/*
* Copyright (C) 2023 Philipp Müller (pm251@venus.uni-freiburg.de)
* Copyright (C) 2023 University of Freiburg
*
* This file is part of the ULTIMATE Automata Library.
*
* The ULTIMATE Automata Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* The ULTIMATE Automata Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the ULTIMATE Automata Library. If not, see .
*
* Additional permission under GNU GPL version 3 section 7:
* If you modify the ULTIMATE Automata Library, or any covered work, by linking
* or combining it with Eclipse RCP (or a modified version of Eclipse RCP),
* containing parts covered by the terms of the Eclipse Public License, the
* licensors of the ULTIMATE Automata Library grant you additional permission
* to convey the resulting work.
*/
package de.uni_freiburg.informatik.ultimate.automata.rabin;
import java.util.ArrayDeque;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Set;
import de.uni_freiburg.informatik.ultimate.automata.nestedword.transitions.OutgoingInternalTransition;
import de.uni_freiburg.informatik.ultimate.automata.statefactory.IBlackWhiteStateFactory;
import de.uni_freiburg.informatik.ultimate.util.datastructures.DataStructureUtils;
import de.uni_freiburg.informatik.ultimate.util.datastructures.relation.NestedMap2;
import de.uni_freiburg.informatik.ultimate.util.datastructures.relation.Pair;
/**
* A collection of methods on IRabinAutomaton
*
* @author Philipp Müller (pm251@venus.uni-freiburg.de)
*
*/
public class RabinAutomataUtils {
/**
* Removes all states that are not reachable by initialization or traversal of automaton
*
* @param automaton
* The automaton that should be optimized
* @return reduced automaton
*/
public static RabinAutomaton
computeReachableStates(final IRabinAutomaton automaton) {
return computeReachableIgnoredStates(automaton, Set.of());
}
/**
* Removes all states that either are:
*
* - present in toRemove or only reachable from them
*
- not reachable by initialization or traversal of automaton
*
*
* @param automaton
* The automaton that should be optimized
* @param toRemove
* States which should be removed from the resulting Rabin automaton (including (in)direct successors)
* @return reduced automaton
*/
public static RabinAutomaton
computeReachableIgnoredStates(final IRabinAutomaton automaton, final Set toRemove) {
final Set initialStates = DataStructureUtils.difference(automaton.getInitialStates(), toRemove);
final Set states = new HashSet<>();
final NestedMap2> transitions = new NestedMap2<>();
final Set finiteStates = new HashSet<>();
final Set acceptingStates = new HashSet<>();
final ArrayDeque currentStateSet = new ArrayDeque<>();
currentStateSet.addAll(initialStates);
while (!currentStateSet.isEmpty()) {
final STATE currentState = currentStateSet.pop();
states.add(currentState);
if (automaton.isFinite(currentState)) {
finiteStates.add(currentState);
} else if (automaton.isAccepting(currentState)) {
acceptingStates.add(currentState);
}
for (final OutgoingInternalTransition transition : automaton.getSuccessors(currentState)) {
final STATE succ = transition.getSucc();
if (toRemove.contains(succ)) {
continue;
}
final LETTER letter = transition.getLetter();
Set successors = transitions.get(currentState, letter);
if (successors == null) {
successors = new HashSet<>();
transitions.put(currentState, letter, successors);
}
successors.add(succ);
if (!states.contains(succ)) {
currentStateSet.add(succ);
}
}
}
return new RabinAutomaton<>(automaton.getAlphabet(), states, initialStates, acceptingStates, finiteStates,
transitions);
}
/**
* A method to compute a general Rabin automaton with multiple accepting sets and corresponding finite sets
*
* @param
* type of letter
* @param
* type of state
* @param alphabet
* alphabet
* @param states
* all states
* @param initialStates
* initial states
* @param acceptingConditions
* A list of Pairs with first being a list of final states and second being a list of corresponding
* finite states
* @param transitions
* transitions
* @param factory
* a BlackWhiteStateFactory
* @return a parallel automaton that allows multiple different accepting conditions
*/
public static IRabinAutomaton disjunctiveAutomaton(final Set alphabet,
final Set states, final Set initialStates,
final Iterable, Set>> acceptingConditions,
final NestedMap2> transitions, final IBlackWhiteStateFactory factory) {
final Iterator, Set>> remainingAcceptanceConditions = acceptingConditions.iterator();
Pair, Set> temp = remainingAcceptanceConditions.next();
IRabinAutomaton result =
new RabinAutomaton<>(alphabet, states, initialStates, temp.getFirst(), temp.getSecond(), transitions);
while (remainingAcceptanceConditions.hasNext()) {
temp = remainingAcceptanceConditions.next();
result = new RabinUnion<>(result, new RabinAutomaton<>(alphabet, states, initialStates, temp.getFirst(),
temp.getSecond(), transitions), factory);
}
return result;
}
}