extern void abort(void); extern void __assert_fail(const char *, const char *, unsigned int, const char *) __attribute__ ((__nothrow__ , __leaf__)) __attribute__ ((__noreturn__)); void reach_error() { __assert_fail("0", "drivers--media--dvb--frontends--cxd2820r.ko_024.b115f40.32_7a.cil_true-unreach-call.i", 3, "reach_error"); } /* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef long long __s64; typedef unsigned long long __u64; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct rcu_head { struct rcu_head *next ; void (*func)(struct rcu_head * ) ; }; struct module; typedef void (*ctor_fn_t)(void); struct device; struct completion; struct pt_regs; struct pid; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion_ldv_1990_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion_ldv_1990_8 ldv_1990 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct_ldv_1997_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct_ldv_1997_10 ldv_1997 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct mm_struct; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct_ldv_2114_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct_ldv_2129_13 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion_ldv_2130_11 { struct __anonstruct_ldv_2114_12 ldv_2114 ; struct __anonstruct_ldv_2129_13 ldv_2129 ; }; struct desc_struct { union __anonunion_ldv_2130_11 ldv_2130 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct cpumask; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion_ldv_2758_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion_ldv_2758_18 ldv_2758 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[64U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct_ldv_5132_23 { u64 rip ; u64 rdp ; }; struct __anonstruct_ldv_5138_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion_ldv_5139_22 { struct __anonstruct_ldv_5132_23 ldv_5132 ; struct __anonstruct_ldv_5138_24 ldv_5138 ; }; union __anonunion_ldv_5148_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion_ldv_5139_22 ldv_5139 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion_ldv_5148_25 ldv_5148 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; } __attribute__((__packed__)) ; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 2 ; unsigned char hardirqs_off : 1 ; unsigned short references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct_ldv_5965_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion_ldv_5966_28 { struct raw_spinlock rlock ; struct __anonstruct_ldv_5965_29 ldv_5965 ; }; struct spinlock { union __anonunion_ldv_5966_28 ldv_5966 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct dentry; struct user_namespace; struct timespec; struct seqcount { unsigned int sequence ; }; typedef struct seqcount seqcount_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct rb_node { unsigned long rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct __anonstruct_nodemask_t_37 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_37 nodemask_t; struct prio_tree_node; struct raw_prio_tree_node { struct prio_tree_node *left ; struct prio_tree_node *right ; struct prio_tree_node *parent ; }; struct prio_tree_node { struct prio_tree_node *left ; struct prio_tree_node *right ; struct prio_tree_node *parent ; unsigned long start ; unsigned long last ; }; struct prio_tree_root { struct prio_tree_node *prio_tree_node ; unsigned short index_bits ; unsigned short raw ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct __anonstruct_mm_context_t_38 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_38 mm_context_t; struct address_space; union __anonunion_ldv_7647_40 { unsigned long index ; void *freelist ; }; struct __anonstruct_ldv_7657_44 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion_ldv_7658_43 { atomic_t _mapcount ; struct __anonstruct_ldv_7657_44 ldv_7657 ; }; struct __anonstruct_ldv_7660_42 { union __anonunion_ldv_7658_43 ldv_7658 ; atomic_t _count ; }; union __anonunion_ldv_7661_41 { unsigned long counters ; struct __anonstruct_ldv_7660_42 ldv_7660 ; }; struct __anonstruct_ldv_7662_39 { union __anonunion_ldv_7647_40 ldv_7647 ; union __anonunion_ldv_7661_41 ldv_7661 ; }; struct __anonstruct_ldv_7669_46 { struct page *next ; int pages ; int pobjects ; }; union __anonunion_ldv_7670_45 { struct list_head lru ; struct __anonstruct_ldv_7669_46 ldv_7669 ; }; union __anonunion_ldv_7675_47 { unsigned long private ; struct kmem_cache *slab ; struct page *first_page ; }; struct page { unsigned long flags ; struct address_space *mapping ; struct __anonstruct_ldv_7662_39 ldv_7662 ; union __anonunion_ldv_7670_45 ldv_7670 ; union __anonunion_ldv_7675_47 ldv_7675 ; unsigned long debug_flags ; }; struct __anonstruct_vm_set_49 { struct list_head list ; void *parent ; struct vm_area_struct *head ; }; union __anonunion_shared_48 { struct __anonstruct_vm_set_49 vm_set ; struct raw_prio_tree_node prio_tree_node ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { struct mm_struct *vm_mm ; unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct rb_node vm_rb ; union __anonunion_shared_48 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; void (*unmap_area)(struct mm_struct * , unsigned long ) ; unsigned long mmap_base ; unsigned long task_size ; unsigned long cached_hole_size ; unsigned long free_area_cache ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long reserved_vm ; unsigned long def_flags ; unsigned long nr_ptes ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[44U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned int faultstamp ; unsigned int token_priority ; unsigned int last_interval ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct hlist_head ioctx_list ; struct task_struct *owner ; struct file *exe_file ; unsigned long num_exe_file_vmas ; struct mmu_notifier_mm *mmu_notifier_mm ; pgtable_t pmd_huge_pte ; struct cpumask cpumask_allocation ; }; typedef unsigned long cputime_t; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; }; struct dev_pm_qos_request; struct pm_qos_constraints; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool ignore_children ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; ktime_t suspend_time ; s64 max_time_suspended_ns ; struct dev_pm_qos_request *pq_req ; struct pm_subsys_data *subsys_data ; struct pm_qos_constraints *constraints ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct siginfo; struct __anonstruct_sigset_t_140 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_140 sigset_t; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_142 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_143 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_144 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_145 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_146 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_147 { long _band ; int _fd ; }; union __anonunion__sifields_141 { int _pad[28U] ; struct __anonstruct__kill_142 _kill ; struct __anonstruct__timer_143 _timer ; struct __anonstruct__rt_144 _rt ; struct __anonstruct__sigchld_145 _sigchld ; struct __anonstruct__sigfault_146 _sigfault ; struct __anonstruct__sigpoll_147 _sigpoll ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_141 _sifields ; }; typedef struct siginfo siginfo_t; struct user_struct; struct sigpending { struct list_head list ; sigset_t signal ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct rcu_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct __anonstruct_seccomp_t_150 { int mode ; }; typedef struct __anonstruct_seccomp_t_150 seccomp_t; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct rt_mutex { raw_spinlock_t wait_lock ; struct plist_head wait_list ; struct task_struct *owner ; int save_state ; char const *name ; char const *file ; int line ; void *magic ; }; struct rt_mutex_waiter; struct rlimit { unsigned long rlim_cur ; unsigned long rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned long active_bases ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[3U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_list; struct key_user; union __anonunion_ldv_13931_153 { time_t expiry ; time_t revoked_at ; }; union __anonunion_type_data_154 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_155 { unsigned long value ; void *rcudata ; void *data ; struct keyring_list *subscriptions ; }; struct key { atomic_t usage ; key_serial_t serial ; struct rb_node serial_node ; struct key_type *type ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion_ldv_13931_153 ldv_13931 ; uid_t uid ; gid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; char *description ; union __anonunion_type_data_154 type_data ; union __anonunion_payload_155 payload ; }; struct audit_context; struct inode; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; gid_t small_block[32U] ; gid_t *blocks[0U] ; }; struct thread_group_cred { atomic_t usage ; pid_t tgid ; spinlock_t lock ; struct key *session_keyring ; struct key *process_keyring ; struct rcu_head rcu ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; uid_t uid ; gid_t gid ; uid_t suid ; gid_t sgid ; uid_t euid ; gid_t egid ; uid_t fsuid ; gid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; struct thread_group_cred *tgcred ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct rcu_head rcu ; }; struct llist_node; struct llist_node { struct llist_node *next ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct io_event { __u64 data ; __u64 obj ; __s64 res ; __s64 res2 ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kioctx; union __anonunion_ki_obj_156 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct list_head ki_run_list ; unsigned long ki_flags ; int ki_users ; unsigned int ki_key ; struct file *ki_filp ; struct kioctx *ki_ctx ; int (*ki_cancel)(struct kiocb * , struct io_event * ) ; ssize_t (*ki_retry)(struct kiocb * ) ; void (*ki_dtor)(struct kiocb * ) ; union __anonunion_ki_obj_156 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; void *private ; unsigned short ki_opcode ; size_t ki_nbytes ; char *ki_buf ; size_t ki_left ; struct iovec ki_inline_vec ; struct iovec *ki_iovec ; unsigned long ki_nr_segs ; unsigned long ki_cur_seg ; struct list_head ki_list ; struct list_head ki_batch ; struct eventfd_ctx *ki_eventfd ; }; struct aio_ring_info { unsigned long mmap_base ; unsigned long mmap_size ; struct page **ring_pages ; spinlock_t ring_lock ; long nr_pages ; unsigned int nr ; unsigned int tail ; struct page *internal_pages[8U] ; }; struct kioctx { atomic_t users ; int dead ; struct mm_struct *mm ; unsigned long user_id ; struct hlist_node list ; wait_queue_head_t wait ; spinlock_t ctx_lock ; int reqs_active ; struct list_head active_reqs ; struct list_head run_list ; unsigned int max_reqs ; struct aio_ring_info ring_info ; struct delayed_work wq ; struct rcu_head rcu_head ; }; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; cputime_t prev_utime ; cputime_t prev_stime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; int oom_adj ; int oom_score_adj ; int oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; uid_t uid ; struct user_namespace *user_ns ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct rq; struct sched_class { struct sched_class const *next ; void (*enqueue_task)(struct rq * , struct task_struct * , int ) ; void (*dequeue_task)(struct rq * , struct task_struct * , int ) ; void (*yield_task)(struct rq * ) ; bool (*yield_to_task)(struct rq * , struct task_struct * , bool ) ; void (*check_preempt_curr)(struct rq * , struct task_struct * , int ) ; struct task_struct *(*pick_next_task)(struct rq * ) ; void (*put_prev_task)(struct rq * , struct task_struct * ) ; int (*select_task_rq)(struct task_struct * , int , int ) ; void (*pre_schedule)(struct rq * , struct task_struct * ) ; void (*post_schedule)(struct rq * ) ; void (*task_waking)(struct task_struct * ) ; void (*task_woken)(struct rq * , struct task_struct * ) ; void (*set_cpus_allowed)(struct task_struct * , struct cpumask const * ) ; void (*rq_online)(struct rq * ) ; void (*rq_offline)(struct rq * ) ; void (*set_curr_task)(struct rq * ) ; void (*task_tick)(struct rq * , struct task_struct * , int ) ; void (*task_fork)(struct task_struct * ) ; void (*switched_from)(struct rq * , struct task_struct * ) ; void (*switched_to)(struct rq * , struct task_struct * ) ; void (*prio_changed)(struct rq * , struct task_struct * , int ) ; unsigned int (*get_rr_interval)(struct rq * , struct task_struct * ) ; void (*task_move_group)(struct task_struct * , int ) ; }; struct load_weight { unsigned long weight ; unsigned long inv_weight ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned int time_slice ; int nr_cpus_allowed ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct files_struct; struct css_set; struct compat_robust_list_head; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct hlist_head preempt_notifiers ; unsigned char fpu_counter ; unsigned int policy ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char did_exec : 1 ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; unsigned char irq_thread : 1 ; pid_t pid ; pid_t tgid ; unsigned long stack_canary ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; cputime_t prev_utime ; cputime_t prev_stime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; struct cred *replacement_session_keyring ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct audit_context *audit_context ; uid_t loginuid ; unsigned int sessionid ; seccomp_t seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct plist_head pi_waiters ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; struct rcu_head rcu ; struct pipe_inode_info *splice_pipe ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; struct list_head *scm_work_list ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; atomic_t ptrace_bp_refcnt ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void *data ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct attribute { char const *name ; umode_t mode ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; void const *(*namespace)(struct kobject * , struct attribute const * ) ; }; struct sysfs_dirent; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct sysfs_dirent *sd ; struct kref kref ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct dma_map_ops; struct dev_archdata { void *acpi_handle ; struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct iommu_ops; struct bus_attribute { struct attribute attr ; ssize_t (*show)(struct bus_type * , char * ) ; ssize_t (*store)(struct bus_type * , char const * , size_t ) ; }; struct device_attribute; struct driver_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct bus_attribute *bus_attrs ; struct device_attribute *dev_attrs ; struct driver_attribute *drv_attrs ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct driver_attribute { struct attribute attr ; ssize_t (*show)(struct device_driver * , char * ) ; ssize_t (*store)(struct device_driver * , char const * , size_t ) ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct device_attribute *dev_attrs ; struct bin_attribute *dev_bin_attrs ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; void const *(*namespace)(struct class * , struct class_attribute const * ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long hit_count ; unsigned char active : 1 ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; }; struct proc_dir_entry; struct device_node { char const *name ; char const *type ; phandle phandle ; char *full_name ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct device_node *next ; struct device_node *allnext ; struct proc_dir_entry *pde ; struct kref kref ; unsigned long _flags ; void *data ; }; struct i2c_msg; struct i2c_algorithm; struct i2c_adapter; union i2c_smbus_data; struct i2c_algorithm { int (*master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; int (*smbus_xfer)(struct i2c_adapter * , u16 , unsigned short , char , u8 , int , union i2c_smbus_data * ) ; u32 (*functionality)(struct i2c_adapter * ) ; }; struct i2c_adapter { struct module *owner ; unsigned int class ; struct i2c_algorithm const *algo ; void *algo_data ; struct rt_mutex bus_lock ; int timeout ; int retries ; struct device dev ; int nr ; char name[48U] ; struct completion dev_released ; struct mutex userspace_clients_lock ; struct list_head userspace_clients ; }; struct i2c_msg { __u16 addr ; __u16 flags ; __u16 len ; __u8 *buf ; }; union i2c_smbus_data { __u8 byte ; __u16 word ; __u8 block[34U] ; }; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; uid_t uid ; gid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion_ldv_17969_163 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion_ldv_17969_163 ldv_17969 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct static_key { atomic_t enabled ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct kernel_symbol { unsigned long value ; char const *name ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; struct list_head source_list ; struct list_head target_list ; struct task_struct *waiter ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; int node ; unsigned int stat[26U] ; }; struct kmem_cache_node { spinlock_t list_lock ; unsigned long nr_partial ; struct list_head partial ; atomic_long_t nr_slabs ; atomic_long_t total_objects ; struct list_head full ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int objsize ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; enum fe_type { FE_QPSK = 0, FE_QAM = 1, FE_OFDM = 2, FE_ATSC = 3 } ; typedef enum fe_type fe_type_t; enum fe_caps { FE_IS_STUPID = 0, FE_CAN_INVERSION_AUTO = 1, FE_CAN_FEC_1_2 = 2, FE_CAN_FEC_2_3 = 4, FE_CAN_FEC_3_4 = 8, FE_CAN_FEC_4_5 = 16, FE_CAN_FEC_5_6 = 32, FE_CAN_FEC_6_7 = 64, FE_CAN_FEC_7_8 = 128, FE_CAN_FEC_8_9 = 256, FE_CAN_FEC_AUTO = 512, FE_CAN_QPSK = 1024, FE_CAN_QAM_16 = 2048, FE_CAN_QAM_32 = 4096, FE_CAN_QAM_64 = 8192, FE_CAN_QAM_128 = 16384, FE_CAN_QAM_256 = 32768, FE_CAN_QAM_AUTO = 65536, FE_CAN_TRANSMISSION_MODE_AUTO = 131072, FE_CAN_BANDWIDTH_AUTO = 262144, FE_CAN_GUARD_INTERVAL_AUTO = 524288, FE_CAN_HIERARCHY_AUTO = 1048576, FE_CAN_8VSB = 2097152, FE_CAN_16VSB = 4194304, FE_HAS_EXTENDED_CAPS = 8388608, FE_CAN_TURBO_FEC = 134217728, FE_CAN_2G_MODULATION = 268435456, FE_NEEDS_BENDING = 536870912, FE_CAN_RECOVER = 1073741824, FE_CAN_MUTE_TS = 2147483648L } ; typedef enum fe_caps fe_caps_t; struct dvb_frontend_info { char name[128U] ; fe_type_t type ; __u32 frequency_min ; __u32 frequency_max ; __u32 frequency_stepsize ; __u32 frequency_tolerance ; __u32 symbol_rate_min ; __u32 symbol_rate_max ; __u32 symbol_rate_tolerance ; __u32 notifier_delay ; fe_caps_t caps ; }; struct dvb_diseqc_master_cmd { __u8 msg[6U] ; __u8 msg_len ; }; struct dvb_diseqc_slave_reply { __u8 msg[4U] ; __u8 msg_len ; int timeout ; }; enum fe_sec_voltage { SEC_VOLTAGE_13 = 0, SEC_VOLTAGE_18 = 1, SEC_VOLTAGE_OFF = 2 } ; typedef enum fe_sec_voltage fe_sec_voltage_t; enum fe_sec_tone_mode { SEC_TONE_ON = 0, SEC_TONE_OFF = 1 } ; typedef enum fe_sec_tone_mode fe_sec_tone_mode_t; enum fe_sec_mini_cmd { SEC_MINI_A = 0, SEC_MINI_B = 1 } ; typedef enum fe_sec_mini_cmd fe_sec_mini_cmd_t; enum fe_status { FE_HAS_SIGNAL = 1, FE_HAS_CARRIER = 2, FE_HAS_VITERBI = 4, FE_HAS_SYNC = 8, FE_HAS_LOCK = 16, FE_TIMEDOUT = 32, FE_REINIT = 64 } ; typedef enum fe_status fe_status_t; enum fe_spectral_inversion { INVERSION_OFF = 0, INVERSION_ON = 1, INVERSION_AUTO = 2 } ; typedef enum fe_spectral_inversion fe_spectral_inversion_t; enum fe_code_rate { FEC_NONE = 0, FEC_1_2 = 1, FEC_2_3 = 2, FEC_3_4 = 3, FEC_4_5 = 4, FEC_5_6 = 5, FEC_6_7 = 6, FEC_7_8 = 7, FEC_8_9 = 8, FEC_AUTO = 9, FEC_3_5 = 10, FEC_9_10 = 11 } ; typedef enum fe_code_rate fe_code_rate_t; enum fe_modulation { QPSK = 0, QAM_16 = 1, QAM_32 = 2, QAM_64 = 3, QAM_128 = 4, QAM_256 = 5, QAM_AUTO = 6, VSB_8 = 7, VSB_16 = 8, PSK_8 = 9, APSK_16 = 10, APSK_32 = 11, DQPSK = 12 } ; typedef enum fe_modulation fe_modulation_t; enum fe_transmit_mode { TRANSMISSION_MODE_2K = 0, TRANSMISSION_MODE_8K = 1, TRANSMISSION_MODE_AUTO = 2, TRANSMISSION_MODE_4K = 3, TRANSMISSION_MODE_1K = 4, TRANSMISSION_MODE_16K = 5, TRANSMISSION_MODE_32K = 6 } ; typedef enum fe_transmit_mode fe_transmit_mode_t; enum fe_guard_interval { GUARD_INTERVAL_1_32 = 0, GUARD_INTERVAL_1_16 = 1, GUARD_INTERVAL_1_8 = 2, GUARD_INTERVAL_1_4 = 3, GUARD_INTERVAL_AUTO = 4, GUARD_INTERVAL_1_128 = 5, GUARD_INTERVAL_19_128 = 6, GUARD_INTERVAL_19_256 = 7 } ; typedef enum fe_guard_interval fe_guard_interval_t; enum fe_hierarchy { HIERARCHY_NONE = 0, HIERARCHY_1 = 1, HIERARCHY_2 = 2, HIERARCHY_4 = 3, HIERARCHY_AUTO = 4 } ; typedef enum fe_hierarchy fe_hierarchy_t; enum fe_pilot { PILOT_ON = 0, PILOT_OFF = 1, PILOT_AUTO = 2 } ; typedef enum fe_pilot fe_pilot_t; enum fe_rolloff { ROLLOFF_35 = 0, ROLLOFF_20 = 1, ROLLOFF_25 = 2, ROLLOFF_AUTO = 3 } ; typedef enum fe_rolloff fe_rolloff_t; enum fe_delivery_system { SYS_UNDEFINED = 0, SYS_DVBC_ANNEX_A = 1, SYS_DVBC_ANNEX_B = 2, SYS_DVBT = 3, SYS_DSS = 4, SYS_DVBS = 5, SYS_DVBS2 = 6, SYS_DVBH = 7, SYS_ISDBT = 8, SYS_ISDBS = 9, SYS_ISDBC = 10, SYS_ATSC = 11, SYS_ATSCMH = 12, SYS_DMBTH = 13, SYS_CMMB = 14, SYS_DAB = 15, SYS_DVBT2 = 16, SYS_TURBO = 17, SYS_DVBC_ANNEX_C = 18 } ; typedef enum fe_delivery_system fe_delivery_system_t; struct __anonstruct_buffer_165 { __u8 data[32U] ; __u32 len ; __u32 reserved1[3U] ; void *reserved2 ; }; union __anonunion_u_164 { __u32 data ; struct __anonstruct_buffer_165 buffer ; }; struct dtv_property { __u32 cmd ; __u32 reserved[3U] ; union __anonunion_u_164 u ; int result ; }; struct block_device; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct nameidata; struct path; struct vfsmount; struct qstr { unsigned int hash ; unsigned int len ; unsigned char const *name ; }; struct dentry_operations; struct super_block; union __anonunion_d_u_166 { struct list_head d_child ; struct rcu_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; unsigned int d_count ; spinlock_t d_lock ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct list_head d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , struct nameidata * ) ; int (*d_hash)(struct dentry const * , struct inode const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct inode const * , struct dentry const * , struct inode const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; }; struct shrinker { int (*shrink)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; struct list_head list ; atomic_long_t nr_in_batch ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct export_operations; struct poll_table_struct; struct kstatfs; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; uid_t ia_uid ; gid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct dquot; typedef __kernel_uid32_t qid_t; typedef long long qsize_t; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; unsigned int dq_id ; loff_t dq_off ; unsigned long dq_flags ; short dq_type ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , int , qid_t , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , int , qid_t , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct writeback_control; union __anonunion_arg_168 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_167 { size_t written ; size_t count ; union __anonunion_arg_168 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_167 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned long ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct prio_tree_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; struct address_space *assoc_mapping ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion_ldv_20125_169 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion_ldv_20144_170 { struct list_head i_dentry ; struct rcu_head i_rcu ; }; struct file_operations; struct file_lock; struct cdev; union __anonunion_ldv_20162_171 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; uid_t i_uid ; gid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion_ldv_20125_169 ldv_20125 ; dev_t i_rdev ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; blkcnt_t i_blocks ; loff_t i_size ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion_ldv_20144_170 ldv_20144 ; atomic_t i_count ; unsigned int i_blkbits ; u64 i_version ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion_ldv_20162_171 ldv_20162 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; uid_t uid ; uid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_172 { struct list_head fu_list ; struct rcu_head fu_rcuhead ; }; struct file { union __anonunion_f_u_172 f_u ; struct path f_path ; struct file_operations const *f_op ; spinlock_t f_lock ; int f_sb_list_cpu ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_release_private)(struct file_lock * ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_174 { struct list_head link ; int state ; }; union __anonunion_fl_u_173 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_174 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_173 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct rcu_head fa_rcu ; }; struct file_system_type; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_dirt ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; struct mutex s_lock ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head *s_files ; struct list_head s_mounts ; struct list_head s_dentry_lru ; int s_nr_dentry_unused ; spinlock_t s_inode_lru_lock ; struct list_head s_inode_lru ; int s_nr_inodes_unused ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; int s_frozen ; wait_queue_head_t s_wait_unfrozen ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*readdir)(struct file * , void * , int (*)(void * , char const * , int , loff_t , u64 , unsigned int ) ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , struct nameidata * ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , struct nameidata * ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; void (*truncate)(struct inode * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; void (*truncate_range)(struct inode * , loff_t , loff_t ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; void (*write_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; int (*nr_cached_objects)(struct super_block * ) ; void (*free_cached_objects)(struct super_block * , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct exception_table_entry { unsigned long insn ; unsigned long fixup ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct dvb_frontend; struct dvb_device; struct dvb_adapter { int num ; struct list_head list_head ; struct list_head device_list ; char const *name ; u8 proposed_mac[6U] ; void *priv ; struct device *device ; struct module *module ; int mfe_shared ; struct dvb_device *mfe_dvbdev ; struct mutex mfe_lock ; int (*fe_ioctl_override)(struct dvb_frontend * , unsigned int , void * , unsigned int ) ; }; struct dvb_device { struct list_head list_head ; struct file_operations const *fops ; struct dvb_adapter *adapter ; int type ; int minor ; u32 id ; int readers ; int writers ; int users ; wait_queue_head_t wait_queue ; int (*kernel_ioctl)(struct file * , unsigned int , void * ) ; void *priv ; }; struct dvb_frontend_tune_settings { int min_delay_ms ; int step_size ; int max_drift ; }; struct dvb_tuner_info { char name[128U] ; u32 frequency_min ; u32 frequency_max ; u32 frequency_step ; u32 bandwidth_min ; u32 bandwidth_max ; u32 bandwidth_step ; }; struct analog_parameters { unsigned int frequency ; unsigned int mode ; unsigned int audmode ; u64 std ; }; enum tuner_param { DVBFE_TUNER_FREQUENCY = 1, DVBFE_TUNER_TUNERSTEP = 2, DVBFE_TUNER_IFFREQ = 4, DVBFE_TUNER_BANDWIDTH = 8, DVBFE_TUNER_REFCLOCK = 16, DVBFE_TUNER_IQSENSE = 32, DVBFE_TUNER_DUMMY = (-0x7FFFFFFF-1) } ; enum dvbfe_algo { DVBFE_ALGO_HW = 1, DVBFE_ALGO_SW = 2, DVBFE_ALGO_CUSTOM = 4, DVBFE_ALGO_RECOVERY = (-0x7FFFFFFF-1) } ; struct tuner_state { u32 frequency ; u32 tunerstep ; u32 ifreq ; u32 bandwidth ; u32 iqsense ; u32 refclock ; }; enum dvbfe_search { DVBFE_ALGO_SEARCH_SUCCESS = 1, DVBFE_ALGO_SEARCH_ASLEEP = 2, DVBFE_ALGO_SEARCH_FAILED = 4, DVBFE_ALGO_SEARCH_INVALID = 8, DVBFE_ALGO_SEARCH_AGAIN = 16, DVBFE_ALGO_SEARCH_ERROR = (-0x7FFFFFFF-1) } ; struct dvb_tuner_ops { struct dvb_tuner_info info ; int (*release)(struct dvb_frontend * ) ; int (*init)(struct dvb_frontend * ) ; int (*sleep)(struct dvb_frontend * ) ; int (*set_params)(struct dvb_frontend * ) ; int (*set_analog_params)(struct dvb_frontend * , struct analog_parameters * ) ; int (*calc_regs)(struct dvb_frontend * , u8 * , int ) ; int (*set_config)(struct dvb_frontend * , void * ) ; int (*get_frequency)(struct dvb_frontend * , u32 * ) ; int (*get_bandwidth)(struct dvb_frontend * , u32 * ) ; int (*get_if_frequency)(struct dvb_frontend * , u32 * ) ; int (*get_status)(struct dvb_frontend * , u32 * ) ; int (*get_rf_strength)(struct dvb_frontend * , u16 * ) ; int (*set_frequency)(struct dvb_frontend * , u32 ) ; int (*set_bandwidth)(struct dvb_frontend * , u32 ) ; int (*set_state)(struct dvb_frontend * , enum tuner_param , struct tuner_state * ) ; int (*get_state)(struct dvb_frontend * , enum tuner_param , struct tuner_state * ) ; }; struct analog_demod_info { char *name ; }; struct analog_demod_ops { struct analog_demod_info info ; void (*set_params)(struct dvb_frontend * , struct analog_parameters * ) ; int (*has_signal)(struct dvb_frontend * ) ; int (*get_afc)(struct dvb_frontend * ) ; void (*tuner_status)(struct dvb_frontend * ) ; void (*standby)(struct dvb_frontend * ) ; void (*release)(struct dvb_frontend * ) ; int (*i2c_gate_ctrl)(struct dvb_frontend * , int ) ; int (*set_config)(struct dvb_frontend * , void * ) ; }; struct dtv_frontend_properties; struct dvb_frontend_ops { struct dvb_frontend_info info ; u8 delsys[8U] ; void (*release)(struct dvb_frontend * ) ; void (*release_sec)(struct dvb_frontend * ) ; int (*init)(struct dvb_frontend * ) ; int (*sleep)(struct dvb_frontend * ) ; int (*write)(struct dvb_frontend * , u8 const * , int ) ; int (*tune)(struct dvb_frontend * , bool , unsigned int , unsigned int * , fe_status_t * ) ; enum dvbfe_algo (*get_frontend_algo)(struct dvb_frontend * ) ; int (*set_frontend)(struct dvb_frontend * ) ; int (*get_tune_settings)(struct dvb_frontend * , struct dvb_frontend_tune_settings * ) ; int (*get_frontend)(struct dvb_frontend * ) ; int (*read_status)(struct dvb_frontend * , fe_status_t * ) ; int (*read_ber)(struct dvb_frontend * , u32 * ) ; int (*read_signal_strength)(struct dvb_frontend * , u16 * ) ; int (*read_snr)(struct dvb_frontend * , u16 * ) ; int (*read_ucblocks)(struct dvb_frontend * , u32 * ) ; int (*diseqc_reset_overload)(struct dvb_frontend * ) ; int (*diseqc_send_master_cmd)(struct dvb_frontend * , struct dvb_diseqc_master_cmd * ) ; int (*diseqc_recv_slave_reply)(struct dvb_frontend * , struct dvb_diseqc_slave_reply * ) ; int (*diseqc_send_burst)(struct dvb_frontend * , fe_sec_mini_cmd_t ) ; int (*set_tone)(struct dvb_frontend * , fe_sec_tone_mode_t ) ; int (*set_voltage)(struct dvb_frontend * , fe_sec_voltage_t ) ; int (*enable_high_lnb_voltage)(struct dvb_frontend * , long ) ; int (*dishnetwork_send_legacy_command)(struct dvb_frontend * , unsigned long ) ; int (*i2c_gate_ctrl)(struct dvb_frontend * , int ) ; int (*ts_bus_ctrl)(struct dvb_frontend * , int ) ; enum dvbfe_search (*search)(struct dvb_frontend * ) ; struct dvb_tuner_ops tuner_ops ; struct analog_demod_ops analog_ops ; int (*set_property)(struct dvb_frontend * , struct dtv_property * ) ; int (*get_property)(struct dvb_frontend * , struct dtv_property * ) ; }; struct __anonstruct_layer_176 { u8 segment_count ; fe_code_rate_t fec ; fe_modulation_t modulation ; u8 interleaving ; }; struct dtv_frontend_properties { u32 state ; u32 frequency ; fe_modulation_t modulation ; fe_sec_voltage_t voltage ; fe_sec_tone_mode_t sectone ; fe_spectral_inversion_t inversion ; fe_code_rate_t fec_inner ; fe_transmit_mode_t transmission_mode ; u32 bandwidth_hz ; fe_guard_interval_t guard_interval ; fe_hierarchy_t hierarchy ; u32 symbol_rate ; fe_code_rate_t code_rate_HP ; fe_code_rate_t code_rate_LP ; fe_pilot_t pilot ; fe_rolloff_t rolloff ; fe_delivery_system_t delivery_system ; u8 isdbt_partial_reception ; u8 isdbt_sb_mode ; u8 isdbt_sb_subchannel ; u32 isdbt_sb_segment_idx ; u32 isdbt_sb_segment_count ; u8 isdbt_layer_enabled ; struct __anonstruct_layer_176 layer[3U] ; u32 isdbs_ts_id ; u32 dvbt2_plp_id ; }; struct dvb_frontend { struct dvb_frontend_ops ops ; struct dvb_adapter *dvb ; void *demodulator_priv ; void *tuner_priv ; void *frontend_priv ; void *sec_priv ; void *analog_demod_priv ; struct dtv_frontend_properties dtv_property_cache ; int (*callback)(void * , int , int , int ) ; int id ; }; struct cxd2820r_config { u8 i2c_address ; u8 ts_mode ; bool if_agc_polarity ; bool spec_inv ; u8 gpio_dvbt[3U] ; u8 gpio_dvbt2[3U] ; u8 gpio_dvbc[3U] ; }; struct cxd2820r_priv { struct i2c_adapter *i2c ; struct dvb_frontend fe ; struct cxd2820r_config cfg ; bool ber_running ; u8 bank[2U] ; u8 gpio[3U] ; fe_delivery_system_t delivery_system ; bool last_tune_failed ; }; typedef int ldv_func_ret_type___2; enum hrtimer_restart; struct reg_val_mask { u32 reg ; u8 val ; u8 mask ; }; enum hrtimer_restart; enum hrtimer_restart; void *memcpy(void * , void const * , unsigned long ) ; void *__builtin_alloca(unsigned long ) ; extern int printk(char const * , ...) ; extern void *memcpy(void * , void const * , size_t ) ; extern int memcmp(void const * , void const * , size_t ) ; __inline static u64 div_u64_rem(u64 dividend , u32 divisor , u32 *remainder ) { { *remainder = (u32 )(dividend % (u64 )divisor); return (dividend / (u64 )divisor); } } __inline static u64 div_u64(u64 dividend , u32 divisor ) { u32 remainder ; u64 tmp ; { tmp = div_u64_rem(dividend, divisor, & remainder); return (tmp); } } extern int mutex_trylock(struct mutex * ) ; int ldv_mutex_trylock_4(struct mutex *ldv_func_arg1 ) ; extern void mutex_unlock(struct mutex * ) ; void ldv_mutex_unlock_2(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_5(struct mutex *ldv_func_arg1 ) ; extern void mutex_lock(struct mutex * ) ; void ldv_mutex_lock_1(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_3(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_cred_guard_mutex_of_signal_struct(struct mutex *lock ) ; void ldv_mutex_unlock_cred_guard_mutex_of_signal_struct(struct mutex *lock ) ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) ; int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) ; extern int i2c_transfer(struct i2c_adapter * , struct i2c_msg * , int ) ; extern void msleep(unsigned int ) ; extern void kfree(void const * ) ; extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { tmp___2 = __kmalloc(size, flags); return (tmp___2); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } struct dvb_frontend *cxd2820r_attach(struct cxd2820r_config const *cfg , struct i2c_adapter *i2c ) ; int cxd2820r_debug ; int cxd2820r_gpio(struct dvb_frontend *fe ) ; int cxd2820r_wr_reg_mask(struct cxd2820r_priv *priv , u32 reg , u8 val , u8 mask ) ; int cxd2820r_wr_regs(struct cxd2820r_priv *priv , u32 reginfo , u8 *val , int len ) ; u32 cxd2820r_div_u64_round_closest(u64 dividend , u32 divisor ) ; int cxd2820r_rd_regs(struct cxd2820r_priv *priv , u32 reginfo , u8 *val , int len ) ; int cxd2820r_wr_reg(struct cxd2820r_priv *priv , u32 reg , u8 val ) ; int cxd2820r_rd_reg(struct cxd2820r_priv *priv , u32 reg , u8 *val ) ; int cxd2820r_get_frontend_c(struct dvb_frontend *fe ) ; int cxd2820r_set_frontend_c(struct dvb_frontend *fe ) ; int cxd2820r_read_status_c(struct dvb_frontend *fe , fe_status_t *status ) ; int cxd2820r_read_ber_c(struct dvb_frontend *fe , u32 *ber ) ; int cxd2820r_read_signal_strength_c(struct dvb_frontend *fe , u16 *strength ) ; int cxd2820r_read_snr_c(struct dvb_frontend *fe , u16 *snr ) ; int cxd2820r_read_ucblocks_c(struct dvb_frontend *fe , u32 *ucblocks ) ; int cxd2820r_init_c(struct dvb_frontend *fe ) ; int cxd2820r_sleep_c(struct dvb_frontend *fe ) ; int cxd2820r_get_tune_settings_c(struct dvb_frontend *fe , struct dvb_frontend_tune_settings *s ) ; int cxd2820r_get_frontend_t(struct dvb_frontend *fe ) ; int cxd2820r_set_frontend_t(struct dvb_frontend *fe ) ; int cxd2820r_read_status_t(struct dvb_frontend *fe , fe_status_t *status ) ; int cxd2820r_read_ber_t(struct dvb_frontend *fe , u32 *ber ) ; int cxd2820r_read_signal_strength_t(struct dvb_frontend *fe , u16 *strength ) ; int cxd2820r_read_snr_t(struct dvb_frontend *fe , u16 *snr ) ; int cxd2820r_read_ucblocks_t(struct dvb_frontend *fe , u32 *ucblocks ) ; int cxd2820r_init_t(struct dvb_frontend *fe ) ; int cxd2820r_sleep_t(struct dvb_frontend *fe ) ; int cxd2820r_get_tune_settings_t(struct dvb_frontend *fe , struct dvb_frontend_tune_settings *s ) ; int cxd2820r_get_frontend_t2(struct dvb_frontend *fe ) ; int cxd2820r_set_frontend_t2(struct dvb_frontend *fe ) ; int cxd2820r_read_status_t2(struct dvb_frontend *fe , fe_status_t *status ) ; int cxd2820r_read_ber_t2(struct dvb_frontend *fe , u32 *ber ) ; int cxd2820r_read_signal_strength_t2(struct dvb_frontend *fe , u16 *strength ) ; int cxd2820r_read_snr_t2(struct dvb_frontend *fe , u16 *snr ) ; int cxd2820r_read_ucblocks_t2(struct dvb_frontend *fe , u32 *ucblocks ) ; int cxd2820r_sleep_t2(struct dvb_frontend *fe ) ; int cxd2820r_get_tune_settings_t2(struct dvb_frontend *fe , struct dvb_frontend_tune_settings *s ) ; static int cxd2820r_wr_regs_i2c(struct cxd2820r_priv *priv , u8 i2c , u8 reg , u8 *val , int len ) { int ret ; u8 *buf ; unsigned long __lengthofbuf ; void *tmp ; struct i2c_msg msg[1U] ; size_t __len ; void *__ret ; { __lengthofbuf = (unsigned long )((long )(len + 1) + 0L); tmp = __builtin_alloca(sizeof(*buf) * __lengthofbuf); buf = (u8 *)tmp; msg[0].addr = (unsigned short )i2c; msg[0].flags = 0U; msg[0].len = (unsigned short )(len + 1); msg[0].buf = (__u8 *)(& buf); *(buf + 0) = reg; __len = (size_t )len; __ret = memcpy((void *)(& buf) + 1U, (void const *)val, __len); ret = i2c_transfer(priv->i2c, (struct i2c_msg *)(& msg), 1); if (ret == 1) { ret = 0; } else { printk("<4>cxd2820r: i2c wr failed ret:%d reg:%02x len:%d\n", ret, (int )reg, len); ret = -121; } return (ret); } } static int cxd2820r_rd_regs_i2c(struct cxd2820r_priv *priv , u8 i2c , u8 reg , u8 *val , int len ) { int ret ; u8 *buf ; unsigned long __lengthofbuf ; void *tmp ; struct i2c_msg msg[2U] ; size_t __len ; void *__ret ; { __lengthofbuf = (unsigned long )((long )len + 0L); tmp = __builtin_alloca(sizeof(*buf) * __lengthofbuf); buf = (u8 *)tmp; msg[0].addr = (unsigned short )i2c; msg[0].flags = 0U; msg[0].len = 1U; msg[0].buf = & reg; msg[1].addr = (unsigned short )i2c; msg[1].flags = 1U; msg[1].len = (unsigned short )len; msg[1].buf = (__u8 *)(& buf); ret = i2c_transfer(priv->i2c, (struct i2c_msg *)(& msg), 2); if (ret == 2) { __len = (size_t )len; __ret = memcpy((void *)val, (void const *)(& buf), __len); ret = 0; } else { printk("<4>cxd2820r: i2c rd failed ret:%d reg:%02x len:%d\n", ret, (int )reg, len); ret = -121; } return (ret); } } int cxd2820r_wr_regs(struct cxd2820r_priv *priv , u32 reginfo , u8 *val , int len ) { int ret ; u8 i2c_addr ; u8 reg ; u8 bank ; u8 i2c ; int tmp ; { reg = (u8 )reginfo; bank = (u8 )(reginfo >> 8); i2c = (unsigned int )((u8 )(reginfo >> 16)) & 1U; if ((unsigned int )i2c != 0U) { i2c_addr = (u8 )((unsigned int )priv->cfg.i2c_address | 2U); } else { i2c_addr = priv->cfg.i2c_address; } if ((int )priv->bank[(int )i2c] != (int )bank) { ret = cxd2820r_wr_regs_i2c(priv, (int )i2c_addr, 0, & bank, 1); if (ret != 0) { return (ret); } else { } priv->bank[(int )i2c] = bank; } else { } tmp = cxd2820r_wr_regs_i2c(priv, (int )i2c_addr, (int )reg, val, len); return (tmp); } } int cxd2820r_rd_regs(struct cxd2820r_priv *priv , u32 reginfo , u8 *val , int len ) { int ret ; u8 i2c_addr ; u8 reg ; u8 bank ; u8 i2c ; int tmp ; { reg = (u8 )reginfo; bank = (u8 )(reginfo >> 8); i2c = (unsigned int )((u8 )(reginfo >> 16)) & 1U; if ((unsigned int )i2c != 0U) { i2c_addr = (u8 )((unsigned int )priv->cfg.i2c_address | 2U); } else { i2c_addr = priv->cfg.i2c_address; } if ((int )priv->bank[(int )i2c] != (int )bank) { ret = cxd2820r_wr_regs_i2c(priv, (int )i2c_addr, 0, & bank, 1); if (ret != 0) { return (ret); } else { } priv->bank[(int )i2c] = bank; } else { } tmp = cxd2820r_rd_regs_i2c(priv, (int )i2c_addr, (int )reg, val, len); return (tmp); } } int cxd2820r_wr_reg(struct cxd2820r_priv *priv , u32 reg , u8 val ) { int tmp ; { tmp = cxd2820r_wr_regs(priv, reg, & val, 1); return (tmp); } } int cxd2820r_rd_reg(struct cxd2820r_priv *priv , u32 reg , u8 *val ) { int tmp ; { tmp = cxd2820r_rd_regs(priv, reg, val, 1); return (tmp); } } int cxd2820r_wr_reg_mask(struct cxd2820r_priv *priv , u32 reg , u8 val , u8 mask ) { int ret ; u8 tmp ; int tmp___0 ; { if ((unsigned int )mask != 255U) { ret = cxd2820r_rd_reg(priv, reg, & tmp); if (ret != 0) { return (ret); } else { } val = (u8 )((int )val & (int )mask); tmp = (u8 )(~ ((int )((signed char )mask)) & (int )((signed char )tmp)); val = (u8 )((int )val | (int )tmp); } else { } tmp___0 = cxd2820r_wr_reg(priv, reg, (int )val); return (tmp___0); } } int cxd2820r_gpio(struct dvb_frontend *fe ) { struct cxd2820r_priv *priv ; int ret ; int i ; u8 *gpio ; u8 tmp0 ; u8 tmp1 ; int tmp ; size_t __len ; void *__ret ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: delsys=%d\n", "cxd2820r_gpio", (unsigned int )fe->dtv_property_cache.delivery_system); } else { } switch ((unsigned int )fe->dtv_property_cache.delivery_system) { case 3U: gpio = (u8 *)(& priv->cfg.gpio_dvbt); goto ldv_22890; case 16U: gpio = (u8 *)(& priv->cfg.gpio_dvbt2); goto ldv_22890; case 1U: gpio = (u8 *)(& priv->cfg.gpio_dvbc); goto ldv_22890; default: ret = -22; goto error; } ldv_22890: tmp = memcmp((void const *)gpio, (void const *)(& priv->gpio), 3UL); if (tmp == 0) { return (0); } else { } tmp0 = 0U; tmp1 = 0U; i = 0; goto ldv_22896; ldv_22895: ; if ((int )*(gpio + (unsigned long )i) & 1) { tmp0 = (u8 )((int )((signed char )(128 >> i * 2)) | (int )((signed char )tmp0)); } else { tmp0 = (u8 )((int )((signed char )(64 >> i * 2)) | (int )((signed char )tmp0)); } if (((int )*(gpio + (unsigned long )i) & 2) != 0) { tmp1 = (u8 )((int )((signed char )(1 << (i + 3))) | (int )((signed char )tmp1)); } else { tmp1 = tmp1; } if (((int )*(gpio + (unsigned long )i) & 4) != 0) { tmp1 = (u8 )((int )((signed char )(1 << i)) | (int )((signed char )tmp1)); } else { tmp1 = tmp1; } if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: GPIO i=%d %02x %02x\n", "cxd2820r_gpio", i, (int )tmp0, (int )tmp1); } else { } i = i + 1; ldv_22896: ; if ((unsigned int )i <= 2U) { goto ldv_22895; } else { } if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: wr gpio=%02x %02x\n", "cxd2820r_gpio", (int )tmp0, (int )tmp1); } else { } ret = cxd2820r_wr_reg_mask(priv, 137U, (int )tmp0, 252); if (ret != 0) { goto error; } else { } ret = cxd2820r_wr_reg_mask(priv, 142U, (int )tmp1, 63); if (ret != 0) { goto error; } else { } __len = 3UL; if (__len > 63UL) { __ret = memcpy((void *)(& priv->gpio), (void const *)gpio, __len); } else { __ret = memcpy((void *)(& priv->gpio), (void const *)gpio, __len); } return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_gpio", ret); } else { } return (ret); } } u32 cxd2820r_div_u64_round_closest(u64 dividend , u32 divisor ) { u64 tmp ; { tmp = div_u64((u64 )(divisor / 2U) + dividend, divisor); return ((u32 )tmp); } } static int cxd2820r_set_frontend(struct dvb_frontend *fe ) { struct dtv_frontend_properties *c ; int ret ; { c = & fe->dtv_property_cache; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: delsys=%d\n", "cxd2820r_set_frontend", (unsigned int )fe->dtv_property_cache.delivery_system); } else { } switch ((unsigned int )c->delivery_system) { case 3U: ret = cxd2820r_init_t(fe); if (ret < 0) { goto err; } else { } ret = cxd2820r_set_frontend_t(fe); if (ret < 0) { goto err; } else { } goto ldv_22913; case 16U: ret = cxd2820r_init_t(fe); if (ret < 0) { goto err; } else { } ret = cxd2820r_set_frontend_t2(fe); if (ret < 0) { goto err; } else { } goto ldv_22913; case 1U: ret = cxd2820r_init_c(fe); if (ret < 0) { goto err; } else { } ret = cxd2820r_set_frontend_c(fe); if (ret < 0) { goto err; } else { } goto ldv_22913; default: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: error state=%d\n", "cxd2820r_set_frontend", (unsigned int )fe->dtv_property_cache.delivery_system); } else { } ret = -22; goto ldv_22913; } ldv_22913: ; err: ; return (ret); } } static int cxd2820r_read_status(struct dvb_frontend *fe , fe_status_t *status ) { int ret ; { if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: delsys=%d\n", "cxd2820r_read_status", (unsigned int )fe->dtv_property_cache.delivery_system); } else { } switch ((unsigned int )fe->dtv_property_cache.delivery_system) { case 3U: ret = cxd2820r_read_status_t(fe, status); goto ldv_22924; case 16U: ret = cxd2820r_read_status_t2(fe, status); goto ldv_22924; case 1U: ret = cxd2820r_read_status_c(fe, status); goto ldv_22924; default: ret = -22; goto ldv_22924; } ldv_22924: ; return (ret); } } static int cxd2820r_get_frontend(struct dvb_frontend *fe ) { struct cxd2820r_priv *priv ; int ret ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: delsys=%d\n", "cxd2820r_get_frontend", (unsigned int )fe->dtv_property_cache.delivery_system); } else { } if ((unsigned int )priv->delivery_system == 0U) { return (0); } else { } switch ((unsigned int )fe->dtv_property_cache.delivery_system) { case 3U: ret = cxd2820r_get_frontend_t(fe); goto ldv_22935; case 16U: ret = cxd2820r_get_frontend_t2(fe); goto ldv_22935; case 1U: ret = cxd2820r_get_frontend_c(fe); goto ldv_22935; default: ret = -22; goto ldv_22935; } ldv_22935: ; return (ret); } } static int cxd2820r_read_ber(struct dvb_frontend *fe , u32 *ber ) { int ret ; { if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: delsys=%d\n", "cxd2820r_read_ber", (unsigned int )fe->dtv_property_cache.delivery_system); } else { } switch ((unsigned int )fe->dtv_property_cache.delivery_system) { case 3U: ret = cxd2820r_read_ber_t(fe, ber); goto ldv_22946; case 16U: ret = cxd2820r_read_ber_t2(fe, ber); goto ldv_22946; case 1U: ret = cxd2820r_read_ber_c(fe, ber); goto ldv_22946; default: ret = -22; goto ldv_22946; } ldv_22946: ; return (ret); } } static int cxd2820r_read_signal_strength(struct dvb_frontend *fe , u16 *strength ) { int ret ; { if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: delsys=%d\n", "cxd2820r_read_signal_strength", (unsigned int )fe->dtv_property_cache.delivery_system); } else { } switch ((unsigned int )fe->dtv_property_cache.delivery_system) { case 3U: ret = cxd2820r_read_signal_strength_t(fe, strength); goto ldv_22957; case 16U: ret = cxd2820r_read_signal_strength_t2(fe, strength); goto ldv_22957; case 1U: ret = cxd2820r_read_signal_strength_c(fe, strength); goto ldv_22957; default: ret = -22; goto ldv_22957; } ldv_22957: ; return (ret); } } static int cxd2820r_read_snr(struct dvb_frontend *fe , u16 *snr ) { int ret ; { if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: delsys=%d\n", "cxd2820r_read_snr", (unsigned int )fe->dtv_property_cache.delivery_system); } else { } switch ((unsigned int )fe->dtv_property_cache.delivery_system) { case 3U: ret = cxd2820r_read_snr_t(fe, snr); goto ldv_22968; case 16U: ret = cxd2820r_read_snr_t2(fe, snr); goto ldv_22968; case 1U: ret = cxd2820r_read_snr_c(fe, snr); goto ldv_22968; default: ret = -22; goto ldv_22968; } ldv_22968: ; return (ret); } } static int cxd2820r_read_ucblocks(struct dvb_frontend *fe , u32 *ucblocks ) { int ret ; { if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: delsys=%d\n", "cxd2820r_read_ucblocks", (unsigned int )fe->dtv_property_cache.delivery_system); } else { } switch ((unsigned int )fe->dtv_property_cache.delivery_system) { case 3U: ret = cxd2820r_read_ucblocks_t(fe, ucblocks); goto ldv_22979; case 16U: ret = cxd2820r_read_ucblocks_t2(fe, ucblocks); goto ldv_22979; case 1U: ret = cxd2820r_read_ucblocks_c(fe, ucblocks); goto ldv_22979; default: ret = -22; goto ldv_22979; } ldv_22979: ; return (ret); } } static int cxd2820r_init(struct dvb_frontend *fe ) { { return (0); } } static int cxd2820r_sleep(struct dvb_frontend *fe ) { int ret ; { if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: delsys=%d\n", "cxd2820r_sleep", (unsigned int )fe->dtv_property_cache.delivery_system); } else { } switch ((unsigned int )fe->dtv_property_cache.delivery_system) { case 3U: ret = cxd2820r_sleep_t(fe); goto ldv_22992; case 16U: ret = cxd2820r_sleep_t2(fe); goto ldv_22992; case 1U: ret = cxd2820r_sleep_c(fe); goto ldv_22992; default: ret = -22; goto ldv_22992; } ldv_22992: ; return (ret); } } static int cxd2820r_get_tune_settings(struct dvb_frontend *fe , struct dvb_frontend_tune_settings *s ) { int ret ; { if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: delsys=%d\n", "cxd2820r_get_tune_settings", (unsigned int )fe->dtv_property_cache.delivery_system); } else { } switch ((unsigned int )fe->dtv_property_cache.delivery_system) { case 3U: ret = cxd2820r_get_tune_settings_t(fe, s); goto ldv_23003; case 16U: ret = cxd2820r_get_tune_settings_t2(fe, s); goto ldv_23003; case 1U: ret = cxd2820r_get_tune_settings_c(fe, s); goto ldv_23003; default: ret = -22; goto ldv_23003; } ldv_23003: ; return (ret); } } static enum dvbfe_search cxd2820r_search(struct dvb_frontend *fe ) { struct cxd2820r_priv *priv ; struct dtv_frontend_properties *c ; int ret ; int i ; fe_status_t status ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; c = & fe->dtv_property_cache; status = 0; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: delsys=%d\n", "cxd2820r_search", (unsigned int )fe->dtv_property_cache.delivery_system); } else { } if ((int )priv->last_tune_failed) { if ((unsigned int )priv->delivery_system == 3U) { ret = cxd2820r_sleep_t(fe); if (ret != 0) { goto error; } else { } c->delivery_system = SYS_DVBT2; } else if ((unsigned int )priv->delivery_system == 16U) { ret = cxd2820r_sleep_t2(fe); if (ret != 0) { goto error; } else { } c->delivery_system = SYS_DVBT; } else { } } else { } ret = cxd2820r_set_frontend(fe); if (ret != 0) { goto error; } else { } switch ((unsigned int )priv->delivery_system) { case 3U: ; case 1U: i = 20; goto ldv_23019; case 16U: i = 40; goto ldv_23019; case 0U: ; default: i = 0; goto ldv_23019; } ldv_23019: ; goto ldv_23025; ldv_23024: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: LOOP=%d\n", "cxd2820r_search", i); } else { } msleep(50U); ret = cxd2820r_read_status(fe, & status); if (ret != 0) { goto error; } else { } if (((unsigned int )status & 16U) != 0U) { goto ldv_23023; } else { } i = i - 1; ldv_23025: ; if (i > 0) { goto ldv_23024; } else { } ldv_23023: ; if (((unsigned int )status & 16U) != 0U) { priv->last_tune_failed = 0; return (DVBFE_ALGO_SEARCH_SUCCESS); } else { priv->last_tune_failed = 1; return (DVBFE_ALGO_SEARCH_AGAIN); } error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_search", ret); } else { } return (DVBFE_ALGO_SEARCH_ERROR); } } static int cxd2820r_get_frontend_algo(struct dvb_frontend *fe ) { { return (4); } } static void cxd2820r_release(struct dvb_frontend *fe ) { struct cxd2820r_priv *priv ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s\n", "cxd2820r_release"); } else { } kfree((void const *)priv); return; } } static int cxd2820r_i2c_gate_ctrl(struct dvb_frontend *fe , int enable ) { struct cxd2820r_priv *priv ; int tmp ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: %d\n", "cxd2820r_i2c_gate_ctrl", enable); } else { } tmp = cxd2820r_wr_reg_mask(priv, 219U, enable != 0, 1); return (tmp); } } static struct dvb_frontend_ops const cxd2820r_ops = {{{'S', 'o', 'n', 'y', ' ', 'C', 'X', 'D', '2', '8', '2', '0', 'R', '\000'}, 0, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 2417753774U}, {3U, 16U, 1U}, & cxd2820r_release, 0, & cxd2820r_init, & cxd2820r_sleep, 0, 0, (enum dvbfe_algo (*)(struct dvb_frontend * ))(& cxd2820r_get_frontend_algo), 0, & cxd2820r_get_tune_settings, & cxd2820r_get_frontend, & cxd2820r_read_status, & cxd2820r_read_ber, & cxd2820r_read_signal_strength, & cxd2820r_read_snr, & cxd2820r_read_ucblocks, 0, 0, 0, 0, 0, 0, 0, 0, & cxd2820r_i2c_gate_ctrl, 0, & cxd2820r_search, {{{(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0U, 0U, 0U, 0U, 0U, 0U}, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{0}, 0, 0, 0, 0, 0, 0, 0, 0}, 0, 0}; struct dvb_frontend *cxd2820r_attach(struct cxd2820r_config const *cfg , struct i2c_adapter *i2c ) { struct cxd2820r_priv *priv ; int ret ; u8 tmp ; void *tmp___0 ; size_t __len ; void *__ret ; u8 tmp___1 ; size_t __len___0 ; void *__ret___0 ; { priv = 0; tmp___0 = kzalloc(1000UL, 208U); priv = (struct cxd2820r_priv *)tmp___0; if ((unsigned long )priv == (unsigned long )((struct cxd2820r_priv *)0)) { goto error; } else { } priv->i2c = i2c; __len = 13UL; if (__len > 63UL) { __ret = memcpy((void *)(& priv->cfg), (void const *)cfg, __len); } else { __ret = memcpy((void *)(& priv->cfg), (void const *)cfg, __len); } tmp___1 = 255U; priv->bank[1] = tmp___1; priv->bank[0] = tmp___1; ret = cxd2820r_rd_reg(priv, 253U, & tmp); if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: chip id=%02x\n", "cxd2820r_attach", (int )tmp); } else { } if (ret != 0 || (unsigned int )tmp != 225U) { goto error; } else { } __len___0 = 752UL; if (__len___0 > 63UL) { __ret___0 = memcpy((void *)(& priv->fe.ops), (void const *)(& cxd2820r_ops), __len___0); } else { __ret___0 = memcpy((void *)(& priv->fe.ops), (void const *)(& cxd2820r_ops), __len___0); } priv->fe.demodulator_priv = (void *)priv; return (& priv->fe); error: kfree((void const *)priv); return (0); } } void ldv_check_final_state(void) ; void ldv_initialize(void) ; extern void ldv_handler_precall(void) ; extern int nondet_int(void) ; int LDV_IN_INTERRUPT ; int main(void) { struct dvb_frontend *var_group1 ; struct dvb_frontend_tune_settings *var_group2 ; int var_cxd2820r_i2c_gate_ctrl_22_p1 ; fe_status_t *var_cxd2820r_read_status_10_p1 ; u16 *var_cxd2820r_read_snr_14_p1 ; u32 *var_cxd2820r_read_ber_12_p1 ; u32 *var_cxd2820r_read_ucblocks_15_p1 ; u16 *var_cxd2820r_read_signal_strength_13_p1 ; int ldv_s_cxd2820r_ops_dvb_frontend_ops ; int tmp ; int tmp___0 ; { ldv_s_cxd2820r_ops_dvb_frontend_ops = 0; LDV_IN_INTERRUPT = 1; ldv_initialize(); goto ldv_23107; ldv_23106: tmp = nondet_int(); switch (tmp) { case 0: ; if (ldv_s_cxd2820r_ops_dvb_frontend_ops == 0) { ldv_handler_precall(); cxd2820r_release(var_group1); ldv_s_cxd2820r_ops_dvb_frontend_ops = 0; } else { } goto ldv_23092; case 1: ldv_handler_precall(); cxd2820r_init(var_group1); goto ldv_23092; case 2: ldv_handler_precall(); cxd2820r_sleep(var_group1); goto ldv_23092; case 3: ldv_handler_precall(); cxd2820r_get_tune_settings(var_group1, var_group2); goto ldv_23092; case 4: ldv_handler_precall(); cxd2820r_i2c_gate_ctrl(var_group1, var_cxd2820r_i2c_gate_ctrl_22_p1); goto ldv_23092; case 5: ldv_handler_precall(); cxd2820r_get_frontend(var_group1); goto ldv_23092; case 6: ldv_handler_precall(); cxd2820r_get_frontend_algo(var_group1); goto ldv_23092; case 7: ldv_handler_precall(); cxd2820r_search(var_group1); goto ldv_23092; case 8: ldv_handler_precall(); cxd2820r_read_status(var_group1, var_cxd2820r_read_status_10_p1); goto ldv_23092; case 9: ldv_handler_precall(); cxd2820r_read_snr(var_group1, var_cxd2820r_read_snr_14_p1); goto ldv_23092; case 10: ldv_handler_precall(); cxd2820r_read_ber(var_group1, var_cxd2820r_read_ber_12_p1); goto ldv_23092; case 11: ldv_handler_precall(); cxd2820r_read_ucblocks(var_group1, var_cxd2820r_read_ucblocks_15_p1); goto ldv_23092; case 12: ldv_handler_precall(); cxd2820r_read_signal_strength(var_group1, var_cxd2820r_read_signal_strength_13_p1); goto ldv_23092; default: ; goto ldv_23092; } ldv_23092: ; ldv_23107: tmp___0 = nondet_int(); if (tmp___0 != 0 || ldv_s_cxd2820r_ops_dvb_frontend_ops != 0) { goto ldv_23106; } else { } ldv_check_final_state(); return 0; } } void ldv_mutex_lock_1(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_cred_guard_mutex_of_signal_struct(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_2(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_cred_guard_mutex_of_signal_struct(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_3(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_4(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_5(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } int ldv_mutex_trylock_14(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_12(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_11(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_13(struct mutex *ldv_func_arg1 ) ; extern unsigned int intlog2(u32 ) ; int cxd2820r_set_frontend_c(struct dvb_frontend *fe ) { struct cxd2820r_priv *priv ; struct dtv_frontend_properties *c ; int ret ; int i ; u8 buf[2U] ; u32 if_freq ; u16 if_ctl ; u64 num ; struct reg_val_mask tab[13U] ; u32 tmp ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; c = & fe->dtv_property_cache; tab[0].reg = 128U; tab[0].val = 1U; tab[0].mask = 255U; tab[1].reg = 129U; tab[1].val = 5U; tab[1].mask = 255U; tab[2].reg = 133U; tab[2].val = 7U; tab[2].mask = 255U; tab[3].reg = 136U; tab[3].val = 1U; tab[3].mask = 255U; tab[4].reg = 130U; tab[4].val = 32U; tab[4].mask = 96U; tab[5].reg = 65898U; tab[5].val = 72U; tab[5].mask = 255U; tab[6].reg = 65701U; tab[6].val = 0U; tab[6].mask = 1U; tab[7].reg = 65568U; tab[7].val = 6U; tab[7].mask = 7U; tab[8].reg = 65625U; tab[8].val = 80U; tab[8].mask = 255U; tab[9].reg = 65671U; tab[9].val = 12U; tab[9].mask = 60U; tab[10].reg = 65675U; tab[10].val = 7U; tab[10].mask = 255U; tab[11].reg = 65567U; tab[11].val = (int )((unsigned char )priv->cfg.if_agc_polarity) << 7U; tab[11].mask = 128U; tab[12].reg = 65648U; tab[12].val = priv->cfg.ts_mode; tab[12].mask = 255U; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: RF=%d SR=%d\n", "cxd2820r_set_frontend_c", c->frequency, c->symbol_rate); } else { } ret = cxd2820r_gpio(fe); if (ret != 0) { goto error; } else { } if ((unsigned long )fe->ops.tuner_ops.set_params != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { (*(fe->ops.tuner_ops.set_params))(fe); } else { } if ((unsigned int )priv->delivery_system != 1U) { i = 0; goto ldv_22817; ldv_22816: ret = cxd2820r_wr_reg_mask(priv, tab[i].reg, (int )tab[i].val, (int )tab[i].mask); if (ret != 0) { goto error; } else { } i = i + 1; ldv_22817: ; if ((unsigned int )i <= 12U) { goto ldv_22816; } else { } } else { } priv->delivery_system = SYS_DVBC_ANNEX_A; priv->ber_running = 0; if ((unsigned long )fe->ops.tuner_ops.get_if_frequency != (unsigned long )((int (*)(struct dvb_frontend * , u32 * ))0)) { ret = (*(fe->ops.tuner_ops.get_if_frequency))(fe, & if_freq); if (ret != 0) { goto error; } else { } } else { if_freq = 0U; } if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: if_freq=%d\n", "cxd2820r_set_frontend_c", if_freq); } else { } num = (u64 )(if_freq / 1000U); num = num * 16384ULL; tmp = cxd2820r_div_u64_round_closest(num, 41000U); if_ctl = (u16 )tmp; buf[0] = (unsigned int )((u8 )((int )if_ctl >> 8)) & 63U; buf[1] = (u8 )if_ctl; ret = cxd2820r_wr_regs(priv, 65602U, (u8 *)(& buf), 2); if (ret != 0) { goto error; } else { } ret = cxd2820r_wr_reg(priv, 255U, 8); if (ret != 0) { goto error; } else { } ret = cxd2820r_wr_reg(priv, 254U, 1); if (ret != 0) { goto error; } else { } return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_set_frontend_c", ret); } else { } return (ret); } } int cxd2820r_get_frontend_c(struct dvb_frontend *fe ) { struct cxd2820r_priv *priv ; struct dtv_frontend_properties *c ; int ret ; u8 buf[2U] ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; c = & fe->dtv_property_cache; ret = cxd2820r_rd_regs(priv, 65562U, (u8 *)(& buf), 2); if (ret != 0) { goto error; } else { } c->symbol_rate = (u32 )(((((int )buf[0] & 15) << 8) | (int )buf[1]) * 2500); ret = cxd2820r_rd_reg(priv, 65561U, (u8 *)(& buf)); if (ret != 0) { goto error; } else { } switch ((int )buf[0] & 3) { case 0: c->modulation = QAM_16; goto ldv_22828; case 1: c->modulation = QAM_32; goto ldv_22828; case 2: c->modulation = QAM_64; goto ldv_22828; case 3: c->modulation = QAM_128; goto ldv_22828; case 4: c->modulation = QAM_256; goto ldv_22828; } ldv_22828: ; switch (((int )buf[0] >> 7) & 1) { case 0: c->inversion = INVERSION_OFF; goto ldv_22834; case 1: c->inversion = INVERSION_ON; goto ldv_22834; } ldv_22834: ; return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_get_frontend_c", ret); } else { } return (ret); } } int cxd2820r_read_ber_c(struct dvb_frontend *fe , u32 *ber ) { struct cxd2820r_priv *priv ; int ret ; u8 buf[3U] ; u8 start_ber ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; start_ber = 0U; *ber = 0U; if ((int )priv->ber_running) { ret = cxd2820r_rd_regs(priv, 65654U, (u8 *)(& buf), 3); if (ret != 0) { goto error; } else { } if (((int )buf[2] >> 7) & 1 || ((int )buf[2] >> 4) & 1) { *ber = (u32 )(((((int )buf[2] & 15) << 16) | ((int )buf[1] << 8)) | (int )buf[0]); start_ber = 1U; } else { } } else { priv->ber_running = 1; start_ber = 1U; } if ((unsigned int )start_ber != 0U) { ret = cxd2820r_wr_reg(priv, 65657U, 1); if (ret != 0) { goto error; } else { } } else { } return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_read_ber_c", ret); } else { } return (ret); } } int cxd2820r_read_signal_strength_c(struct dvb_frontend *fe , u16 *strength ) { struct cxd2820r_priv *priv ; int ret ; u8 buf[2U] ; u16 tmp ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; ret = cxd2820r_rd_regs(priv, 65609U, (u8 *)(& buf), 2); if (ret != 0) { goto error; } else { } tmp = (u16 )((int )((short )(((int )buf[0] & 3) << 8)) | (int )((short )buf[1])); tmp = (unsigned int )(~ ((int )tmp)) & 1023U; if ((unsigned int )tmp == 512U) { tmp = 0U; } else if ((unsigned int )tmp > 350U) { tmp = 350U; } else { } *strength = (u16 )(((int )tmp * 65535) / 350); return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_read_signal_strength_c", ret); } else { } return (ret); } } int cxd2820r_read_snr_c(struct dvb_frontend *fe , u16 *snr ) { struct cxd2820r_priv *priv ; int ret ; u8 tmp ; unsigned int A ; unsigned int B ; unsigned int tmp___0 ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; ret = cxd2820r_rd_reg(priv, 65561U, & tmp); if (ret != 0) { goto error; } else { } if ((int )tmp & 1) { A = 875U; B = 650U; } else { A = 950U; B = 760U; } ret = cxd2820r_rd_reg(priv, 65613U, & tmp); if (ret != 0) { goto error; } else { } if ((unsigned int )tmp != 0U) { tmp___0 = intlog2(B / (unsigned int )tmp); *snr = (u16 )(((tmp___0 >> 5) * A) / 7563870U); } else { *snr = 0U; } return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_read_snr_c", ret); } else { } return (ret); } } int cxd2820r_read_ucblocks_c(struct dvb_frontend *fe , u32 *ucblocks ) { { *ucblocks = 0U; return (0); } } int cxd2820r_read_status_c(struct dvb_frontend *fe , fe_status_t *status ) { struct cxd2820r_priv *priv ; int ret ; u8 buf[2U] ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; *status = 0; ret = cxd2820r_rd_regs(priv, 65672U, (u8 *)(& buf), 2); if (ret != 0) { goto error; } else { } if ((int )buf[0] & 1) { *status = (fe_status_t )((unsigned int )*status | 15U); if (((int )buf[1] >> 3) & 1) { *status = (fe_status_t )((unsigned int )*status | 31U); } else { } } else { } if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: lock=%02x %02x\n", "cxd2820r_read_status_c", (int )buf[0], (int )buf[1]); } else { } return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_read_status_c", ret); } else { } return (ret); } } int cxd2820r_init_c(struct dvb_frontend *fe ) { struct cxd2820r_priv *priv ; int ret ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; ret = cxd2820r_wr_reg(priv, 133U, 7); if (ret != 0) { goto error; } else { } return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_init_c", ret); } else { } return (ret); } } int cxd2820r_sleep_c(struct dvb_frontend *fe ) { struct cxd2820r_priv *priv ; int ret ; int i ; struct reg_val_mask tab[5U] ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; tab[0].reg = 255U; tab[0].val = 31U; tab[0].mask = 255U; tab[1].reg = 133U; tab[1].val = 0U; tab[1].mask = 255U; tab[2].reg = 136U; tab[2].val = 1U; tab[2].mask = 255U; tab[3].reg = 129U; tab[3].val = 0U; tab[3].mask = 255U; tab[4].reg = 128U; tab[4].val = 0U; tab[4].mask = 255U; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s\n", "cxd2820r_sleep_c"); } else { } priv->delivery_system = SYS_UNDEFINED; i = 0; goto ldv_22900; ldv_22899: ret = cxd2820r_wr_reg_mask(priv, tab[i].reg, (int )tab[i].val, (int )tab[i].mask); if (ret != 0) { goto error; } else { } i = i + 1; ldv_22900: ; if ((unsigned int )i <= 4U) { goto ldv_22899; } else { } return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_sleep_c", ret); } else { } return (ret); } } int cxd2820r_get_tune_settings_c(struct dvb_frontend *fe , struct dvb_frontend_tune_settings *s ) { { s->min_delay_ms = 500; s->step_size = 0; s->max_drift = 0; return (0); } } void ldv_mutex_lock_11(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_cred_guard_mutex_of_signal_struct(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_12(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_cred_guard_mutex_of_signal_struct(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_13(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_14(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } int ldv_mutex_trylock_24(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_22(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_25(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_21(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_23(struct mutex *ldv_func_arg1 ) ; extern unsigned int intlog10(u32 ) ; int cxd2820r_set_frontend_t(struct dvb_frontend *fe ) { struct cxd2820r_priv *priv ; struct dtv_frontend_properties *c ; int ret ; int i ; int bw_i ; u32 if_freq ; u32 if_ctl ; u64 num ; u8 buf[3U] ; u8 bw_param ; u8 bw_params1[3U][5U] ; u8 bw_params2[3U][2U] ; struct reg_val_mask tab[11U] ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; c = & fe->dtv_property_cache; bw_params1[0][0] = 23U; bw_params1[0][1] = 234U; bw_params1[0][2] = 170U; bw_params1[0][3] = 170U; bw_params1[0][4] = 170U; bw_params1[1][0] = 20U; bw_params1[1][1] = 128U; bw_params1[1][2] = 0U; bw_params1[1][3] = 0U; bw_params1[1][4] = 0U; bw_params1[2][0] = 17U; bw_params1[2][1] = 240U; bw_params1[2][2] = 0U; bw_params1[2][3] = 0U; bw_params1[2][4] = 0U; bw_params2[0][0] = 31U; bw_params2[0][1] = 220U; bw_params2[1][0] = 18U; bw_params2[1][1] = 248U; bw_params2[2][0] = 1U; bw_params2[2][1] = 224U; tab[0].reg = 128U; tab[0].val = 0U; tab[0].mask = 255U; tab[1].reg = 129U; tab[1].val = 3U; tab[1].mask = 255U; tab[2].reg = 133U; tab[2].val = 7U; tab[2].mask = 255U; tab[3].reg = 136U; tab[3].val = 1U; tab[3].mask = 255U; tab[4].reg = 112U; tab[4].val = priv->cfg.ts_mode; tab[4].mask = 255U; tab[5].reg = 203U; tab[5].val = (int )((unsigned char )priv->cfg.if_agc_polarity) << 6U; tab[5].mask = 64U; tab[6].reg = 165U; tab[6].val = 0U; tab[6].mask = 1U; tab[7].reg = 130U; tab[7].val = 32U; tab[7].mask = 96U; tab[8].reg = 194U; tab[8].val = 195U; tab[8].mask = 255U; tab[9].reg = 362U; tab[9].val = 80U; tab[9].mask = 255U; tab[10].reg = 1063U; tab[10].val = 65U; tab[10].mask = 255U; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: RF=%d BW=%d\n", "cxd2820r_set_frontend_t", c->frequency, c->bandwidth_hz); } else { } switch (c->bandwidth_hz) { case (u32 )6000000: bw_i = 0; bw_param = 2U; goto ldv_22818; case (u32 )7000000: bw_i = 1; bw_param = 1U; goto ldv_22818; case (u32 )8000000: bw_i = 2; bw_param = 0U; goto ldv_22818; default: ; return (-22); } ldv_22818: ret = cxd2820r_gpio(fe); if (ret != 0) { goto error; } else { } if ((unsigned long )fe->ops.tuner_ops.set_params != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { (*(fe->ops.tuner_ops.set_params))(fe); } else { } if ((unsigned int )priv->delivery_system != 3U) { i = 0; goto ldv_22826; ldv_22825: ret = cxd2820r_wr_reg_mask(priv, tab[i].reg, (int )tab[i].val, (int )tab[i].mask); if (ret != 0) { goto error; } else { } i = i + 1; ldv_22826: ; if ((unsigned int )i <= 10U) { goto ldv_22825; } else { } } else { } priv->delivery_system = SYS_DVBT; priv->ber_running = 0; if ((unsigned long )fe->ops.tuner_ops.get_if_frequency != (unsigned long )((int (*)(struct dvb_frontend * , u32 * ))0)) { ret = (*(fe->ops.tuner_ops.get_if_frequency))(fe, & if_freq); if (ret != 0) { goto error; } else { } } else { if_freq = 0U; } if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: if_freq=%d\n", "cxd2820r_set_frontend_t", if_freq); } else { } num = (u64 )(if_freq / 1000U); num = num * 16777216ULL; if_ctl = cxd2820r_div_u64_round_closest(num, 41000U); buf[0] = (u8 )(if_ctl >> 16); buf[1] = (u8 )(if_ctl >> 8); buf[2] = (u8 )if_ctl; ret = cxd2820r_wr_regs(priv, 182U, (u8 *)(& buf), 3); if (ret != 0) { goto error; } else { } ret = cxd2820r_wr_regs(priv, 159U, (u8 *)(& bw_params1) + (unsigned long )bw_i, 5); if (ret != 0) { goto error; } else { } ret = cxd2820r_wr_reg_mask(priv, 215U, (int )bw_param << 6U, 192); if (ret != 0) { goto error; } else { } ret = cxd2820r_wr_regs(priv, 217U, (u8 *)(& bw_params2) + (unsigned long )bw_i, 2); if (ret != 0) { goto error; } else { } ret = cxd2820r_wr_reg(priv, 255U, 8); if (ret != 0) { goto error; } else { } ret = cxd2820r_wr_reg(priv, 254U, 1); if (ret != 0) { goto error; } else { } return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_set_frontend_t", ret); } else { } return (ret); } } int cxd2820r_get_frontend_t(struct dvb_frontend *fe ) { struct cxd2820r_priv *priv ; struct dtv_frontend_properties *c ; int ret ; u8 buf[2U] ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; c = & fe->dtv_property_cache; ret = cxd2820r_rd_regs(priv, 47U, (u8 *)(& buf), 2); if (ret != 0) { goto error; } else { } switch (((int )buf[0] >> 6) & 3) { case 0: c->modulation = QPSK; goto ldv_22837; case 1: c->modulation = QAM_16; goto ldv_22837; case 2: c->modulation = QAM_64; goto ldv_22837; } ldv_22837: ; switch (((int )buf[1] >> 1) & 3) { case 0: c->transmission_mode = TRANSMISSION_MODE_2K; goto ldv_22841; case 1: c->transmission_mode = TRANSMISSION_MODE_8K; goto ldv_22841; } ldv_22841: ; switch (((int )buf[1] >> 3) & 3) { case 0: c->guard_interval = GUARD_INTERVAL_1_32; goto ldv_22844; case 1: c->guard_interval = GUARD_INTERVAL_1_16; goto ldv_22844; case 2: c->guard_interval = GUARD_INTERVAL_1_8; goto ldv_22844; case 3: c->guard_interval = GUARD_INTERVAL_1_4; goto ldv_22844; } ldv_22844: ; switch (((int )buf[0] >> 3) & 7) { case 0: c->hierarchy = HIERARCHY_NONE; goto ldv_22849; case 1: c->hierarchy = HIERARCHY_1; goto ldv_22849; case 2: c->hierarchy = HIERARCHY_2; goto ldv_22849; case 3: c->hierarchy = HIERARCHY_4; goto ldv_22849; } ldv_22849: ; switch ((int )buf[0] & 7) { case 0: c->code_rate_HP = FEC_1_2; goto ldv_22854; case 1: c->code_rate_HP = FEC_2_3; goto ldv_22854; case 2: c->code_rate_HP = FEC_3_4; goto ldv_22854; case 3: c->code_rate_HP = FEC_5_6; goto ldv_22854; case 4: c->code_rate_HP = FEC_7_8; goto ldv_22854; } ldv_22854: ; switch (((int )buf[1] >> 5) & 7) { case 0: c->code_rate_LP = FEC_1_2; goto ldv_22860; case 1: c->code_rate_LP = FEC_2_3; goto ldv_22860; case 2: c->code_rate_LP = FEC_3_4; goto ldv_22860; case 3: c->code_rate_LP = FEC_5_6; goto ldv_22860; case 4: c->code_rate_LP = FEC_7_8; goto ldv_22860; } ldv_22860: ret = cxd2820r_rd_reg(priv, 1990U, (u8 *)(& buf)); if (ret != 0) { goto error; } else { } switch ((int )buf[0] & 1) { case 0: c->inversion = INVERSION_OFF; goto ldv_22866; case 1: c->inversion = INVERSION_ON; goto ldv_22866; } ldv_22866: ; return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_get_frontend_t", ret); } else { } return (ret); } } int cxd2820r_read_ber_t(struct dvb_frontend *fe , u32 *ber ) { struct cxd2820r_priv *priv ; int ret ; u8 buf[3U] ; u8 start_ber ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; start_ber = 0U; *ber = 0U; if ((int )priv->ber_running) { ret = cxd2820r_rd_regs(priv, 118U, (u8 *)(& buf), 3); if (ret != 0) { goto error; } else { } if (((int )buf[2] >> 7) & 1 || ((int )buf[2] >> 4) & 1) { *ber = (u32 )(((((int )buf[2] & 15) << 16) | ((int )buf[1] << 8)) | (int )buf[0]); start_ber = 1U; } else { } } else { priv->ber_running = 1; start_ber = 1U; } if ((unsigned int )start_ber != 0U) { ret = cxd2820r_wr_reg(priv, 121U, 1); if (ret != 0) { goto error; } else { } } else { } return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_read_ber_t", ret); } else { } return (ret); } } int cxd2820r_read_signal_strength_t(struct dvb_frontend *fe , u16 *strength ) { struct cxd2820r_priv *priv ; int ret ; u8 buf[2U] ; u16 tmp ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; ret = cxd2820r_rd_regs(priv, 38U, (u8 *)(& buf), 2); if (ret != 0) { goto error; } else { } tmp = (u16 )((int )((short )(((int )buf[0] & 15) << 8)) | (int )((short )buf[1])); tmp = (unsigned int )(~ ((int )tmp)) & 4095U; *strength = (u16 )(((int )tmp * 65535) / 4095); return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_read_signal_strength_t", ret); } else { } return (ret); } } int cxd2820r_read_snr_t(struct dvb_frontend *fe , u16 *snr ) { struct cxd2820r_priv *priv ; int ret ; u8 buf[2U] ; u16 tmp ; unsigned int tmp___0 ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; ret = cxd2820r_rd_regs(priv, 40U, (u8 *)(& buf), 2); if (ret != 0) { goto error; } else { } tmp = (u16 )((int )((short )(((int )buf[0] & 31) << 8)) | (int )((short )buf[1])); if ((unsigned int )tmp != 0U) { tmp___0 = intlog10((u32 )tmp); *snr = (u16 )((tmp___0 - 15151336U) / 167772U); } else { *snr = 0U; } if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: dBx10=%d val=%04x\n", "cxd2820r_read_snr_t", (int )*snr, (int )tmp); } else { } return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_read_snr_t", ret); } else { } return (ret); } } int cxd2820r_read_ucblocks_t(struct dvb_frontend *fe , u32 *ucblocks ) { { *ucblocks = 0U; return (0); } } int cxd2820r_read_status_t(struct dvb_frontend *fe , fe_status_t *status ) { struct cxd2820r_priv *priv ; int ret ; u8 buf[4U] ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; *status = 0; ret = cxd2820r_rd_reg(priv, 16U, (u8 *)(& buf)); if (ret != 0) { goto error; } else { } if (((int )buf[0] & 7) == 6) { ret = cxd2820r_rd_reg(priv, 115U, (u8 *)(& buf) + 1UL); if (ret != 0) { goto error; } else { } if (((int )buf[1] >> 3) & 1) { *status = (fe_status_t )((unsigned int )*status | 31U); } else { *status = (fe_status_t )((unsigned int )*status | 15U); } } else { ret = cxd2820r_rd_reg(priv, 20U, (u8 *)(& buf) + 2UL); if (ret != 0) { goto error; } else { } if (((int )buf[2] & 15) > 3) { ret = cxd2820r_rd_reg(priv, 2580U, (u8 *)(& buf) + 3UL); if (ret != 0) { goto error; } else { } if (((int )buf[3] >> 4) & 1) { *status = (fe_status_t )((unsigned int )*status | 1U); } else { } } else { } } if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: lock=%02x %02x %02x %02x\n", "cxd2820r_read_status_t", (int )buf[0], (int )buf[1], (int )buf[2], (int )buf[3]); } else { } return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_read_status_t", ret); } else { } return (ret); } } int cxd2820r_init_t(struct dvb_frontend *fe ) { struct cxd2820r_priv *priv ; int ret ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; ret = cxd2820r_wr_reg(priv, 133U, 7); if (ret != 0) { goto error; } else { } return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_init_t", ret); } else { } return (ret); } } int cxd2820r_sleep_t(struct dvb_frontend *fe ) { struct cxd2820r_priv *priv ; int ret ; int i ; struct reg_val_mask tab[5U] ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; tab[0].reg = 255U; tab[0].val = 31U; tab[0].mask = 255U; tab[1].reg = 133U; tab[1].val = 0U; tab[1].mask = 255U; tab[2].reg = 136U; tab[2].val = 1U; tab[2].mask = 255U; tab[3].reg = 129U; tab[3].val = 0U; tab[3].mask = 255U; tab[4].reg = 128U; tab[4].val = 0U; tab[4].mask = 255U; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s\n", "cxd2820r_sleep_t"); } else { } priv->delivery_system = SYS_UNDEFINED; i = 0; goto ldv_22931; ldv_22930: ret = cxd2820r_wr_reg_mask(priv, tab[i].reg, (int )tab[i].val, (int )tab[i].mask); if (ret != 0) { goto error; } else { } i = i + 1; ldv_22931: ; if ((unsigned int )i <= 4U) { goto ldv_22930; } else { } return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_sleep_t", ret); } else { } return (ret); } } int cxd2820r_get_tune_settings_t(struct dvb_frontend *fe , struct dvb_frontend_tune_settings *s ) { { s->min_delay_ms = 500; s->step_size = (int )(fe->ops.info.frequency_stepsize * 2U); s->max_drift = (int )(fe->ops.info.frequency_stepsize * 2U + 1U); return (0); } } void ldv_mutex_lock_21(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_cred_guard_mutex_of_signal_struct(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_22(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_cred_guard_mutex_of_signal_struct(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_23(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_24(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_25(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } int ldv_mutex_trylock_34(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_32(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_35(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_31(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_33(struct mutex *ldv_func_arg1 ) ; int cxd2820r_set_frontend_t2(struct dvb_frontend *fe ) { struct cxd2820r_priv *priv ; struct dtv_frontend_properties *c ; int ret ; int i ; int bw_i ; u32 if_freq ; u32 if_ctl ; u64 num ; u8 buf[3U] ; u8 bw_param ; u8 bw_params1[4U][5U] ; struct reg_val_mask tab[29U] ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; c = & fe->dtv_property_cache; bw_params1[0][0] = 28U; bw_params1[0][1] = 179U; bw_params1[0][2] = 51U; bw_params1[0][3] = 51U; bw_params1[0][4] = 51U; bw_params1[1][0] = 23U; bw_params1[1][1] = 234U; bw_params1[1][2] = 170U; bw_params1[1][3] = 170U; bw_params1[1][4] = 170U; bw_params1[2][0] = 20U; bw_params1[2][1] = 128U; bw_params1[2][2] = 0U; bw_params1[2][3] = 0U; bw_params1[2][4] = 0U; bw_params1[3][0] = 17U; bw_params1[3][1] = 240U; bw_params1[3][2] = 0U; bw_params1[3][3] = 0U; bw_params1[3][4] = 0U; tab[0].reg = 128U; tab[0].val = 2U; tab[0].mask = 255U; tab[1].reg = 129U; tab[1].val = 32U; tab[1].mask = 255U; tab[2].reg = 133U; tab[2].val = 7U; tab[2].mask = 255U; tab[3].reg = 136U; tab[3].val = 1U; tab[3].mask = 255U; tab[4].reg = 8297U; tab[4].val = 1U; tab[4].mask = 255U; tab[5].reg = 8319U; tab[5].val = 42U; tab[5].mask = 255U; tab[6].reg = 8322U; tab[6].val = 10U; tab[6].mask = 255U; tab[7].reg = 8323U; tab[7].val = 10U; tab[7].mask = 255U; tab[8].reg = 8395U; tab[8].val = (int )((unsigned char )priv->cfg.if_agc_polarity) << 6U; tab[8].mask = 64U; tab[9].reg = 8304U; tab[9].val = priv->cfg.ts_mode; tab[9].mask = 255U; tab[10].reg = 8373U; tab[10].val = (int )((unsigned char )priv->cfg.spec_inv) << 4U; tab[10].mask = 16U; tab[11].reg = 9575U; tab[11].val = 7U; tab[11].mask = 15U; tab[12].reg = 9577U; tab[12].val = 3U; tab[12].mask = 3U; tab[13].reg = 9621U; tab[13].val = 26U; tab[13].mask = 255U; tab[14].reg = 9622U; tab[14].val = 80U; tab[14].mask = 255U; tab[15].reg = 10892U; tab[15].val = 0U; tab[15].mask = 255U; tab[16].reg = 10893U; tab[16].val = 52U; tab[16].mask = 255U; tab[17].reg = 10821U; tab[17].val = 6U; tab[17].mask = 7U; tab[18].reg = 16144U; tab[18].val = 13U; tab[18].mask = 255U; tab[19].reg = 16145U; tab[19].val = 2U; tab[19].mask = 255U; tab[20].reg = 16146U; tab[20].val = 1U; tab[20].mask = 255U; tab[21].reg = 16163U; tab[21].val = 44U; tab[21].mask = 255U; tab[22].reg = 16209U; tab[22].val = 19U; tab[22].mask = 255U; tab[23].reg = 16210U; tab[23].val = 1U; tab[23].mask = 255U; tab[24].reg = 16211U; tab[24].val = 0U; tab[24].mask = 255U; tab[25].reg = 10214U; tab[25].val = 20U; tab[25].mask = 255U; tab[26].reg = 10118U; tab[26].val = 2U; tab[26].mask = 7U; tab[27].reg = 10119U; tab[27].val = 64U; tab[27].mask = 224U; tab[28].reg = 10223U; tab[28].val = 16U; tab[28].mask = 24U; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: RF=%d BW=%d\n", "cxd2820r_set_frontend_t2", c->frequency, c->bandwidth_hz); } else { } switch (c->bandwidth_hz) { case (u32 )5000000: bw_i = 0; bw_param = 3U; goto ldv_22817; case (u32 )6000000: bw_i = 1; bw_param = 2U; goto ldv_22817; case (u32 )7000000: bw_i = 2; bw_param = 1U; goto ldv_22817; case (u32 )8000000: bw_i = 3; bw_param = 0U; goto ldv_22817; default: ; return (-22); } ldv_22817: ret = cxd2820r_gpio(fe); if (ret != 0) { goto error; } else { } if ((unsigned long )fe->ops.tuner_ops.set_params != (unsigned long )((int (*)(struct dvb_frontend * ))0)) { (*(fe->ops.tuner_ops.set_params))(fe); } else { } if ((unsigned int )priv->delivery_system != 16U) { i = 0; goto ldv_22826; ldv_22825: ret = cxd2820r_wr_reg_mask(priv, tab[i].reg, (int )tab[i].val, (int )tab[i].mask); if (ret != 0) { goto error; } else { } i = i + 1; ldv_22826: ; if ((unsigned int )i <= 28U) { goto ldv_22825; } else { } } else { } priv->delivery_system = SYS_DVBT2; if ((unsigned long )fe->ops.tuner_ops.get_if_frequency != (unsigned long )((int (*)(struct dvb_frontend * , u32 * ))0)) { ret = (*(fe->ops.tuner_ops.get_if_frequency))(fe, & if_freq); if (ret != 0) { goto error; } else { } } else { if_freq = 0U; } if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: if_freq=%d\n", "cxd2820r_set_frontend_t2", if_freq); } else { } num = (u64 )(if_freq / 1000U); num = num * 16777216ULL; if_ctl = cxd2820r_div_u64_round_closest(num, 41000U); buf[0] = (u8 )(if_ctl >> 16); buf[1] = (u8 )(if_ctl >> 8); buf[2] = (u8 )if_ctl; ret = cxd2820r_wr_regs(priv, 8374U, (u8 *)(& buf), 3); if (ret != 0) { goto error; } else { } ret = cxd2820r_wr_regs(priv, 8351U, (u8 *)(& bw_params1) + (unsigned long )bw_i, 5); if (ret != 0) { goto error; } else { } ret = cxd2820r_wr_reg_mask(priv, 8407U, (int )bw_param << 6U, 192); if (ret != 0) { goto error; } else { } ret = cxd2820r_wr_reg(priv, 255U, 8); if (ret != 0) { goto error; } else { } ret = cxd2820r_wr_reg(priv, 254U, 1); if (ret != 0) { goto error; } else { } return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_set_frontend_t2", ret); } else { } return (ret); } } int cxd2820r_get_frontend_t2(struct dvb_frontend *fe ) { struct cxd2820r_priv *priv ; struct dtv_frontend_properties *c ; int ret ; u8 buf[2U] ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; c = & fe->dtv_property_cache; ret = cxd2820r_rd_regs(priv, 8284U, (u8 *)(& buf), 2); if (ret != 0) { goto error; } else { } switch ((int )buf[0] & 7) { case 0: c->transmission_mode = TRANSMISSION_MODE_2K; goto ldv_22837; case 1: c->transmission_mode = TRANSMISSION_MODE_8K; goto ldv_22837; case 2: c->transmission_mode = TRANSMISSION_MODE_4K; goto ldv_22837; case 3: c->transmission_mode = TRANSMISSION_MODE_1K; goto ldv_22837; case 4: c->transmission_mode = TRANSMISSION_MODE_16K; goto ldv_22837; case 5: c->transmission_mode = TRANSMISSION_MODE_32K; goto ldv_22837; } ldv_22837: ; switch (((int )buf[1] >> 4) & 7) { case 0: c->guard_interval = GUARD_INTERVAL_1_32; goto ldv_22844; case 1: c->guard_interval = GUARD_INTERVAL_1_16; goto ldv_22844; case 2: c->guard_interval = GUARD_INTERVAL_1_8; goto ldv_22844; case 3: c->guard_interval = GUARD_INTERVAL_1_4; goto ldv_22844; case 4: c->guard_interval = GUARD_INTERVAL_1_128; goto ldv_22844; case 5: c->guard_interval = GUARD_INTERVAL_19_128; goto ldv_22844; case 6: c->guard_interval = GUARD_INTERVAL_19_256; goto ldv_22844; } ldv_22844: ret = cxd2820r_rd_regs(priv, 8795U, (u8 *)(& buf), 2); if (ret != 0) { goto error; } else { } switch ((int )buf[0] & 7) { case 0: c->fec_inner = FEC_1_2; goto ldv_22852; case 1: c->fec_inner = FEC_3_5; goto ldv_22852; case 2: c->fec_inner = FEC_2_3; goto ldv_22852; case 3: c->fec_inner = FEC_3_4; goto ldv_22852; case 4: c->fec_inner = FEC_4_5; goto ldv_22852; case 5: c->fec_inner = FEC_5_6; goto ldv_22852; } ldv_22852: ; switch ((int )buf[1] & 7) { case 0: c->modulation = QPSK; goto ldv_22859; case 1: c->modulation = QAM_16; goto ldv_22859; case 2: c->modulation = QAM_64; goto ldv_22859; case 3: c->modulation = QAM_256; goto ldv_22859; } ldv_22859: ret = cxd2820r_rd_reg(priv, 8373U, (u8 *)(& buf)); if (ret != 0) { goto error; } else { } switch (((int )buf[0] >> 4) & 1) { case 0: c->inversion = INVERSION_OFF; goto ldv_22864; case 1: c->inversion = INVERSION_ON; goto ldv_22864; } ldv_22864: ; return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_get_frontend_t2", ret); } else { } return (ret); } } int cxd2820r_read_status_t2(struct dvb_frontend *fe , fe_status_t *status ) { struct cxd2820r_priv *priv ; int ret ; u8 buf[1U] ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; *status = 0; ret = cxd2820r_rd_reg(priv, 8208U, (u8 *)(& buf)); if (ret != 0) { goto error; } else { } if (((int )buf[0] & 7) == 6) { if (((int )buf[0] >> 5) & 1) { *status = (fe_status_t )((unsigned int )*status | 31U); } else { *status = (fe_status_t )((unsigned int )*status | 15U); } } else { } if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: lock=%02x\n", "cxd2820r_read_status_t2", (int )buf[0]); } else { } return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_read_status_t2", ret); } else { } return (ret); } } int cxd2820r_read_ber_t2(struct dvb_frontend *fe , u32 *ber ) { struct cxd2820r_priv *priv ; int ret ; u8 buf[4U] ; unsigned int errbits ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; *ber = 0U; ret = cxd2820r_rd_regs(priv, 8249U, (u8 *)(& buf), 4); if (ret != 0) { goto error; } else { } if (((int )buf[0] >> 4) & 1) { errbits = (unsigned int )((((((int )buf[0] & 15) << 24) | ((int )buf[1] << 16)) | ((int )buf[2] << 8)) | (int )buf[3]); if (errbits != 0U) { *ber = (errbits * 64U) / 16588800U; } else { } } else { } return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_read_ber_t2", ret); } else { } return (ret); } } int cxd2820r_read_signal_strength_t2(struct dvb_frontend *fe , u16 *strength ) { struct cxd2820r_priv *priv ; int ret ; u8 buf[2U] ; u16 tmp ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; ret = cxd2820r_rd_regs(priv, 8230U, (u8 *)(& buf), 2); if (ret != 0) { goto error; } else { } tmp = (u16 )((int )((short )(((int )buf[0] & 15) << 8)) | (int )((short )buf[1])); tmp = (unsigned int )(~ ((int )tmp)) & 4095U; *strength = (u16 )(((int )tmp * 65535) / 4095); return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_read_signal_strength_t2", ret); } else { } return (ret); } } int cxd2820r_read_snr_t2(struct dvb_frontend *fe , u16 *snr ) { struct cxd2820r_priv *priv ; int ret ; u8 buf[2U] ; u16 tmp ; unsigned int tmp___0 ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; ret = cxd2820r_rd_regs(priv, 8232U, (u8 *)(& buf), 2); if (ret != 0) { goto error; } else { } tmp = (u16 )((int )((short )(((int )buf[0] & 15) << 8)) | (int )((short )buf[1])); if ((unsigned int )tmp != 0U) { tmp___0 = intlog10((u32 )tmp); *snr = (u16 )((tmp___0 - 15151336U) / 167772U); } else { *snr = 0U; } if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: dBx10=%d val=%04x\n", "cxd2820r_read_snr_t2", (int )*snr, (int )tmp); } else { } return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_read_snr_t2", ret); } else { } return (ret); } } int cxd2820r_read_ucblocks_t2(struct dvb_frontend *fe , u32 *ucblocks ) { { *ucblocks = 0U; return (0); } } int cxd2820r_sleep_t2(struct dvb_frontend *fe ) { struct cxd2820r_priv *priv ; int ret ; int i ; struct reg_val_mask tab[6U] ; { priv = (struct cxd2820r_priv *)fe->demodulator_priv; tab[0].reg = 255U; tab[0].val = 31U; tab[0].mask = 255U; tab[1].reg = 133U; tab[1].val = 0U; tab[1].mask = 255U; tab[2].reg = 136U; tab[2].val = 1U; tab[2].mask = 255U; tab[3].reg = 8297U; tab[3].val = 0U; tab[3].mask = 255U; tab[4].reg = 129U; tab[4].val = 0U; tab[4].mask = 255U; tab[5].reg = 128U; tab[5].val = 0U; tab[5].mask = 255U; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s\n", "cxd2820r_sleep_t2"); } else { } i = 0; goto ldv_22922; ldv_22921: ret = cxd2820r_wr_reg_mask(priv, tab[i].reg, (int )tab[i].val, (int )tab[i].mask); if (ret != 0) { goto error; } else { } i = i + 1; ldv_22922: ; if ((unsigned int )i <= 5U) { goto ldv_22921; } else { } priv->delivery_system = SYS_UNDEFINED; return (ret); error: ; if (cxd2820r_debug != 0) { printk("<6>cxd2820r: %s: failed:%d\n", "cxd2820r_sleep_t2", ret); } else { } return (ret); } } int cxd2820r_get_tune_settings_t2(struct dvb_frontend *fe , struct dvb_frontend_tune_settings *s ) { { s->min_delay_ms = 1500; s->step_size = (int )(fe->ops.info.frequency_stepsize * 2U); s->max_drift = (int )(fe->ops.info.frequency_stepsize * 2U + 1U); return (0); } } void ldv_mutex_lock_31(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_cred_guard_mutex_of_signal_struct(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_32(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_cred_guard_mutex_of_signal_struct(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_33(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_34(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_35(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } long ldv__builtin_expect(long exp , long c ) ; __inline static void ldv_error(void) __attribute__((__no_instrument_function__)) ; __inline static void ldv_error(void) { { LDV_ERROR: {reach_error();abort();} } } extern int ldv_undef_int(void) ; long ldv__builtin_expect(long exp , long c ) { { return (exp); } } static int ldv_mutex_cred_guard_mutex_of_signal_struct ; int ldv_mutex_lock_interruptible_cred_guard_mutex_of_signal_struct(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { } else { ldv_error(); } nondetermined = ldv_undef_int(); if (nondetermined) { ldv_mutex_cred_guard_mutex_of_signal_struct = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_cred_guard_mutex_of_signal_struct(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { } else { ldv_error(); } nondetermined = ldv_undef_int(); if (nondetermined) { ldv_mutex_cred_guard_mutex_of_signal_struct = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_cred_guard_mutex_of_signal_struct(struct mutex *lock ) { { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { } else { ldv_error(); } ldv_mutex_cred_guard_mutex_of_signal_struct = 2; return; } } int ldv_mutex_trylock_cred_guard_mutex_of_signal_struct(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_cred_guard_mutex_of_signal_struct = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_cred_guard_mutex_of_signal_struct(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { } else { ldv_error(); } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_cred_guard_mutex_of_signal_struct = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_cred_guard_mutex_of_signal_struct(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { nondetermined = ldv_undef_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_cred_guard_mutex_of_signal_struct(struct mutex *lock ) { { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 2) { } else { ldv_error(); } ldv_mutex_cred_guard_mutex_of_signal_struct = 1; return; } } static int ldv_mutex_mutex_of_device ; int ldv_mutex_lock_interruptible_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } nondetermined = ldv_undef_int(); if (nondetermined) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } nondetermined = ldv_undef_int(); if (nondetermined) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } ldv_mutex_mutex_of_device = 2; return; } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = ldv_undef_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_mutex_of_device = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } atomic_value_after_dec = ldv_undef_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex_of_device = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { nondetermined = ldv_undef_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device == 2) { } else { ldv_error(); } ldv_mutex_mutex_of_device = 1; return; } } void ldv_initialize(void) { { ldv_mutex_cred_guard_mutex_of_signal_struct = 1; ldv_mutex_mutex_of_device = 1; return; } } void ldv_check_final_state(void) { { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { } else { ldv_error(); } if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } return; } }