// Example of a .fat file that is used in the documentation of the // AutomataParser // https://sotec.informatik.uni-freiburg.de/trac/ultimate/wiki/AutomataParser // please do not change it. // Author: heizmann@informatik.uni-freiburg.de // Date: 7.3.2010 // Adapted & Extended by: musab@informatik.uni-freiburg.de // Date: 9.02.2013 // The answer of the first test should be no, since every symbol of the nested // word aabb is an internal symbol. assert(!accepts(a1, [a a b b])); assert(accepts(a1, [a< a< >b >b])); // A nested word automaton that has no internal transitions. // This was the definition in the old syntax. NestedWordAutomaton a1 = ( callAlphabet = {a b}, internalAlphabet = {a b}, returnAlphabet = {a b}, states = {q0 q1}, initialStates = {q0}, finalStates = {q1}, callTransitions = {(q0 a q0) (q0 a q1)}, internalTransitions = {}, returnTransitions = {(q1 q0 b q1)} ); // A nested word automaton, that represents a finite automaton. It accepts // nested words that have only internal positions. The call alphabet and the // return alphabet are empty. assert(accepts(a2, [a a b b])); NestedWordAutomaton a2 = ( callAlphabet = { }, internalAlphabet = {a b}, returnAlphabet = { }, states = {q0 q1}, initialStates = {q0}, finalStates = {q0}, callTransitions = {}, internalTransitions = {(q0 a q1) (q1 a q0) (q0 b q0) (q1 b q1)}, returnTransitions = {} );