rw_semaphore; typedef long rwsem_count_t; struct rw_semaphore { rwsem_count_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct device; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; void (*function)(unsigned long ) ; unsigned long data ; struct tvec_base *base ; void *start_site ; char start_comm[16U] ; int start_pid ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum dpm_state { DPM_INVALID = 0, DPM_ON = 1, DPM_PREPARING = 2, DPM_RESUMING = 3, DPM_SUSPENDING = 4, DPM_OFF = 5, DPM_OFF_IRQ = 6 } ; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_RESUME = 3 } ; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char should_wakeup : 1 ; unsigned char async_suspend : 1 ; enum dpm_state status ; struct list_head entry ; struct completion completion ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; spinlock_t lock ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char ignore_children : 1 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; }; struct __anonstruct_mm_context_t_100 { void *ldt ; int size ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_100 mm_context_t; struct vm_area_struct; struct key; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kobject; struct attribute { char const *name ; struct module *owner ; mode_t mode ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; mode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct sysfs_dirent; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct sysfs_dirent *sd ; struct kref kref ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kernel_param; struct kparam_string; struct kparam_array; union __anonunion_ldv_10724_110 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; u16 perm ; u16 flags ; int (*set)(char const * , struct kernel_param * ) ; int (*get)(char * , struct kernel_param * ) ; union __anonunion_ldv_10724_110 ldv_10724 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int *num ; int (*set)(char const * , struct kernel_param * ) ; int (*get)(char * , struct kernel_param * ) ; unsigned int elemsize ; void *elem ; }; struct rcu_head { struct rcu_head *next ; void (*func)(struct rcu_head * ) ; }; struct tracepoint; struct tracepoint { char const *name ; int state ; void (*regfunc)(void) ; void (*unregfunc)(void) ; void **funcs ; }; struct kmem_cache_cpu { void **freelist ; struct page *page ; int node ; unsigned int stat[18U] ; }; struct kmem_cache_node { spinlock_t list_lock ; unsigned long nr_partial ; struct list_head partial ; atomic_long_t nr_slabs ; atomic_long_t total_objects ; struct list_head full ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; int size ; int objsize ; int offset ; struct kmem_cache_order_objects oo ; struct kmem_cache_node local_node ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; unsigned long min_partial ; char const *name ; struct list_head list ; struct kobject kobj ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[512U] ; }; struct mod_arch_specific { }; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2 } ; struct module_ref { int count ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; void *percpu ; char *args ; struct tracepoint *tracepoints ; unsigned int num_tracepoints ; char const **trace_bprintk_fmt_start ; unsigned int num_trace_bprintk_fmt ; struct ftrace_event_call *trace_events ; unsigned int num_trace_events ; struct list_head modules_which_use_me ; struct task_struct *waiter ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct device_driver; typedef unsigned long kernel_ulong_t; struct i2c_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct semaphore { spinlock_t lock ; unsigned int count ; struct list_head wait_list ; }; struct dma_map_ops; struct dev_archdata { void *acpi_handle ; struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct driver_private; struct class; struct class_private; struct bus_type; struct bus_type_private; struct bus_attribute { struct attribute attr ; ssize_t (*show)(struct bus_type * , char * ) ; ssize_t (*store)(struct bus_type * , char const * , size_t ) ; }; struct device_attribute; struct driver_attribute; struct bus_type { char const *name ; struct bus_attribute *bus_attrs ; struct device_attribute *dev_attrs ; struct driver_attribute *drv_attrs ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct bus_type_private *p ; }; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct driver_attribute { struct attribute attr ; ssize_t (*show)(struct device_driver * , char * ) ; ssize_t (*store)(struct device_driver * , char const * , size_t ) ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct device_attribute *dev_attrs ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , mode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct class_private *p ; }; struct device_type; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , mode_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type *type ; struct semaphore sem ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; dev_t devt ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct rb_node { unsigned long rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct prio_tree_node; struct raw_prio_tree_node { struct prio_tree_node *left ; struct prio_tree_node *right ; struct prio_tree_node *parent ; }; struct prio_tree_node { struct prio_tree_node *left ; struct prio_tree_node *right ; struct prio_tree_node *parent ; unsigned long start ; unsigned long last ; }; struct address_space; struct __anonstruct_ldv_13214_114 { u16 inuse ; u16 objects ; }; union __anonunion_ldv_13215_113 { atomic_t _mapcount ; struct __anonstruct_ldv_13214_114 ldv_13214 ; }; struct __anonstruct_ldv_13220_116 { unsigned long private ; struct address_space *mapping ; }; union __anonunion_ldv_13223_115 { struct __anonstruct_ldv_13220_116 ldv_13220 ; struct kmem_cache *slab ; struct page *first_page ; }; union __anonunion_ldv_13227_117 { unsigned long index ; void *freelist ; }; struct page { unsigned long flags ; atomic_t _count ; union __anonunion_ldv_13215_113 ldv_13215 ; union __anonunion_ldv_13223_115 ldv_13223 ; union __anonunion_ldv_13227_117 ldv_13227 ; struct list_head lru ; }; struct __anonstruct_vm_set_119 { struct list_head list ; void *parent ; struct vm_area_struct *head ; }; union __anonunion_shared_118 { struct __anonstruct_vm_set_119 vm_set ; struct raw_prio_tree_node prio_tree_node ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { struct mm_struct *vm_mm ; unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct rb_node vm_rb ; union __anonunion_shared_118 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; unsigned long vm_truncate_count ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct mm_rss_stat { unsigned long count[3U] ; }; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; void (*unmap_area)(struct mm_struct * , unsigned long ) ; unsigned long mmap_base ; unsigned long task_size ; unsigned long cached_hole_size ; unsigned long free_area_cache ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; int map_count ; struct rw_semaphore mmap_sem ; spinlock_t page_table_lock ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long reserved_vm ; unsigned long def_flags ; unsigned long nr_ptes ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[44U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_t cpu_vm_mask ; mm_context_t context ; unsigned int faultstamp ; unsigned int token_priority ; unsigned int last_interval ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct hlist_head ioctx_list ; struct task_struct *owner ; struct file *exe_file ; unsigned long num_exe_file_vmas ; struct mmu_notifier_mm *mmu_notifier_mm ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sem_undo_list { atomic_t refcnt ; spinlock_t lock ; struct list_head list_proc ; }; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct siginfo; struct __anonstruct_sigset_t_120 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_120 sigset_t; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_122 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_123 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_124 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_125 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_126 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_127 { long _band ; int _fd ; }; union __anonunion__sifields_121 { int _pad[28U] ; struct __anonstruct__kill_122 _kill ; struct __anonstruct__timer_123 _timer ; struct __anonstruct__rt_124 _rt ; struct __anonstruct__sigchld_125 _sigchld ; struct __anonstruct__sigfault_126 _sigfault ; struct __anonstruct__sigpoll_127 _sigpoll ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_121 _sifields ; }; typedef struct siginfo siginfo_t; struct user_struct; struct sigpending { struct list_head list ; sigset_t signal ; }; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct rcu_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct prop_local_single { unsigned long events ; unsigned long period ; int shift ; spinlock_t lock ; }; struct __anonstruct_seccomp_t_130 { int mode ; }; typedef struct __anonstruct_seccomp_t_130 seccomp_t; struct plist_head { struct list_head prio_list ; struct list_head node_list ; raw_spinlock_t *rawlock ; spinlock_t *spinlock ; }; struct plist_node { int prio ; struct plist_head plist ; }; struct rt_mutex { raw_spinlock_t wait_lock ; struct plist_head wait_list ; struct task_struct *owner ; int save_state ; char const *name ; char const *file ; int line ; void *magic ; }; struct rt_mutex_waiter; struct rlimit { unsigned long rlim_cur ; unsigned long rlim_max ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct rb_node node ; ktime_t _expires ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; clockid_t index ; struct rb_root active ; struct rb_node *first ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; struct hrtimer_clock_base clock_base[2U] ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct signal_struct; struct cred; struct key_type; struct keyring_list; struct key_user; union __anonunion_ldv_15222_131 { time_t expiry ; time_t revoked_at ; }; union __anonunion_type_data_132 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; }; union __anonunion_payload_133 { unsigned long value ; void *data ; struct keyring_list *subscriptions ; }; struct key { atomic_t usage ; key_serial_t serial ; struct rb_node serial_node ; struct key_type *type ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion_ldv_15222_131 ldv_15222 ; uid_t uid ; gid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; char *description ; union __anonunion_type_data_132 type_data ; union __anonunion_payload_133 payload ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; gid_t small_block[32U] ; gid_t *blocks[0U] ; }; struct thread_group_cred { atomic_t usage ; pid_t tgid ; spinlock_t lock ; struct key *session_keyring ; struct key *process_keyring ; struct rcu_head rcu ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; uid_t uid ; gid_t gid ; uid_t suid ; gid_t sgid ; uid_t euid ; gid_t egid ; uid_t fsuid ; gid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; struct thread_group_cred *tgcred ; void *security ; struct user_struct *user ; struct group_info *group_info ; struct rcu_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct bts_context; struct perf_event_context; struct cfs_rq; struct user_namespace; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; spinlock_t lock ; }; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t count ; atomic_t live ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; cputime_t prev_utime ; cputime_t prev_stime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; struct tty_audit_buf *tty_audit_buf ; int oom_adj ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; uid_t uid ; struct user_namespace *user_ns ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; unsigned int bkl_count ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct rq; struct sched_class { struct sched_class const *next ; void (*enqueue_task)(struct rq * , struct task_struct * , int , bool ) ; void (*dequeue_task)(struct rq * , struct task_struct * , int ) ; void (*yield_task)(struct rq * ) ; void (*check_preempt_curr)(struct rq * , struct task_struct * , int ) ; struct task_struct *(*pick_next_task)(struct rq * ) ; void (*put_prev_task)(struct rq * , struct task_struct * ) ; int (*select_task_rq)(struct task_struct * , int , int ) ; void (*pre_schedule)(struct rq * , struct task_struct * ) ; void (*post_schedule)(struct rq * ) ; void (*task_waking)(struct rq * , struct task_struct * ) ; void (*task_woken)(struct rq * , struct task_struct * ) ; void (*set_cpus_allowed)(struct task_struct * , struct cpumask const * ) ; void (*rq_online)(struct rq * ) ; void (*rq_offline)(struct rq * ) ; void (*set_curr_task)(struct rq * ) ; void (*task_tick)(struct rq * , struct task_struct * , int ) ; void (*task_fork)(struct task_struct * ) ; void (*switched_from)(struct rq * , struct task_struct * , int ) ; void (*switched_to)(struct rq * , struct task_struct * , int ) ; void (*prio_changed)(struct rq * , struct task_struct * , int , int ) ; unsigned int (*get_rr_interval)(struct rq * , struct task_struct * ) ; void (*moved_group)(struct task_struct * , int ) ; }; struct load_weight { unsigned long weight ; unsigned long inv_weight ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 last_wakeup ; u64 avg_overlap ; u64 nr_migrations ; u64 start_runtime ; u64 avg_wakeup ; u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned int time_slice ; int nr_cpus_allowed ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long bytes ; unsigned long memsw_bytes ; }; struct files_struct; struct irqaction; struct css_set; struct compat_robust_list_head; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; int lock_depth ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct hlist_head preempt_notifiers ; unsigned char fpu_counter ; unsigned int policy ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int personality ; unsigned char did_exec : 1 ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; pid_t pid ; pid_t tgid ; unsigned long stack_canary ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct bts_context *bts ; struct pid_link pids[3U] ; struct list_head thread_group ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; cputime_t prev_utime ; cputime_t prev_stime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; struct mutex cred_guard_mutex ; struct cred *replacement_session_keyring ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct audit_context *audit_context ; uid_t loginuid ; unsigned int sessionid ; seccomp_t seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; struct irqaction *irqaction ; raw_spinlock_t pi_lock ; struct plist_head pi_waiters ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; int cpuset_mem_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; atomic_t fs_excl ; struct rcu_head rcu ; struct pipe_inode_info *splice_pipe ; struct task_delay_info *delays ; int make_it_fail ; struct prop_local_single dirties ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; struct list_head *scm_work_list ; unsigned long trace ; unsigned long trace_recursion ; unsigned long stack_start ; struct memcg_batch_info memcg_batch ; }; struct i2c_msg; struct i2c_algorithm; struct i2c_adapter; struct i2c_client; struct i2c_driver; union i2c_smbus_data; struct i2c_board_info; struct i2c_driver { unsigned int class ; int (*attach_adapter)(struct i2c_adapter * ) ; int (*detach_adapter)(struct i2c_adapter * ) ; int (*probe)(struct i2c_client * , struct i2c_device_id const * ) ; int (*remove)(struct i2c_client * ) ; void (*shutdown)(struct i2c_client * ) ; int (*suspend)(struct i2c_client * , pm_message_t ) ; int (*resume)(struct i2c_client * ) ; void (*alert)(struct i2c_client * , unsigned int ) ; int (*command)(struct i2c_client * , unsigned int , void * ) ; struct device_driver driver ; struct i2c_device_id const *id_table ; int (*detect)(struct i2c_client * , struct i2c_board_info * ) ; unsigned short const *address_list ; struct list_head clients ; }; struct i2c_client { unsigned short flags ; unsigned short addr ; char name[20U] ; struct i2c_adapter *adapter ; struct i2c_driver *driver ; struct device dev ; int irq ; struct list_head detected ; }; struct i2c_board_info { char type[20U] ; unsigned short flags ; unsigned short addr ; void *platform_data ; struct dev_archdata *archdata ; int irq ; }; struct i2c_algorithm { int (*master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; int (*smbus_xfer)(struct i2c_adapter * , u16 , unsigned short , char , u8 , int , union i2c_smbus_data * ) ; u32 (*functionality)(struct i2c_adapter * ) ; }; struct i2c_adapter { struct module *owner ; unsigned int id ; unsigned int class ; struct i2c_algorithm const *algo ; void *algo_data ; struct rt_mutex bus_lock ; int timeout ; int retries ; struct device dev ; int nr ; char name[48U] ; struct completion dev_released ; }; struct i2c_msg { __u16 addr ; __u16 flags ; __u16 len ; __u8 *buf ; }; union i2c_smbus_data { __u8 byte ; __u16 word ; __u8 block[34U] ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; int brightness ; int max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct list_head node ; char const *default_trigger ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct bd2802_led_platform_data { int reset_gpio ; u8 rgb_time ; }; enum led_ids { LED1 = 0, LED2 = 1, LED_NUM = 2 } ; enum led_colors { RED = 0, GREEN = 1, BLUE = 2 } ; enum led_bits { BD2802_OFF = 0, BD2802_BLINK = 1, BD2802_ON = 2 } ; struct led_state { unsigned char r : 2 ; unsigned char g : 2 ; unsigned char b : 2 ; }; struct bd2802_led { struct bd2802_led_platform_data *pdata ; struct i2c_client *client ; struct rw_semaphore rwsem ; struct work_struct work ; struct led_state led[2U] ; struct led_classdev cdev_led1r ; struct led_classdev cdev_led1g ; struct led_classdev cdev_led1b ; struct led_classdev cdev_led2r ; struct led_classdev cdev_led2g ; struct led_classdev cdev_led2b ; int adf_on ; enum led_ids led_id ; enum led_colors color ; enum led_bits state ; int wave_pattern ; int rgb_current ; }; long ldv__builtin_expect(long exp , long c ) ; extern int strict_strtoul(char const * , unsigned int , unsigned long * ) ; extern int sprintf(char * , char const * , ...) ; extern int printk(char const * , ...) ; __inline static int get_order(unsigned long size ) { int order ; { size = (size - 1UL) >> 11; order = -1; ldv_1682: size = size >> 1; order = order + 1; if (size != 0UL) { goto ldv_1682; } else { } return (order); } } extern int strncmp(char const * , char const * , __kernel_size_t ) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern int debug_locks ; extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void lockdep_rcu_dereference(char const * , int const ) ; extern void __ldv_spin_lock(spinlock_t * ) ; void ldv___ldv_spin_lock_4(spinlock_t *ldv_func_arg1 ) ; void ldv___ldv_spin_lock_6(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_node_size_lock_of_pglist_data(void) ; void ldv_spin_lock_siglock_of_sighand_struct(void) ; extern void __init_rwsem(struct rw_semaphore * , char const * , struct lock_class_key * ) ; extern void down_read(struct rw_semaphore * ) ; extern void down_write(struct rw_semaphore * ) ; extern void up_read(struct rw_semaphore * ) ; extern void up_write(struct rw_semaphore * ) ; extern void __const_udelay(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern int schedule_work(struct work_struct * ) ; extern int cancel_work_sync(struct work_struct * ) ; extern unsigned long __get_free_pages(gfp_t , unsigned int ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } extern int rcu_scheduler_active ; __inline static int debug_lockdep_rcu_enabled(void) { long tmp ; long tmp___0 ; int tmp___1 ; { tmp = ldv__builtin_expect(rcu_scheduler_active != 0, 1L); if (tmp != 0L) { tmp___0 = ldv__builtin_expect(debug_locks != 0, 1L); if (tmp___0 != 0L) { tmp___1 = 1; } else { tmp___1 = 0; } } else { tmp___1 = 0; } return (tmp___1); } } __inline static int rcu_read_lock_sched_held(void) { { return (1); } } __inline static void rcu_read_lock_sched_notrace(void) { { return; } } extern void kfree(void const * ) ; extern struct tracepoint __tracepoint_kmalloc ; __inline static void trace_kmalloc(unsigned long call_site , void const *ptr , size_t bytes_req , size_t bytes_alloc , gfp_t gfp_flags ) { void **it_func ; int tmp ; int tmp___0 ; void **_________p1 ; long tmp___1 ; { tmp___1 = ldv__builtin_expect(__tracepoint_kmalloc.state != 0, 0L); if (tmp___1 != 0L) { rcu_read_lock_sched_notrace(); tmp = debug_lockdep_rcu_enabled(); if (tmp != 0) { tmp___0 = rcu_read_lock_sched_held(); if (tmp___0 == 0) { lockdep_rcu_dereference("include/trace/events/kmem.h", 87); } else { } } else { } _________p1 = *((void ** volatile *)(& __tracepoint_kmalloc.funcs)); it_func = _________p1; if ((unsigned long )it_func != (unsigned long )((void **)0)) { ldv_11064: (*((void (*)(unsigned long , void const * , size_t , size_t , gfp_t ))*it_func))(call_site, ptr, bytes_req, bytes_alloc, gfp_flags); it_func = it_func + 1; if ((unsigned long )*it_func != (unsigned long )((void *)0)) { goto ldv_11064; } else { } } else { } rcu_read_lock_sched_notrace(); } else { } return; } } __inline static void kmemleak_alloc(void const *ptr , size_t size , int min_count , gfp_t gfp ) { { return; } } extern struct kmem_cache kmalloc_caches[22U] ; __inline static int kmalloc_index(size_t size ) { { if (size == 0UL) { return (0); } else { } if (size <= 8UL) { return (3); } else { } if (size > 64UL && size <= 96UL) { return (1); } else { } if (size > 128UL && size <= 192UL) { return (2); } else { } if (size <= 8UL) { return (3); } else { } if (size <= 16UL) { return (4); } else { } if (size <= 32UL) { return (5); } else { } if (size <= 64UL) { return (6); } else { } if (size <= 128UL) { return (7); } else { } if (size <= 256UL) { return (8); } else { } if (size <= 512UL) { return (9); } else { } if (size <= 1024UL) { return (10); } else { } if (size <= 2048UL) { return (11); } else { } if (size <= 4096UL) { return (12); } else { } if (size <= 8192UL) { return (13); } else { } if (size <= 16384UL) { return (14); } else { } if (size <= 32768UL) { return (15); } else { } if (size <= 65536UL) { return (16); } else { } if (size <= 131072UL) { return (17); } else { } if (size <= 262144UL) { return (18); } else { } if (size <= 524288UL) { return (19); } else { } if (size <= 1048576UL) { return (20); } else { } if (size <= 2097152UL) { return (21); } else { } return (-1); } } __inline static struct kmem_cache *kmalloc_slab(size_t size ) { int index ; int tmp ; { tmp = kmalloc_index(size); index = tmp; if (index == 0) { return (0); } else { } return ((struct kmem_cache *)(& kmalloc_caches) + (unsigned long )index); } } extern void *__kmalloc(size_t , gfp_t ) ; extern void *kmem_cache_alloc_notrace(struct kmem_cache * , gfp_t ) ; __inline static void *kmalloc_large(size_t size , gfp_t flags ) { unsigned int order ; int tmp ; void *ret ; unsigned long tmp___0 ; { tmp = get_order(size); order = (unsigned int )tmp; tmp___0 = __get_free_pages(flags | 16384U, order); ret = (void *)tmp___0; kmemleak_alloc((void const *)ret, size, 1, flags); trace_kmalloc((unsigned long )((void *)0), (void const *)ret, size, 4096UL << (int )order, flags); return (ret); } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *ret ; void *tmp ; struct kmem_cache *s ; struct kmem_cache *tmp___0 ; void *tmp___1 ; { if (0) { if (size > 8192UL) { tmp = kmalloc_large(size, flags); return (tmp); } else { } if ((flags & 1U) == 0U) { tmp___0 = kmalloc_slab(size); s = tmp___0; if ((unsigned long )s == (unsigned long )((struct kmem_cache *)0)) { return (16); } else { } ret = kmem_cache_alloc_notrace(s, flags); trace_kmalloc((unsigned long )((void *)0), (void const *)ret, size, (size_t )s->size, flags); return (ret); } else { } } else { } tmp___1 = __kmalloc(size, flags); return (tmp___1); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } extern struct module __this_module ; extern int device_create_file(struct device * , struct device_attribute const * ) ; extern void device_remove_file(struct device * , struct device_attribute const * ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { tmp = kobject_name(& dev->kobj); return (tmp); } } extern void *dev_get_drvdata(struct device const * ) ; extern void dev_set_drvdata(struct device * , void * ) ; extern char const *dev_driver_string(struct device const * ) ; extern s32 i2c_smbus_write_byte_data(struct i2c_client * , u8 , u8 ) ; __inline static void *i2c_get_clientdata(struct i2c_client const *dev ) { void *tmp ; { tmp = dev_get_drvdata(& dev->dev); return (tmp); } } __inline static void i2c_set_clientdata(struct i2c_client *dev , void *data ) { { dev_set_drvdata(& dev->dev, data); return; } } extern int i2c_register_driver(struct module * , struct i2c_driver * ) ; extern void i2c_del_driver(struct i2c_driver * ) ; __inline static int i2c_add_driver(struct i2c_driver *driver ) { int tmp ; { tmp = i2c_register_driver(& __this_module, driver); return (tmp); } } extern int gpio_request(unsigned int , char const * ) ; extern int gpio_direction_output(unsigned int , int ) ; extern void __gpio_set_value(unsigned int , int ) ; __inline static void gpio_set_value(unsigned int gpio , int value ) { { __gpio_set_value(gpio, value); return; } } extern int led_classdev_register(struct device * , struct led_classdev * ) ; extern void led_classdev_unregister(struct led_classdev * ) ; __inline static int bd2802_is_rgb_off(struct bd2802_led *led , enum led_ids id , enum led_colors color ) { char const *tmp ; char const *tmp___0 ; { switch ((unsigned int )color) { case 0U: ; return ((unsigned int )led->led[(unsigned int )id].r == 0U); case 1U: ; return ((unsigned int )led->led[(unsigned int )id].g == 0U); case 2U: ; return ((unsigned int )led->led[(unsigned int )id].b == 0U); default: tmp = dev_name((struct device const *)(& (led->client)->dev)); tmp___0 = dev_driver_string((struct device const *)(& (led->client)->dev)); printk("<3>%s %s: %s: Invalid color\n", tmp___0, tmp, "bd2802_is_rgb_off"); return (-22); } } } __inline static int bd2802_is_led_off(struct bd2802_led *led , enum led_ids id ) { { if (((unsigned int )led->led[(unsigned int )id].r != 0U || (unsigned int )led->led[(unsigned int )id].g != 0U) || (unsigned int )led->led[(unsigned int )id].b != 0U) { return (0); } else { } return (1); } } __inline static int bd2802_is_all_off(struct bd2802_led *led ) { int i ; int tmp ; { i = 0; goto ldv_17404; ldv_17403: tmp = bd2802_is_led_off(led, (enum led_ids )i); if (tmp == 0) { return (0); } else { } i = i + 1; ldv_17404: ; if (i <= 1) { goto ldv_17403; } else { } return (1); } } __inline static u8 bd2802_get_base_offset(enum led_ids id , enum led_colors color ) { { return ((unsigned int )((u8 )id) * 10U + (unsigned int )((u8 )color) * 3U); } } __inline static u8 bd2802_get_reg_addr(enum led_ids id , enum led_colors color , u8 reg_offset ) { u8 tmp ; { tmp = bd2802_get_base_offset(id, color); return ((int )tmp + (int )reg_offset); } } static int bd2802_write_byte(struct i2c_client *client , u8 reg , u8 val ) { int ret ; s32 tmp ; char const *tmp___0 ; char const *tmp___1 ; { tmp = i2c_smbus_write_byte_data(client, (int )reg, (int )val); ret = tmp; if (ret >= 0) { return (0); } else { } tmp___0 = dev_name((struct device const *)(& client->dev)); tmp___1 = dev_driver_string((struct device const *)(& client->dev)); printk("<3>%s %s: %s: reg 0x%x, val 0x%x, err %d\n", tmp___1, tmp___0, "bd2802_write_byte", (int )reg, (int )val, ret); return (ret); } } static void bd2802_update_state(struct bd2802_led *led , enum led_ids id , enum led_colors color , enum led_bits led_bit ) { int i ; u8 value ; char const *tmp ; char const *tmp___0 ; int tmp___1 ; int tmp___2 ; { i = 0; goto ldv_17437; ldv_17436: ; if ((unsigned int )i == (unsigned int )id) { switch ((unsigned int )color) { case 0U: led->led[i].r = (unsigned char )led_bit; goto ldv_17431; case 1U: led->led[i].g = (unsigned char )led_bit; goto ldv_17431; case 2U: led->led[i].b = (unsigned char )led_bit; goto ldv_17431; default: tmp = dev_name((struct device const *)(& (led->client)->dev)); tmp___0 = dev_driver_string((struct device const *)(& (led->client)->dev)); printk("<3>%s %s: %s: Invalid color\n", tmp___0, tmp, "bd2802_update_state"); return; } ldv_17431: ; } else { } i = i + 1; ldv_17437: ; if (i <= 1) { goto ldv_17436; } else { } if ((unsigned int )led_bit == 1U || (unsigned int )led_bit == 2U) { return; } else { } tmp___1 = bd2802_is_led_off(led, id); if (tmp___1 == 0) { return; } else { } tmp___2 = bd2802_is_all_off(led); if (tmp___2 != 0 && led->adf_on == 0) { gpio_set_value((unsigned int )(led->pdata)->reset_gpio, 0); return; } else { } value = (unsigned int )id == 0U ? 16U : 1U; bd2802_write_byte(led->client, 1, (int )value); return; } } static void bd2802_configure(struct bd2802_led *led ) { struct bd2802_led_platform_data *pdata ; u8 reg ; { pdata = led->pdata; reg = bd2802_get_reg_addr(LED1, RED, 2); bd2802_write_byte(led->client, (int )reg, (int )pdata->rgb_time); reg = bd2802_get_reg_addr(LED2, RED, 2); bd2802_write_byte(led->client, (int )reg, (int )pdata->rgb_time); return; } } static void bd2802_reset_cancel(struct bd2802_led *led ) { { gpio_set_value((unsigned int )(led->pdata)->reset_gpio, 1); __const_udelay(429500UL); bd2802_configure(led); return; } } static void bd2802_enable(struct bd2802_led *led , enum led_ids id ) { enum led_ids other_led ; u8 value ; u8 other_led_on ; int tmp ; { other_led = (unsigned int )id == 0U; tmp = bd2802_is_led_off(led, other_led); other_led_on = tmp == 0; if ((unsigned int )id == 0U) { value = (u8 )((int )((signed char )((int )other_led_on << 4)) | 1); } else { value = (unsigned int )other_led_on | 16U; } bd2802_write_byte(led->client, 1, (int )value); return; } } static void bd2802_set_on(struct bd2802_led *led , enum led_ids id , enum led_colors color ) { u8 reg ; int tmp ; { tmp = bd2802_is_all_off(led); if (tmp != 0 && led->adf_on == 0) { bd2802_reset_cancel(led); } else { } reg = bd2802_get_reg_addr(id, color, 3); bd2802_write_byte(led->client, (int )reg, (int )((u8 )led->rgb_current)); reg = bd2802_get_reg_addr(id, color, 4); bd2802_write_byte(led->client, (int )reg, 0); reg = bd2802_get_reg_addr(id, color, 5); bd2802_write_byte(led->client, (int )reg, 7); bd2802_enable(led, id); bd2802_update_state(led, id, color, BD2802_ON); return; } } static void bd2802_set_blink(struct bd2802_led *led , enum led_ids id , enum led_colors color ) { u8 reg ; int tmp ; { tmp = bd2802_is_all_off(led); if (tmp != 0 && led->adf_on == 0) { bd2802_reset_cancel(led); } else { } reg = bd2802_get_reg_addr(id, color, 3); bd2802_write_byte(led->client, (int )reg, 0); reg = bd2802_get_reg_addr(id, color, 4); bd2802_write_byte(led->client, (int )reg, (int )((u8 )led->rgb_current)); reg = bd2802_get_reg_addr(id, color, 5); bd2802_write_byte(led->client, (int )reg, (int )((u8 )led->wave_pattern)); bd2802_enable(led, id); bd2802_update_state(led, id, color, BD2802_BLINK); return; } } static void bd2802_turn_on(struct bd2802_led *led , enum led_ids id , enum led_colors color , enum led_bits led_bit ) { char const *tmp ; char const *tmp___0 ; { if ((unsigned int )led_bit == 0U) { tmp = dev_name((struct device const *)(& (led->client)->dev)); tmp___0 = dev_driver_string((struct device const *)(& (led->client)->dev)); printk("<3>%s %s: Only \'blink\' and \'on\' are allowed\n", tmp___0, tmp); return; } else { } if ((unsigned int )led_bit == 1U) { bd2802_set_blink(led, id, color); } else { bd2802_set_on(led, id, color); } return; } } static void bd2802_turn_off(struct bd2802_led *led , enum led_ids id , enum led_colors color ) { u8 reg ; int tmp ; { tmp = bd2802_is_rgb_off(led, id, color); if (tmp != 0) { return; } else { } reg = bd2802_get_reg_addr(id, color, 3); bd2802_write_byte(led->client, (int )reg, 0); reg = bd2802_get_reg_addr(id, color, 4); bd2802_write_byte(led->client, (int )reg, 0); bd2802_update_state(led, id, color, BD2802_OFF); return; } } static void bd2802_restore_state(struct bd2802_led *led ) { int i ; { i = 0; goto ldv_17483; ldv_17482: ; if ((unsigned int )led->led[i].r != 0U) { bd2802_turn_on(led, (enum led_ids )i, RED, (enum led_bits )led->led[i].r); } else { } if ((unsigned int )led->led[i].g != 0U) { bd2802_turn_on(led, (enum led_ids )i, GREEN, (enum led_bits )led->led[i].g); } else { } if ((unsigned int )led->led[i].b != 0U) { bd2802_turn_on(led, (enum led_ids )i, BLUE, (enum led_bits )led->led[i].b); } else { } i = i + 1; ldv_17483: ; if (i <= 1) { goto ldv_17482; } else { } return; } } static ssize_t bd2802_store_reg0x00(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 0, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x00_attr = {{"0x00", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x00}; static ssize_t bd2802_store_reg0x01(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 1, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x01_attr = {{"0x01", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x01}; static ssize_t bd2802_store_reg0x02(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 2, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x02_attr = {{"0x02", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x02}; static ssize_t bd2802_store_reg0x03(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 3, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x03_attr = {{"0x03", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x03}; static ssize_t bd2802_store_reg0x04(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 4, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x04_attr = {{"0x04", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x04}; static ssize_t bd2802_store_reg0x05(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 5, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x05_attr = {{"0x05", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x05}; static ssize_t bd2802_store_reg0x06(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 6, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x06_attr = {{"0x06", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x06}; static ssize_t bd2802_store_reg0x07(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 7, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x07_attr = {{"0x07", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x07}; static ssize_t bd2802_store_reg0x08(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 8, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x08_attr = {{"0x08", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x08}; static ssize_t bd2802_store_reg0x09(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 9, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x09_attr = {{"0x09", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x09}; static ssize_t bd2802_store_reg0x0a(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 10, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x0a_attr = {{"0x0a", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x0a}; static ssize_t bd2802_store_reg0x0b(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 11, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x0b_attr = {{"0x0b", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x0b}; static ssize_t bd2802_store_reg0x0c(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 12, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x0c_attr = {{"0x0c", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x0c}; static ssize_t bd2802_store_reg0x0d(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 13, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x0d_attr = {{"0x0d", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x0d}; static ssize_t bd2802_store_reg0x0e(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 14, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x0e_attr = {{"0x0e", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x0e}; static ssize_t bd2802_store_reg0x0f(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 15, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x0f_attr = {{"0x0f", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x0f}; static ssize_t bd2802_store_reg0x10(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 16, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x10_attr = {{"0x10", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x10}; static ssize_t bd2802_store_reg0x11(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 17, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x11_attr = {{"0x11", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x11}; static ssize_t bd2802_store_reg0x12(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 18, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x12_attr = {{"0x12", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x12}; static ssize_t bd2802_store_reg0x13(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 19, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x13_attr = {{"0x13", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x13}; static ssize_t bd2802_store_reg0x14(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 20, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x14_attr = {{"0x14", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x14}; static ssize_t bd2802_store_reg0x15(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); bd2802_write_byte(led->client, 21, (int )((unsigned char )val)); up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_reg0x15_attr = {{"0x15", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0, & bd2802_store_reg0x15}; static struct device_attribute *bd2802_addr_attributes[22U] = { & bd2802_reg0x00_attr, & bd2802_reg0x01_attr, & bd2802_reg0x02_attr, & bd2802_reg0x03_attr, & bd2802_reg0x04_attr, & bd2802_reg0x05_attr, & bd2802_reg0x06_attr, & bd2802_reg0x07_attr, & bd2802_reg0x08_attr, & bd2802_reg0x09_attr, & bd2802_reg0x0a_attr, & bd2802_reg0x0b_attr, & bd2802_reg0x0c_attr, & bd2802_reg0x0d_attr, & bd2802_reg0x0e_attr, & bd2802_reg0x0f_attr, & bd2802_reg0x10_attr, & bd2802_reg0x11_attr, & bd2802_reg0x12_attr, & bd2802_reg0x13_attr, & bd2802_reg0x14_attr, & bd2802_reg0x15_attr}; static void bd2802_enable_adv_conf(struct bd2802_led *led ) { int i ; int ret ; char const *tmp ; char const *tmp___0 ; int tmp___1 ; { i = 0; goto ldv_17759; ldv_17758: ret = device_create_file(& (led->client)->dev, (struct device_attribute const *)bd2802_addr_attributes[i]); if (ret != 0) { tmp = dev_name((struct device const *)(& (led->client)->dev)); tmp___0 = dev_driver_string((struct device const *)(& (led->client)->dev)); printk("<3>%s %s: failed: sysfs file %s\n", tmp___0, tmp, (bd2802_addr_attributes[i])->attr.name); goto failed_remove_files; } else { } i = i + 1; ldv_17759: ; if ((unsigned int )i <= 21U) { goto ldv_17758; } else { } tmp___1 = bd2802_is_all_off(led); if (tmp___1 != 0) { bd2802_reset_cancel(led); } else { } led->adf_on = 1; return; failed_remove_files: i = i - 1; goto ldv_17762; ldv_17761: device_remove_file(& (led->client)->dev, (struct device_attribute const *)bd2802_addr_attributes[i]); i = i - 1; ldv_17762: ; if (i >= 0) { goto ldv_17761; } else { } return; } } static void bd2802_disable_adv_conf(struct bd2802_led *led ) { int i ; int tmp ; { i = 0; goto ldv_17771; ldv_17770: device_remove_file(& (led->client)->dev, (struct device_attribute const *)bd2802_addr_attributes[i]); i = i + 1; ldv_17771: ; if ((unsigned int )i <= 21U) { goto ldv_17770; } else { } tmp = bd2802_is_all_off(led); if (tmp != 0) { gpio_set_value((unsigned int )(led->pdata)->reset_gpio, 0); } else { } led->adf_on = 0; return; } } static ssize_t bd2802_show_adv_conf(struct device *dev , struct device_attribute *attr , char *buf ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; ssize_t ret ; int tmp___0 ; int tmp___1 ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; down_read(& led->rwsem); if (led->adf_on != 0) { tmp___0 = sprintf(buf, "on\n"); ret = (ssize_t )tmp___0; } else { tmp___1 = sprintf(buf, "off\n"); ret = (ssize_t )tmp___1; } up_read(& led->rwsem); return (ret); } } static ssize_t bd2802_store_adv_conf(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; int tmp___0 ; int tmp___1 ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } down_write(& led->rwsem); if (led->adf_on == 0) { tmp___1 = strncmp(buf, "on", 2UL); if (tmp___1 == 0) { bd2802_enable_adv_conf(led); } else { goto _L; } } else _L: /* CIL Label */ if (led->adf_on != 0) { tmp___0 = strncmp(buf, "off", 3UL); if (tmp___0 == 0) { bd2802_disable_adv_conf(led); } else { } } else { } up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_adv_conf_attr = {{"advanced_configuration", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bd2802_show_adv_conf, & bd2802_store_adv_conf}; static ssize_t bd2802_show_wave_pattern(struct device *dev , struct device_attribute *attr , char *buf ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; ssize_t ret ; int tmp___0 ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; down_read(& led->rwsem); tmp___0 = sprintf(buf, "0x%02x\n", led->wave_pattern); ret = (ssize_t )tmp___0; up_read(& led->rwsem); return (ret); } } static ssize_t bd2802_store_wave_pattern(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); led->wave_pattern = (int )val; up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_wave_pattern_attr = {{"wave_pattern", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bd2802_show_wave_pattern, & bd2802_store_wave_pattern}; static ssize_t bd2802_show_rgb_current(struct device *dev , struct device_attribute *attr , char *buf ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; ssize_t ret ; int tmp___0 ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; down_read(& led->rwsem); tmp___0 = sprintf(buf, "0x%02x\n", led->rgb_current); ret = (ssize_t )tmp___0; up_read(& led->rwsem); return (ret); } } static ssize_t bd2802_store_rgb_current(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct bd2802_led *led ; struct device const *__mptr ; void *tmp ; unsigned long val ; int ret ; { __mptr = (struct device const *)dev; tmp = i2c_get_clientdata((struct i2c_client const *)((struct i2c_client *)__mptr + 0xffffffffffffffd8UL)); led = (struct bd2802_led *)tmp; if (count == 0UL) { return (-22L); } else { } ret = strict_strtoul(buf, 16U, & val); if (ret != 0) { return ((ssize_t )ret); } else { } down_write(& led->rwsem); led->rgb_current = (int )val; up_write(& led->rwsem); return ((ssize_t )count); } } static struct device_attribute bd2802_rgb_current_attr = {{"rgb_current", & __this_module, 420U, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & bd2802_show_rgb_current, & bd2802_store_rgb_current}; static struct device_attribute *bd2802_attributes[3U] = { & bd2802_adv_conf_attr, & bd2802_wave_pattern_attr, & bd2802_rgb_current_attr}; static void bd2802_led_work(struct work_struct *work ) { struct bd2802_led *led ; struct work_struct const *__mptr ; { __mptr = (struct work_struct const *)work; led = (struct bd2802_led *)__mptr + 0xffffffffffffff70UL; if ((unsigned int )led->state != 0U) { bd2802_turn_on(led, led->led_id, led->color, led->state); } else { bd2802_turn_off(led, led->led_id, led->color); } return; } } static void bd2802_set_led1r_brightness(struct led_classdev *led_cdev , enum led_brightness value ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = (struct led_classdev const *)led_cdev; led = (struct bd2802_led *)__mptr + 0xffffffffffffff20UL; led->led_id = LED1; led->color = RED; if ((unsigned int )value == 0U) { led->state = BD2802_OFF; } else { led->state = BD2802_ON; } schedule_work(& led->work); return; } } static int bd2802_set_led1r_blink(struct led_classdev *led_cdev , unsigned long *delay_on , unsigned long *delay_off ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = (struct led_classdev const *)led_cdev; led = (struct bd2802_led *)__mptr + 0xffffffffffffff20UL; if (*delay_on == 0UL || *delay_off == 0UL) { return (-22); } else { } led->led_id = LED1; led->color = RED; led->state = BD2802_BLINK; schedule_work(& led->work); return (0); } } static void bd2802_set_led1g_brightness(struct led_classdev *led_cdev , enum led_brightness value ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = (struct led_classdev const *)led_cdev; led = (struct bd2802_led *)__mptr + 0xfffffffffffffe30UL; led->led_id = LED1; led->color = GREEN; if ((unsigned int )value == 0U) { led->state = BD2802_OFF; } else { led->state = BD2802_ON; } schedule_work(& led->work); return; } } static int bd2802_set_led1g_blink(struct led_classdev *led_cdev , unsigned long *delay_on , unsigned long *delay_off ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = (struct led_classdev const *)led_cdev; led = (struct bd2802_led *)__mptr + 0xfffffffffffffe30UL; if (*delay_on == 0UL || *delay_off == 0UL) { return (-22); } else { } led->led_id = LED1; led->color = GREEN; led->state = BD2802_BLINK; schedule_work(& led->work); return (0); } } static void bd2802_set_led1b_brightness(struct led_classdev *led_cdev , enum led_brightness value ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = (struct led_classdev const *)led_cdev; led = (struct bd2802_led *)__mptr + 0xfffffffffffffd40UL; led->led_id = LED1; led->color = BLUE; if ((unsigned int )value == 0U) { led->state = BD2802_OFF; } else { led->state = BD2802_ON; } schedule_work(& led->work); return; } } static int bd2802_set_led1b_blink(struct led_classdev *led_cdev , unsigned long *delay_on , unsigned long *delay_off ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = (struct led_classdev const *)led_cdev; led = (struct bd2802_led *)__mptr + 0xfffffffffffffd40UL; if (*delay_on == 0UL || *delay_off == 0UL) { return (-22); } else { } led->led_id = LED1; led->color = BLUE; led->state = BD2802_BLINK; schedule_work(& led->work); return (0); } } static void bd2802_set_led2r_brightness(struct led_classdev *led_cdev , enum led_brightness value ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = (struct led_classdev const *)led_cdev; led = (struct bd2802_led *)__mptr + 0xfffffffffffffc50UL; led->led_id = LED2; led->color = RED; if ((unsigned int )value == 0U) { led->state = BD2802_OFF; } else { led->state = BD2802_ON; } schedule_work(& led->work); return; } } static int bd2802_set_led2r_blink(struct led_classdev *led_cdev , unsigned long *delay_on , unsigned long *delay_off ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = (struct led_classdev const *)led_cdev; led = (struct bd2802_led *)__mptr + 0xfffffffffffffc50UL; if (*delay_on == 0UL || *delay_off == 0UL) { return (-22); } else { } led->led_id = LED2; led->color = RED; led->state = BD2802_BLINK; schedule_work(& led->work); return (0); } } static void bd2802_set_led2g_brightness(struct led_classdev *led_cdev , enum led_brightness value ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = (struct led_classdev const *)led_cdev; led = (struct bd2802_led *)__mptr + 0xfffffffffffffb60UL; led->led_id = LED2; led->color = GREEN; if ((unsigned int )value == 0U) { led->state = BD2802_OFF; } else { led->state = BD2802_ON; } schedule_work(& led->work); return; } } static int bd2802_set_led2g_blink(struct led_classdev *led_cdev , unsigned long *delay_on , unsigned long *delay_off ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = (struct led_classdev const *)led_cdev; led = (struct bd2802_led *)__mptr + 0xfffffffffffffb60UL; if (*delay_on == 0UL || *delay_off == 0UL) { return (-22); } else { } led->led_id = LED2; led->color = GREEN; led->state = BD2802_BLINK; schedule_work(& led->work); return (0); } } static void bd2802_set_led2b_brightness(struct led_classdev *led_cdev , enum led_brightness value ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = (struct led_classdev const *)led_cdev; led = (struct bd2802_led *)__mptr + 0xfffffffffffffa70UL; led->led_id = LED2; led->color = BLUE; if ((unsigned int )value == 0U) { led->state = BD2802_OFF; } else { led->state = BD2802_ON; } schedule_work(& led->work); return; } } static int bd2802_set_led2b_blink(struct led_classdev *led_cdev , unsigned long *delay_on , unsigned long *delay_off ) { struct bd2802_led *led ; struct led_classdev const *__mptr ; { __mptr = (struct led_classdev const *)led_cdev; led = (struct bd2802_led *)__mptr + 0xfffffffffffffa70UL; if (*delay_on == 0UL || *delay_off == 0UL) { return (-22); } else { } led->led_id = LED2; led->color = BLUE; led->state = BD2802_BLINK; schedule_work(& led->work); return (0); } } static int bd2802_register_led_classdev(struct bd2802_led *led ) { int ret ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; char const *tmp ; char const *tmp___0 ; char const *tmp___1 ; char const *tmp___2 ; char const *tmp___3 ; char const *tmp___4 ; char const *tmp___5 ; char const *tmp___6 ; char const *tmp___7 ; char const *tmp___8 ; char const *tmp___9 ; char const *tmp___10 ; { __init_work(& led->work, 0); __constr_expr_0.counter = 0L; led->work.data = __constr_expr_0; lockdep_init_map(& led->work.lockdep_map, "(&led->work)", & __key, 0); INIT_LIST_HEAD(& led->work.entry); led->work.func = & bd2802_led_work; led->cdev_led1r.name = "led1_R"; led->cdev_led1r.brightness = 0; led->cdev_led1r.brightness_set = & bd2802_set_led1r_brightness; led->cdev_led1r.blink_set = & bd2802_set_led1r_blink; ret = led_classdev_register(& (led->client)->dev, & led->cdev_led1r); if (ret < 0) { tmp = dev_name((struct device const *)(& (led->client)->dev)); tmp___0 = dev_driver_string((struct device const *)(& (led->client)->dev)); printk("<3>%s %s: couldn\'t register LED %s\n", tmp___0, tmp, led->cdev_led1r.name); goto failed_unregister_led1_R; } else { } led->cdev_led1g.name = "led1_G"; led->cdev_led1g.brightness = 0; led->cdev_led1g.brightness_set = & bd2802_set_led1g_brightness; led->cdev_led1g.blink_set = & bd2802_set_led1g_blink; ret = led_classdev_register(& (led->client)->dev, & led->cdev_led1g); if (ret < 0) { tmp___1 = dev_name((struct device const *)(& (led->client)->dev)); tmp___2 = dev_driver_string((struct device const *)(& (led->client)->dev)); printk("<3>%s %s: couldn\'t register LED %s\n", tmp___2, tmp___1, led->cdev_led1g.name); goto failed_unregister_led1_G; } else { } led->cdev_led1b.name = "led1_B"; led->cdev_led1b.brightness = 0; led->cdev_led1b.brightness_set = & bd2802_set_led1b_brightness; led->cdev_led1b.blink_set = & bd2802_set_led1b_blink; ret = led_classdev_register(& (led->client)->dev, & led->cdev_led1b); if (ret < 0) { tmp___3 = dev_name((struct device const *)(& (led->client)->dev)); tmp___4 = dev_driver_string((struct device const *)(& (led->client)->dev)); printk("<3>%s %s: couldn\'t register LED %s\n", tmp___4, tmp___3, led->cdev_led1b.name); goto failed_unregister_led1_B; } else { } led->cdev_led2r.name = "led2_R"; led->cdev_led2r.brightness = 0; led->cdev_led2r.brightness_set = & bd2802_set_led2r_brightness; led->cdev_led2r.blink_set = & bd2802_set_led2r_blink; ret = led_classdev_register(& (led->client)->dev, & led->cdev_led2r); if (ret < 0) { tmp___5 = dev_name((struct device const *)(& (led->client)->dev)); tmp___6 = dev_driver_string((struct device const *)(& (led->client)->dev)); printk("<3>%s %s: couldn\'t register LED %s\n", tmp___6, tmp___5, led->cdev_led2r.name); goto failed_unregister_led2_R; } else { } led->cdev_led2g.name = "led2_G"; led->cdev_led2g.brightness = 0; led->cdev_led2g.brightness_set = & bd2802_set_led2g_brightness; led->cdev_led2g.blink_set = & bd2802_set_led2g_blink; ret = led_classdev_register(& (led->client)->dev, & led->cdev_led2g); if (ret < 0) { tmp___7 = dev_name((struct device const *)(& (led->client)->dev)); tmp___8 = dev_driver_string((struct device const *)(& (led->client)->dev)); printk("<3>%s %s: couldn\'t register LED %s\n", tmp___8, tmp___7, led->cdev_led2g.name); goto failed_unregister_led2_G; } else { } led->cdev_led2b.name = "led2_B"; led->cdev_led2b.brightness = 0; led->cdev_led2b.brightness_set = & bd2802_set_led2b_brightness; led->cdev_led2b.blink_set = & bd2802_set_led2b_blink; led->cdev_led2b.flags = led->cdev_led2b.flags | 65536; ret = led_classdev_register(& (led->client)->dev, & led->cdev_led2b); if (ret < 0) { tmp___9 = dev_name((struct device const *)(& (led->client)->dev)); tmp___10 = dev_driver_string((struct device const *)(& (led->client)->dev)); printk("<3>%s %s: couldn\'t register LED %s\n", tmp___10, tmp___9, led->cdev_led2b.name); goto failed_unregister_led2_B; } else { } return (0); failed_unregister_led2_B: led_classdev_unregister(& led->cdev_led2g); failed_unregister_led2_G: led_classdev_unregister(& led->cdev_led2r); failed_unregister_led2_R: led_classdev_unregister(& led->cdev_led1b); failed_unregister_led1_B: led_classdev_unregister(& led->cdev_led1g); failed_unregister_led1_G: led_classdev_unregister(& led->cdev_led1r); failed_unregister_led1_R: ; return (ret); } } static void bd2802_unregister_led_classdev(struct bd2802_led *led ) { { cancel_work_sync(& led->work); led_classdev_unregister(& led->cdev_led1r); return; } } static int bd2802_probe(struct i2c_client *client , struct i2c_device_id const *id ) { struct bd2802_led *led ; struct bd2802_led_platform_data *pdata ; int ret ; int i ; void *tmp ; char const *tmp___0 ; char const *tmp___1 ; struct bd2802_led_platform_data *tmp___2 ; char const *tmp___3 ; char const *tmp___4 ; char const *tmp___5 ; char const *tmp___6 ; struct lock_class_key __key ; char const *tmp___7 ; char const *tmp___8 ; { tmp = kzalloc(1688UL, 208U); led = (struct bd2802_led *)tmp; if ((unsigned long )led == (unsigned long )((struct bd2802_led *)0)) { tmp___0 = dev_name((struct device const *)(& client->dev)); tmp___1 = dev_driver_string((struct device const *)(& client->dev)); printk("<3>%s %s: failed to allocate driver data\n", tmp___1, tmp___0); return (-12); } else { } led->client = client; tmp___2 = (struct bd2802_led_platform_data *)client->dev.platform_data; led->pdata = tmp___2; pdata = tmp___2; i2c_set_clientdata(client, (void *)led); gpio_request((unsigned int )pdata->reset_gpio, "RGB_RESETB"); gpio_direction_output((unsigned int )pdata->reset_gpio, 1); __const_udelay(429500UL); ret = bd2802_write_byte(client, 0, 0); if (ret < 0) { tmp___3 = dev_name((struct device const *)(& client->dev)); tmp___4 = dev_driver_string((struct device const *)(& client->dev)); printk("<3>%s %s: failed to detect device\n", tmp___4, tmp___3); goto failed_free; } else { tmp___5 = dev_name((struct device const *)(& client->dev)); tmp___6 = dev_driver_string((struct device const *)(& client->dev)); printk("<6>%s %s: return 0x%02x\n", tmp___6, tmp___5, ret); } gpio_set_value((unsigned int )(led->pdata)->reset_gpio, 0); led->wave_pattern = 3; led->rgb_current = 16; __init_rwsem(& led->rwsem, "&led->rwsem", & __key); i = 0; goto ldv_17960; ldv_17959: ret = device_create_file(& (led->client)->dev, (struct device_attribute const *)bd2802_attributes[i]); if (ret != 0) { tmp___7 = dev_name((struct device const *)(& (led->client)->dev)); tmp___8 = dev_driver_string((struct device const *)(& (led->client)->dev)); printk("<3>%s %s: failed: sysfs file %s\n", tmp___8, tmp___7, (bd2802_attributes[i])->attr.name); goto failed_unregister_dev_file; } else { } i = i + 1; ldv_17960: ; if ((unsigned int )i <= 2U) { goto ldv_17959; } else { } ret = bd2802_register_led_classdev(led); if (ret < 0) { goto failed_unregister_dev_file; } else { } return (0); failed_unregister_dev_file: i = i - 1; goto ldv_17963; ldv_17962: device_remove_file(& (led->client)->dev, (struct device_attribute const *)bd2802_attributes[i]); i = i - 1; ldv_17963: ; if (i >= 0) { goto ldv_17962; } else { } failed_free: i2c_set_clientdata(client, 0); kfree((void const *)led); return (ret); } } static int bd2802_remove(struct i2c_client *client ) { struct bd2802_led *led ; void *tmp ; int i ; { tmp = i2c_get_clientdata((struct i2c_client const *)client); led = (struct bd2802_led *)tmp; gpio_set_value((unsigned int )(led->pdata)->reset_gpio, 0); bd2802_unregister_led_classdev(led); if (led->adf_on != 0) { bd2802_disable_adv_conf(led); } else { } i = 0; goto ldv_17973; ldv_17972: device_remove_file(& (led->client)->dev, (struct device_attribute const *)bd2802_attributes[i]); i = i + 1; ldv_17973: ; if ((unsigned int )i <= 2U) { goto ldv_17972; } else { } i2c_set_clientdata(client, 0); kfree((void const *)led); return (0); } } static int bd2802_suspend(struct i2c_client *client , pm_message_t mesg ) { struct bd2802_led *led ; void *tmp ; { tmp = i2c_get_clientdata((struct i2c_client const *)client); led = (struct bd2802_led *)tmp; gpio_set_value((unsigned int )(led->pdata)->reset_gpio, 0); return (0); } } static int bd2802_resume(struct i2c_client *client ) { struct bd2802_led *led ; void *tmp ; int tmp___0 ; { tmp = i2c_get_clientdata((struct i2c_client const *)client); led = (struct bd2802_led *)tmp; tmp___0 = bd2802_is_all_off(led); if (tmp___0 == 0 || led->adf_on != 0) { bd2802_reset_cancel(led); bd2802_restore_state(led); } else { } return (0); } } static struct i2c_device_id const bd2802_id[2U] = { {{'B', 'D', '2', '8', '0', '2', '\000'}, 0UL}}; struct i2c_device_id const __mod_i2c_device_table ; static struct i2c_driver bd2802_i2c_driver = {0U, 0, 0, & bd2802_probe, & bd2802_remove, 0, & bd2802_suspend, & bd2802_resume, 0, 0, {"BD2802", 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0}, (struct i2c_device_id const *)(& bd2802_id), 0, 0, {0, 0}}; static int bd2802_init(void) { int tmp ; { tmp = i2c_add_driver(& bd2802_i2c_driver); return (tmp); } } static void bd2802_exit(void) { { i2c_del_driver(& bd2802_i2c_driver); return; } } void ldv_check_final_state(void) ; extern void ldv_check_return_value(int ) ; extern void ldv_check_return_value_probe(int ) ; void ldv_initialize(void) ; extern void ldv_handler_precall(void) ; extern int nondet_int(void) ; int LDV_IN_INTERRUPT ; int main(void) { struct device *var_group1 ; struct device_attribute *var_group2 ; char *var_bd2802_show_adv_conf_17_p2 ; char const *var_bd2802_store_adv_conf_18_p2 ; size_t var_bd2802_store_adv_conf_18_p3 ; struct i2c_client *var_group3 ; struct i2c_device_id const *var_bd2802_probe_22_p1 ; int res_bd2802_probe_22 ; int res_bd2802_remove_23 ; pm_message_t var_bd2802_suspend_24_p1 ; int ldv_s_bd2802_i2c_driver_i2c_driver ; int tmp ; int tmp___0 ; int tmp___1 ; { ldv_s_bd2802_i2c_driver_i2c_driver = 0; LDV_IN_INTERRUPT = 1; ldv_initialize(); ldv_handler_precall(); tmp = bd2802_init(); if (tmp != 0) { goto ldv_final; } else { } goto ldv_18044; ldv_18043: tmp___0 = nondet_int(); switch (tmp___0) { case 0: ldv_handler_precall(); bd2802_show_adv_conf(var_group1, var_group2, var_bd2802_show_adv_conf_17_p2); goto ldv_18035; case 1: ldv_handler_precall(); bd2802_store_adv_conf(var_group1, var_group2, var_bd2802_store_adv_conf_18_p2, var_bd2802_store_adv_conf_18_p3); goto ldv_18035; case 2: ; if (ldv_s_bd2802_i2c_driver_i2c_driver == 0) { res_bd2802_probe_22 = bd2802_probe(var_group3, var_bd2802_probe_22_p1); ldv_check_return_value(res_bd2802_probe_22); ldv_check_return_value_probe(res_bd2802_probe_22); if (res_bd2802_probe_22 != 0) { goto ldv_module_exit; } else { } ldv_s_bd2802_i2c_driver_i2c_driver = ldv_s_bd2802_i2c_driver_i2c_driver + 1; } else { } goto ldv_18035; case 3: ; if (ldv_s_bd2802_i2c_driver_i2c_driver == 1) { ldv_handler_precall(); res_bd2802_remove_23 = bd2802_remove(var_group3); ldv_check_return_value(res_bd2802_remove_23); if (res_bd2802_remove_23 != 0) { goto ldv_module_exit; } else { } ldv_s_bd2802_i2c_driver_i2c_driver = 0; } else { } goto ldv_18035; case 4: ldv_handler_precall(); bd2802_suspend(var_group3, var_bd2802_suspend_24_p1); goto ldv_18035; case 5: ldv_handler_precall(); bd2802_resume(var_group3); goto ldv_18035; default: ; goto ldv_18035; } ldv_18035: ; ldv_18044: tmp___1 = nondet_int(); if (tmp___1 != 0 || ldv_s_bd2802_i2c_driver_i2c_driver != 0) { goto ldv_18043; } else { } ldv_module_exit: ldv_handler_precall(); bd2802_exit(); ldv_final: ldv_check_final_state(); return 0; } } void ldv___ldv_spin_lock_4(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_node_size_lock_of_pglist_data(); __ldv_spin_lock(ldv_func_arg1); return; } } void ldv___ldv_spin_lock_6(spinlock_t *ldv_func_arg1 ) { { ldv_spin_lock_siglock_of_sighand_struct(); __ldv_spin_lock(ldv_func_arg1); return; } } __inline static void ldv_error(void) { { LDV_ERROR: {reach_error();abort();} } } extern int ldv_undef_int(void) ; long ldv__builtin_expect(long exp , long c ) { { return (exp); } } static int ldv_spin_alloc_lock_of_task_struct ; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { if (ldv_spin_alloc_lock_of_task_struct == 1) { } else { ldv_error(); } ldv_spin_alloc_lock_of_task_struct = 2; return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { if (ldv_spin_alloc_lock_of_task_struct == 2) { } else { ldv_error(); } ldv_spin_alloc_lock_of_task_struct = 1; return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { if (ldv_spin_alloc_lock_of_task_struct == 1) { } else { ldv_error(); } is_spin_held_by_another_thread = ldv_undef_int(); if (is_spin_held_by_another_thread) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { if (ldv_spin_alloc_lock_of_task_struct == 1) { } else { ldv_error(); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { is_spin_held_by_another_thread = ldv_undef_int(); if (ldv_spin_alloc_lock_of_task_struct == 1 && ! is_spin_held_by_another_thread) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; int tmp___0 ; { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } return (tmp___0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { is_spin_contended = ldv_undef_int(); if (is_spin_contended) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { if (ldv_spin_alloc_lock_of_task_struct == 1) { } else { ldv_error(); } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN ; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { if (ldv_spin_lock_of_NOT_ARG_SIGN == 1) { } else { ldv_error(); } ldv_spin_lock_of_NOT_ARG_SIGN = 2; return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { } else { ldv_error(); } ldv_spin_lock_of_NOT_ARG_SIGN = 1; return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { if (ldv_spin_lock_of_NOT_ARG_SIGN == 1) { } else { ldv_error(); } is_spin_held_by_another_thread = ldv_undef_int(); if (is_spin_held_by_another_thread) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { if (ldv_spin_lock_of_NOT_ARG_SIGN == 1) { } else { ldv_error(); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { is_spin_held_by_another_thread = ldv_undef_int(); if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && ! is_spin_held_by_another_thread) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; int tmp___0 ; { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } return (tmp___0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { is_spin_contended = ldv_undef_int(); if (is_spin_contended) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { if (ldv_spin_lock_of_NOT_ARG_SIGN == 1) { } else { ldv_error(); } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data ; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { if (ldv_spin_node_size_lock_of_pglist_data == 1) { } else { ldv_error(); } ldv_spin_node_size_lock_of_pglist_data = 2; return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { if (ldv_spin_node_size_lock_of_pglist_data == 2) { } else { ldv_error(); } ldv_spin_node_size_lock_of_pglist_data = 1; return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { if (ldv_spin_node_size_lock_of_pglist_data == 1) { } else { ldv_error(); } is_spin_held_by_another_thread = ldv_undef_int(); if (is_spin_held_by_another_thread) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { if (ldv_spin_node_size_lock_of_pglist_data == 1) { } else { ldv_error(); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { is_spin_held_by_another_thread = ldv_undef_int(); if (ldv_spin_node_size_lock_of_pglist_data == 1 && ! is_spin_held_by_another_thread) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; int tmp___0 ; { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } return (tmp___0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { is_spin_contended = ldv_undef_int(); if (is_spin_contended) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { if (ldv_spin_node_size_lock_of_pglist_data == 1) { } else { ldv_error(); } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct ; void ldv_spin_lock_siglock_of_sighand_struct(void) { { if (ldv_spin_siglock_of_sighand_struct == 1) { } else { ldv_error(); } ldv_spin_siglock_of_sighand_struct = 2; return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { if (ldv_spin_siglock_of_sighand_struct == 2) { } else { ldv_error(); } ldv_spin_siglock_of_sighand_struct = 1; return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { if (ldv_spin_siglock_of_sighand_struct == 1) { } else { ldv_error(); } is_spin_held_by_another_thread = ldv_undef_int(); if (is_spin_held_by_another_thread) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { if (ldv_spin_siglock_of_sighand_struct == 1) { } else { ldv_error(); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { is_spin_held_by_another_thread = ldv_undef_int(); if (ldv_spin_siglock_of_sighand_struct == 1 && ! is_spin_held_by_another_thread) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; int tmp___0 ; { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } return (tmp___0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { is_spin_contended = ldv_undef_int(); if (is_spin_contended) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { if (ldv_spin_siglock_of_sighand_struct == 1) { } else { ldv_error(); } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_initialize(void) { { ldv_spin_alloc_lock_of_task_struct = 1; ldv_spin_lock_of_NOT_ARG_SIGN = 1; ldv_spin_node_size_lock_of_pglist_data = 1; ldv_spin_siglock_of_sighand_struct = 1; return; } } void ldv_check_final_state(void) { { if (ldv_spin_alloc_lock_of_task_struct == 1) { } else { ldv_error(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1) { } else { ldv_error(); } if (ldv_spin_node_size_lock_of_pglist_data == 1) { } else { ldv_error(); } if (ldv_spin_siglock_of_sighand_struct == 1) { } else { ldv_error(); } return; } }