/* * Copyright (C) 2016 Mostafa M.A. (mostafa.amin93@gmail.com) * Copyright (C) 2014-2016 University of Freiburg * * This file is part of the ULTIMATE Automata Library. * * The ULTIMATE Automata Library is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * The ULTIMATE Automata Library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with the ULTIMATE Automata Library. If not, see . * * Additional permission under GNU GPL version 3 section 7: * If you modify the ULTIMATE Automata Library, or any covered work, by linking * or combining it with Eclipse RCP (or a modified version of Eclipse RCP), * containing parts covered by the terms of the Eclipse Public License, the * licensors of the ULTIMATE Automata Library grant you additional permission * to convey the resulting work. */ package de.uni_freiburg.informatik.ultimate.automata.tree; import java.util.ArrayList; import java.util.Collection; import java.util.Collections; import java.util.HashSet; import java.util.List; import java.util.Map; import java.util.Objects; import java.util.Set; import de.uni_freiburg.informatik.ultimate.automata.statefactory.ISemanticReducerFactory; /** * A run of a tree automaton. * * (alex:) Effectively this is used for representing any tree with some nodes and some edge labels. (e.g. in HCSsa) * * * @author Mostafa M.A. (mostafa.amin93@gmail.com) * * @param Symbols of the automaton * @param States of the automaton. */ public class TreeRun implements ITreeRun { /* * fields that determine the TreeRun */ private final STATE mState; private final LETTER mLetter; private final List> mChildren; /* * helper fields */ private final Collection mAllStates; private final Collection> mAllRules; /** * Constructs a run that consists of one state, and no transitions. * @param state */ public TreeRun(final STATE state) { this(state, null, new ArrayList<>()); } /** * Constructs a run, by the final state, transition symbol, transition children. * Run := letter(childrenRuns) ~> state * @param state: final state of the computation. * @param letter: the letter taken by the final transition. * @param children: The children runs. */ public TreeRun(final STATE state, final LETTER letter, final List> children) { this.mState = state; this.mLetter = letter; this.mChildren = children; /* * compute all rules and all states from this and children * TODO: perhaps do this lazy */ final Set allStates = new HashSet<>(); final Set> allRules = new HashSet<>(); final List childStates = new ArrayList<>(); for (final TreeRun child : children) { allStates.addAll(child.getStates()); childStates.add(child.getRoot()); allRules.addAll(child.getRules()); } if (mLetter != null) { allRules.add(new TreeAutomatonRule(mLetter, childStates, state)); } allStates.add(mState); mAllStates = Collections.unmodifiableSet(allStates); mAllRules = Collections.unmodifiableSet(allRules); assert !mAllStates.stream().anyMatch(Objects::isNull); } /*** * Rebuild the tree run with new states. * Type of the terminal state. * @param stMap map of the old states to the new states. * @return */ public TreeRun reconstruct(final Map stMap) { final List> child = new ArrayList<>(); for (final TreeRun c : mChildren) { child.add(c.reconstruct(stMap)); } return new TreeRun<>(stMap.containsKey(mState) ? stMap.get(mState) : null, mLetter, child); } /*** * Rebuild the tree run with new states. * Type of the terminal state. * @param stMap map of the old states to the new states. * @return */ public TreeRun reconstructViaSubtrees(final Map, ST> stMap) { final List> children = new ArrayList<>(); for (final TreeRun c : mChildren) { children.add(c.reconstructViaSubtrees(stMap)); } if (stMap.get(this) == null) { return (TreeRun) this; } else { return new TreeRun<>(stMap.get(this), mLetter, children); } } public List> getChildren() { return mChildren; } private Collection> getRules() { return mAllRules; } private Collection getStates() { return mAllStates; } @Override public > InterpolantTreeAutomatonBU getInterpolantAutomaton( final SF factory) { final InterpolantTreeAutomatonBU treeAutomaton = new InterpolantTreeAutomatonBU<>(factory); for (final STATE st : getStates()) { treeAutomaton.addState(st); } treeAutomaton.addFinalState(mState); for (final TreeAutomatonRule rule : getRules()) { treeAutomaton.addRule(rule); } return treeAutomaton; } @Override public ITreeAutomatonBU getAutomaton() { final TreeAutomatonBU treeAutomaton = new TreeAutomatonBU<>(); for (final STATE st : getStates()) { treeAutomaton.addState(st); } treeAutomaton.addFinalState(mState); for (final TreeAutomatonRule rule : getRules()) { treeAutomaton.addRule(rule); } return treeAutomaton; } @Override public Tree getTree() { final List> treeChildren = new ArrayList<>(); for (final TreeRun run : this.mChildren) { treeChildren.add(run.getTree()); } return new Tree<>(mLetter, treeChildren); } @Override public STATE getRoot() { return mState; } @Override public LETTER getRootSymbol() { return mLetter; } @Override public String toString() { final StringBuilder res = new StringBuilder(); for (final TreeRun st : mChildren) { if (res.length() > 0) { res.append(", "); } res.append(st.toString()); } if (res.length() > 0) { res.insert(0, "("); res.append(")"); } return String.format("%s[%s]%s", mLetter, mState, res); } }