#include #define SIN_2PI_16 0.38268343236508978 #define SIN_4PI_16 0.707106781186547460 #define SIN_6PI_16 0.923879532511286740 #define C_P_S_2PI_16 1.30656296487637660 #define C_M_S_2PI_16 0.54119610014619690 #define C_P_S_6PI_16 1.3065629648763766 #define C_M_S_6PI_16 -0.54119610014619690 /* INPUT: float input[16], float output[16] */ /* OUTPUT: none */ /* EFFECTS: Places the 16 point fft of input in output in a strange */ /* order using 10 real multiplies and 79 real adds. */ /* Re{F[0]}= out0 */ /* Im{F[0]}= 0 */ /* Re{F[1]}= out8 */ /* Im{F[1]}= out12 */ /* Re{F[2]}= out4 */ /* Im{F[2]}= -out6 */ /* Re{F[3]}= out11 */ /* Im{F[3]}= -out15 */ /* Re{F[4]}= out2 */ /* Im{F[4]}= -out3 */ /* Re{F[5]}= out10 */ /* Im{F[5]}= out14 */ /* Re{F[6]}= out5 */ /* Im{F[6]}= -out7 */ /* Re{F[7]}= out9 */ /* Im{F[7]}= -out13 */ /* Re{F[8]}= out1 */ /* Im{F[8]}=0 */ /* F[9] through F[15] can be found by using the formula */ /* Re{F[n]}=Re{F[(16-n)mod16]} and Im{F[n]}= -Im{F[(16-n)mod16]} */ /* Note using temporary variables to store intermediate computations */ /* in the butterflies might speed things up. When the current version */ /* needs to compute a=a+b, and b=a-b, I do a=a+b followed by b=a-b-b. */ /* So practically everything is done in place, but the number of adds */ /* can be reduced by doinc c=a+b followed by b=a-b. */ /* The algorithm behind this program is to find F[2k] and F[4k+1] */ /* seperately. To find F[2k] we take the 8 point Real FFT of x[n]+x[n+8] */ /* for n from 0 to 7. To find F[4k+1] we take the 4 point Complex FFT of */ /* exp(-2*pi*j*n/16)*{x[n] - x[n+8] + j(x[n+12]-x[n+4])} for n from 0 to 3.*/ void R16SRFFT(float input[16],float output[16] ) { float temp, out0, out1, out2, out3, out4, out5, out6, out7, out8; float out9,out10,out11,out12,out13,out14,out15; out0=input[0]+input[8]; /* output[0 through 7] is the data that we */ out1=input[1]+input[9]; /* take the 8 point real FFT of. */ out2=input[2]+input[10]; out3=input[3]+input[11]; out4=input[4]+input[12]; out5=input[5]+input[13]; out6=input[6]+input[14]; out7=input[7]+input[15]; out8=input[0]-input[8]; /* inputs 8,9,10,11 are */ out9=input[1]-input[9]; /* the Real part of the */ out10=input[2]-input[10]; /* 4 point Complex FFT inputs.*/ out11=input[3]-input[11]; out12=input[12]-input[4]; /* outputs 12,13,14,15 are */ out13=input[13]-input[5]; /* the Imaginary pars of */ out14=input[14]-input[6]; /* the 4 point Complex FFT inputs.*/ out15=input[15]-input[7]; /*First we do the "twiddle factor" multiplies for the 4 point CFFT */ /*Note that we use the following handy trick for doing a complex */ /*multiply: (e+jf)=(a+jb)*(c+jd) */ /* e=(a-b)*d + a*(c-d) and f=(a-b)*d + b*(c+d) */ /* C_M_S_2PI/16=cos(2pi/16)-sin(2pi/16) when replaced by macroexpansion */ /* C_P_S_2PI/16=cos(2pi/16)+sin(2pi/16) when replaced by macroexpansion */ /* (SIN_2PI_16)=sin(2pi/16) when replaced by macroexpansion */ temp=(out13-out9)*(SIN_2PI_16); out9=out9*(C_P_S_2PI_16)+temp; out13=out13*(C_M_S_2PI_16)+temp; out14*=(SIN_4PI_16); out10*=(SIN_4PI_16); out14=out14-out10; out10=out14+out10+out10; temp=(out15-out11)*(SIN_6PI_16); out11=out11*(C_P_S_6PI_16)+temp; out15=out15*(C_M_S_6PI_16)+temp; /* The following are the first set of two point butterfiles */ /* for the 4 point CFFT */ out8+=out10; out10=out8-out10-out10; out12+=out14; out14=out12-out14-out14; out9+=out11; out11=out9-out11-out11; out13+=out15; out15=out13-out15-out15; /*The followin are the final set of two point butterflies */ output[1]=out8+out9; output[7]=out8-out9; output[9]=out12+out13; output[15]=out13-out12; output[5]=out10+out15; /* implicit multiplies by */ output[13]=out14-out11; /* a twiddle factor of -j */ output[3]=out10-out15; /* implicit multiplies by */ output[11]=-out14-out11; /* a twiddle factor of -j */ /* What follows is the 8-point FFT of points output[0-7] */ /* This 8-point FFT is basically a Decimation in Frequency FFT */ /* where we take advantage of the fact that the initial data is real*/ /* First set of 2-point butterflies */ out0=out0+out4; out4=out0-out4-out4; out1=out1+out5; out5=out1-out5-out5; out2+=out6; out6=out2-out6-out6; out3+=out7; out7=out3-out7-out7; /* Computations to find X[0], X[4], X[6] */ output[0]=out0+out2; output[4]=out0-out2; out1+=out3; output[12]=out3+out3-out1; output[0]+=out1; /* Real Part of X[0] */ output[8]=output[0]-out1-out1; /*Real Part of X[4] */ /* out2 = Real Part of X[6] */ /* out3 = Imag Part of X[6] */ /* Computations to find X[5], X[7] */ out5*=SIN_4PI_16; out7*=SIN_4PI_16; out5=out5-out7; out7=out5+out7+out7; output[14]=out6-out7; /* Imag Part of X[5] */ output[2]=out5+out4; /* Real Part of X[7] */ output[6]=out4-out5; /*Real Part of X[5] */ output[10]=-out7-out6; /* Imag Part of X[7] */ } int main() { float data[16]; float output[16]; float zero=0; printf("\ntype 16 point input vector\n"); scanf("%f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f",&data[0],&data[1],&data[2],&data[3],&data[4],&data[5],&data[6],&data[7],&data[8],&data[9],&data[10],&data[11],&data[12],&data[13],&data[14],&data[15]); R16SRFFT(data,output); printf("\nresult is:\n"); printf("k,\t\tReal Part\t\tImaginary Part\n"); printf("0\t\t%.9f\t\t%.9f\n",output[0],zero); printf("1\t\t%.9f\t\t%.9f\n",output[1],output[9]); printf("2\t\t%.9f\t\t%.9f\n",output[2],output[10]); printf("3\t\t%.9f\t\t%.9f\n",output[3],output[11]); printf("4\t\t%.9f\t\t%.9f\n",output[4],output[12]); printf("5\t\t%.9f\t\t%.9f\n",output[5],output[13]); printf("6\t\t%.9f\t\t%.9f\n",output[6],output[14]); printf("7\t\t%.9f\t\t%.9f\n",output[7],output[15]); printf("8\t\t%.9f\t\t%.9f\n",output[8],zero); printf("9\t\t%.9f\t\t%.9f\n",output[7],-output[15]); printf("10\t\t%.9f\t\t%.9f\n",output[6],-output[14]); printf("11\t\t%.9f\t\t%.9f\n",output[5],-output[13]); printf("12\t\t%.9f\t\t%.9f\n",output[4],-output[12]); printf("13\t\t%.9f\t\t%.9f\n",output[3],-output[11]); printf("14\t\t%.9f\t\t%.9f\n",output[2],-output[9]); printf("15\t\t%.9f\t\t%.9f\n",output[1],-output[8]); return 0; }